
Of Operation States and Their Lifetimes
Document Number: P3373R1
Date: 2025-01-11
Reply-to: Robert Leahy <rleahy@rleahy.ca>
Audience: LEWG

Abstract
This paper proposes updates to the lifetime of the operation states [1] of sub operations of
several asynchronous algorithms provided by std::execution.

Background

Operation States and Stack Frames

In broad terms a regular (i.e. synchronous) function call has access to two forms of storage
throughout its lifetime (note that the “lifetime” of a regular function call is the time between the
call thereto and the return therefrom):

● Stack storage (i.e. “variables with automatic storage duration”)
● Heap storage (i.e. “variables with dynamic storage duration”)

Asynchronous operations within the framework of std::execution analogously have access to
two forms of storage throughout their lifetime (note that the “lifetime” of an asynchronous
operation is the time between a call to std::execution::start on the operation state and the
fulfillment of the “receiver contract”):

● Contents of the operation state
● Heap storage (note this is identical to the synchronous case)

Note that asynchronous operations may, depending on their form, have access to stack storage
at points throughout their execution but it is not, in general, available throughout their lifetime.

The analogues between components of a regular function call and an asynchronous operation
do not end there. A regular function call consists of:

1. Call (i.e. the synchronous surrender of control of the thread of execution thereto by the
caller)

2. Execution (i.e. the use of the thread of execution to perform the desired task)
3. Either

○ Error (transmitted via exception)

○ Success (transmitted via the return of exactly one homogeneously-typed value
(note that sum (std::optional, std::expected, et cetera) and product
(std::pair, std::tuple, et cetera) types permit the de facto transmission of
multiple heterogeneously-typed values)

Whereas an asynchronous operation consists of:

1. Initiation (i.e. std::execution::start)
2. Execution (note that in the model of std::execution this may be synchronous or

asynchronous whereas other models of asynchronous computation do not permit the
former ([2] at §13.2.7.6))

3. Satisfaction of the receiver contract by exactly one of:
○ Error (transmitted via std::execution::set_error)
○ Success (transmitted via the transmission of potentially multiple, potentially

heterogeneously-typed values via std::execution::set_value)
○ Stopped (transmitted via std::execution::set_stopped) (note that this has no

direct synchronous analogue [3])

We could continue with these analogues until each element of an asynchronous operation within
the framework of std::execution has a synchronous analogue.

Despite the elegance of the above-described analogues there is one area in which they lack
predictive power: The lifetime of the operation state. By the above-described analogy one would
expect that the lifetime of the operation state is ended by the invocation of
std::execution::set_value, ::set_error, or ::set_stopped (since when a regular
function returns or throws the lifetime of variables with automatic storage duration ends)
however this is not guaranteed to be the case in general and in fact std::execution appears
to guarantee exactly the opposite.

Directed Graphs

Both synchronous and asynchronous code can be expressed in terms of a directed graph (note
that the possibility of recursion precludes expression in terms of a directed acyclic graph). The
direction of the edges in this graph depends on the relationship one chooses to model:

● Calls: The edge is directed from the caller to the callee
● Returns to: The edge is directed from the callee to the caller

Note that in the context of std::execution the latter relationship causes vertices (i.e.
asynchronous operations) to have edges directed towards the asynchronous operation which
owns their operation state and is therefore the convention which will be useful for our analysis.

Relationships Between Operations

std::execution contains two distinct syntaxes for creating and composing senders (and, by
extension, the asynchronous operations initiated thereby).

The first is regular function call syntax, for example:

std::execution::then(

 std::execution::just(5),

 [](const int i) noexcept { return float(i); })

With this syntax our returns-to relationship (see above) is directed from the inside to the output,
or from right to left. Note that it has been claimed that control and data flow in this model is more
difficult to understand [4].

The second is pipe syntax, for example (equivalent to the above modulo currying overhead):

std::execution::just(5) |

 std::execution::then([](const int i) noexcept { return float (i); });

With this syntax our returns-to relationship is directed along the pipe, or from left to right. This
alignment between how the code is typed and the direction of our relationship indicates to us
one of the motivations for this syntax: It intuitively expresses data flow through the resulting
overall operation.

For simple, linear pipelines everything can be expressed using only either of the above
syntaxes. In this case the choice of which to use is purely one of preference or convention
(again modulo currying overhead). We can use this to introduce two relationships in addition to
our returns-to relationship (note that in this simple case these relationships will be isomorphic to
returns-to but this will stop being the case as we continue our exploration):

● Predecessor/successor: An operation is the “predecessor” of another operation when its
sole interaction therewith is to send values thereto

● Parent/child: An operation is the “parent” of another operation when it owns the
operation state thereof

In our above example:

● std::execution::just returns to std::execution::then
● std::execution::just precedes std::execution::then
● std::execution::then parent of std::execution::just

Visually:

As pointed out above this example is simple. std::execution::just simply produces a value.
std::execution::then simply transforms the value produced by its predecessor.
std::execution contains operations with more complicated relationships which start to
illustrate the difference between these relationships, for example:

std::execution::just(5) |

 std::execution::let_value([](const int i) noexcept {

 return std::execution::when_all(

 std::execution::just(i),

 std::execution::just(float(i)));

 })

In the above example std::execution::just has the following relationships with
std::execution::let_value:

● Returns to
● Precedes
● Child of

But beyond that the relationships become much more complicated.
std::execution::let_value is the parent of std::execution::when_all (which in turns
returns to it) but is not preceded or succeeded thereby. std::execution::let_value has
transitive parent-of relationships with operations that do not return to it (since parent-of is
transitive whereas returns-to is not). This example is sufficiently complicated that describing the
relationships is far less expressive than visualizing them (and this example is not even that
complicated).

Note that with the introduction of these more complicated relationships the pipe syntax was
insufficient. The fact that it was not used exclusively in the above example was not a stylistic
choice rather some of the relationships therein cannot be expressed thereby.

Examples

std::execution::then
struct print_from_destructor {

 ~print_from_destructor() noexcept {

 std::cout << "Destructor" << std::endl;

 }

};

auto ptr = std::make_unique<print_from_destructor>();

struct receiver {

 using receiver_concept = std::execution::receiver_t;

 void set_value(const int& i) noexcept {

 std::cout << "*" << &i << " = " << i << std::endl;

 }

 void set_error(std::exception_ptr) noexcept {}

 void set_stopped() noexcept {}

};

const auto scheduler = ctx.get_scheduler();

auto op = std::execution::connect(

 std::execution::just() | std::execution::then([

 p = std::move(ptr),

 vec = std::vector<int>{1, 2, 3}]() noexcept

 {

 std::cout << &vec.front() << std::endl;

 return std::cref(vec.front());

 }) | std::execution::continue_on(scheduler),

 receiver{});

std::execution::start(op);

ctx.run();

Running against a reference implementation of std::execution [5] this outputs the following:

0x6020000000f0

*0x6020000000f0 = 1

Destructor

Using the previously-described analogues with regular function calls we can write a
synchronous analogue of this code:

const auto a = []() {

 const print_from_destructor print;

 const std::vector<int> vec{1, 2, 3};
 std::cout << &vec.front() << std::endl;

 return std::cref(vec.front());

};

const auto b = [](const int& i) {

 std::cout << "*" << &i << " = " << i << std::endl;

};

b(a());

This code outputs:

0x602000000110
Destructor

Followed by a lengthy AddressSanitizer diagnostic due to the fact it has undefined behavior.

Alternate Synchronous Analogues
One could make an argument that the following synchronous code (which does not have
undefined behavior) is also an analogue of the asynchronous example being discussed above:

const auto a = [

 g = print_from_destructor{},

 vec = std::vector<int>{1, 2, 3}]()

{

 std::cout << &vec.front() << std::endl;

 return std::cref(vec.front());

};

const auto b = [](const int& i) {

 std::cout << "*" << &i << " = " << i << std::endl;

};

b(a());

Another alternate interpretation is:

[](const int& i) {

 std::cout << "*" << &i << " = " << i << std::endl;

}(

 [

 g = print_from_destructor{},

 vec = std::vector<int>{1, 2, 3}]()

 {

 std::cout << &vec.front() << std::endl;

 return std::cref(vec.front());

 }());

Note that this still does not have undefined behavior due to the fact the lifetimes of temporaries
are extended to the end of the enclosing full-expression. However the above hints to another
alternate interpretation:

auto&& i = [

 g = print_from_destructor{},

 vec = std::vector<int>{1, 2, 3}]()

{

 std::cout << &vec.front() << std::endl;

 return std::cref(vec.front());

}();

[](const int& i) {

 std::cout << "*" << &i << " = " << i << std::endl;

}(i);

Which does have undefined behavior.

std::execution::let_value
template<typename Writable>

auto write(Writable& writable, std::span<const std::byte> span) noexcept {

 return std::execution::just(std::move(span)) |

 std::execution::let_value([&writable](std::span<const std::byte>& span)

 noexcept

 {

 return ::exec::repeat_effect_until(

 std::execution::just() |

 std::execution::let_value([&writable, &span]() noexcept(

 noexcept(writable.write(span)))

 {

 return writable.write(span);

 }) |

 std::execution::then([&span](const std::size_t bytes_transferred)

 noexcept

 {

 span = span.subspan(bytes_transferred);

 return span.empty();

 }));

 });

}

The intention of the above is to repeatedly perform possibly-partial writes until:

● The desired number of bytes has been written,
● An error occurs, or
● Cancelation is requested

Note that repeat_effect_until is not part of std::execution as of this writing but is
provided as an extension by the reference implementation [5] which was used in the preparation
of this paper.

Discussion

std::execution::then

Upon first consideration the behavior of the example involving std::execution::then (see
above) seems acceptable. The lack of UB stems from the fact that the lifetime of the invocable
is bound to the lifetime of the operation state. The lifetime of the operation state persists until

the end of the example because it’s nested within the overall operation state and therefore
elements within vec remain within their lifetime when they’re used by successive asynchronous
operations. In order for this example to have undefined behavior one of the following would
need to be true:

● The implementation of std::execution::then explicitly ends the lifetime of the
invocable upon which it is parameterized sometime after the invocation thereof

● The implementation of std::execution::continue_on goes out of its way to end the
lifetime of the operation state of its predecessor upon satisfaction of the receiver contract
thereof

Both of which would involve additional implementation complexity for no immediately-obvious
gain.

Consideration of the analogues with synchronous code, however, can cast this in a different
light: Since std::execution::then returns to std::execution::continue_on we would
expect, by analogy with synchronous code, for std::execution::continue_on to end the
lifetime of the operation state for std::execution::then in the same way that returning from a
synchronous function destroys the stack frame thereof.

Extrapolating from the above we can contrast the intermediate storage requirements of regular
synchronous C++ code and asynchronous code under the framework of std::execution.
Given a directed graph modeling the returns-to relationship (see above) the synchronous code
requires intermediate storage equal to the maximum sum across a set of sums obtained by
summing the intermediate storage requirements of each vertex across all walks through that
graph (note that it follows from this that unbounded recursion, modeled as a cycle in the graph,
implies an infinite intermediate storage requirement). If such a graph models the returns-to
relationship for asynchronous code under the framework of std::execution, however, the
intermediate storage is equal to the sum across all vertices (cycles are not considered).

Put differently: Whereas the stack pointer for regular synchronous code moves both up and
down (“allocating” and “freeing” stack storage) the analogue thereof for asynchronous code
under the framework of std::execution moves in only one direction (i.e. such storage is only
ever “allocated”).

Note that linear asynchronous operations (i.e. those for which the directed graph of the
returns-to relationships thereof is connected) the above doesn’t represent much of a difference.
The lifetime of the leaf operation states exists longer but the storage requirements aren’t
increased as there’s one walk which includes all vertices (i.e. the graph is connected). As
described above, however, there are operations which aren’t linear.

std::execution::let_value

std::execution::let_value, unlike std::execution::then, has two direct child operations:

● The predecessor operation, and
● The operation spawned from the sender returned by the wrapped invocable (which is

invoked with the value(s) yielded by the above)

These operations do not overlap in time and so their operation states could in principle overlap
in storage however this technique is disallowed by the specification.
std::execution::let_value is specified in terms of basic-operation which is required to
be equivalent to ([1] at §34.9.1, emphasis added):

template<class Sndr, class Rcvr>

 requires valid-specialization<state-type, Sndr, Rcvr> &&

 valid-specialization<connect-all-result, Sndr, Rcvr>

struct basic-operation : basic-state<Sndr, Rcvr> { // exposition only

 using operation_state_concept = operation_state_t;

 using tag-t = tag_of_t<Sndr>; // exposition only

 connect-all-result<Sndr, Rcvr> inner-ops; // exposition only

 basic-operation(Sndr&& sndr, Rcvr&& rcvr) noexcept(see below) // exposition only

 : basic-state<Sndr, Rcvr>(std::forward<Sndr>(sndr), std::move(rcvr))

 , inner-ops(connect-all(this, std::forward<Sndr>(sndr), indices-for<Sndr>()))

 {}

 void start() & noexcept {

 auto& [...ops] = inner-ops;

 impls-for<tag-t>::start(this->state, this->rcvr, ops...);

 }

};

Which in turn leverages connect-all which is required to be equivalent to (ibid.):

[]<class Sndr, class Rcvr, size_t... Is>(

 basic-state<Sndr, Rcvr>* op, Sndr&& sndr, index_sequence<Is...>) noexcept(see below)

 -> decltype(auto) {

 auto& [_, data, ...child] = sndr;

 return product-type{connect(

 std::forward_like<Sndr>(child),

 basic-receiver<Sndr, Rcvr, integral_constant<size_t, Is>>{op})...};

 }

Where product-type is std::tuple-like (ibid.). As such the operation state for
std::execution::let_value contains not only those values which it requires but also the

operation states for all predecessors structured in such a way that the storage therefor cannot
be reused until the completion of the overall operation.

In the context of our example involving std::execution::let_value this might initially seem
fortuitous. After all if std::execution::let_value opportunistically destroyed the operation
state for std::execution::just (for example to reuse the storage therefor for the child
operation spawned from the sender returned by the invocable) surely:

● The lifetime of the std::span<const std::byte> contained thereby would end, and
● The overall operation (which depends on the ability to reference the aforementioned

std::span<const std::byte>) would have undefined behavior?

Except this initially-intuitive analysis is incorrect. std::execution::let_value is completely
free to destroy the operation state of std::execution::just without introducing undefined
behavior into the example. The implementation in libunifex [6] does exactly this as of the time of
this writing.

The reason for the above is that the stable reference the example relies upon is not to a value
within the operation state of std::execution::just (i.e. the predecessor) but rather to a value
within the operation state of std::execution::let_value (i.e. the parent). As such the lifetime
of that value is not in question: By analogy with the synchronous world it’s obvious that variables
in the intermediate storage of the parent (in our analogy on the caller’s stack) remain within their
lifetime throughout execution of the child (in our analogy for the duration of the callee’s
execution).

For confirmation of this we look to the specification of std::execution. The completion of
std::execution::just is specified to have the effect of ([1] at §34.9.10.2, emphasis added):

template<>

struct impls-for<decayed-typeof<just-cpo>> : default-impls {

 static constexpr auto start =

 [](auto& state, auto& rcvr) noexcept -> void {

 auto& [...ts] = state;

 set-cpo(std::move(rcvr), std::move(ts)...);

 };

};

Whereas reception of this value within std::execution::let_value is specified as interacting
with the state thereof (id. at §34.9.11.8, emphasis added):

struct state-type {

 fn_t fn; // exposition only

 env_t env; // exposition only

 args_variant_t args; // exposition only

 ops2_variant_t ops2; // exposition only

};

By (ibid., emphasis added):

using args_t = decayed-tuple<Args...>;

auto mkop2 = [&] {

 return connect(

 apply(std::move(state.fn),

 state.args.template emplace<args_t>(std::forward<Args>(args)...)),

 receiver2{rcvr, std::move(state.env)});

};

start(state.ops2.template emplace<decltype(mkop2())>(emplace-from{mkop2}));

As such the effect of the current formulation (whereunder the operation state of
std::execution::just remains within its lifetime) only has the effect of ensuring that an
unused, moved-from std::span<const std::byte> remains within its lifetime within the
operation state for std::execution::just.

Temporaries and Lifetime Extension
In the previous synchronous examples only certain permutations exhibited undefined behavior.
Those examples which did exhibit well-defined behavior did so due to lifetime extension of
temporaries. In general the lifetime of temporaries is extended to the end of the enclosing
full-expression. This raises the question of whether or not the concept of a “full expression”
exists in the asynchronous world of std::execution.

Due to the fact std::execution is a library rather than a language feature we can’t perform
direct syntactic comparisons between the world of “regular” C++ code (with its full-expressions
and temporary lifetime extension) and asynchronous, std::execution code (with its operation
states). It is tempting however to see the pipe syntax used to chain asynchronous algorithms in
the framework of std::execution and posit that such chains of asynchronous algorithms are
an analogue of a full-expression (and that therefore by analogy temporary lifetime extension
should apply thereto, thereby justifying the status quo).

There is however the possibility that this supposition only seems like a neat analogue because
of the particular structure of the code used in the example: An entire overall asynchronous
operation composed in a single full-expression through piping. Would the analogy seem as
convincing or tempting if we rearranged the code so that several parts thereof were composed
in functions or in separate full-expressions (with intermediate senders simply stored in a variable
and later moved from to continue the composition)?

Networking TS
While the name of the Networking TS identifies networking as its primary concern it also
contains an alternative asynchronous model to the one put forth by std::execution [7]. While
efforts to adopt the model proposed thereby into the standard [8] have heretofore failed it still
represents a large, wide-reaching piece of design work which did, at some point in time and in
some form, gain consensus.

One criticism of the asynchronous model put forth by the Networking TS centers around
allocation, the ability to control such allocation, and whether such allocation can be avoided
(ibid. at §1.4). Whether this is endemic to the model is debatable [9] but whether it is or not the
design direction of the Networking TS can still inform our discussion here in the context of
std::execution.

The relevant consequences of the above are that asynchronous operations under the model of
the Networking TS must ([2] at §13.2.7.11):

● Explicitly allocate all intermediate storage
● Deallocate all such intermediate storage before performing the “upcall” (i.e. the

invocation of the “completion handler” which signals that an asynchronous operation is
done)

This would be equivalent to the lifetime of the operation state for an operation ending
immediately before fulfillment of the receiver contract (note that attempting to emulate the
Networking TS’s behavior this strictly would be unworkable since an asynchronous operation
within the framework of std::execution has no control over its operation state’s lifetime).

Note that one of the consequences of this design decision is that allocators may be provided to
asynchronous operations with the assurance that all memory allocated therethrough will be
available for reuse by a subsequent operation (this allows for simple (e.g. bump) allocators to be
used).

Extending the Receiver Contract

std::execution goes to lengths to provide strong guarantees around the receiver contract. It
is invalid under the framework of std::execution to allow the lifetime of an operation state to
end once std::execution::start has been invoked thereupon unless the receiver contract
has been satisfied.

Taking the approach that std::execution takes with the asynchronous algorithms it provides is
tantamount to extending the receiver contract by providing a fourth signal which indicates when

the most-enclosing asynchronous operation completes (whether via set_value, set_stopped,
or set_error).

This fourth signal does not seem to be part of the intentional design surface of
std::execution. We should explicitly decide whether this is a signal we want to provide (at
least from the standard algorithms) and if not adjust what is being standardized to prevent the
destructor of the operation state from being used in this manner.

Possible Designs

Status Quo
Most of the specification in std::execution is in the form of code that implementations must
be equivalent to. This has the effect of prescribing the lifetimes of nested operation states.
std::execution appears to consistently define these lifetimes as persisting until the end of the
lifetime of the containing operation state. This defines the lifetimes thereof maximally which:

● Consumes a maximal amount of storage
● Causes perhaps initially-surprising accesses to have well-defined behavior
● Can cause surprises when an object nested within an operation state manages some

resource (particularly a lock) via RAII (i.e. the resource extends long after the
asynchronous operation which stored it completes)

Minimal
std::execution could be respecified to mandate that the operation states of nested operations
are destroyed by the receiver thereof. As compared to the maximal approach this would:

● Consume a minimal amount of storage
● Cause a maximal number of accesses to have undefined behavior
● Scope resources managed by RAII types exactly to the containing operation

Note that the second point above may seem like a disadvantage however there are two classes
of access which this change would render undefined:

● Intentional accesses (i.e. wherein the author thereof has a deep understanding of
std::execution and knows that the access is well-defined regardless of how “surprising”
that may be)

● Unintentional accesses (i.e. wherein the author thereof doesn’t possess an adequate
mental model and simply happens to write well-defined code because of the fact
std::execution happens to maximize the lifetime of nested operation states)

In the former case such programmers can simply write different code after this change is
applied. They have a deep understanding of the framework, understand the patterns necessary
to operate therein, and will doubtless find a method to appropriately extend lifetimes where and
when they need to.

In the latter case such a change can actually be framed as an advantage. Just because the
standard maximizes operation state lifetimes doesn’t mean complementary operations supplied
by users of the standard will follow this example. By allowing people to accidentally write
well-defined code because the standard chooses to maximize nested operation state lifetimes
we create the very real possibility that people will write fragile code which works with standard
algorithms, but doesn’t compose with non-standard algorithms. Note this could in turn become a
safety issue due to the fact people will likely test their operations with standard algorithms
(perhaps with sanitizers to alert them to undefined behavior) and may then later integrate those
operations with non-standard algorithms with less rigor (believing the operations are sound due
to previous experience testing with standard algorithms) leading to latent issues.

This approach has two disadvantages in that forcing the operation state’s lifetime to end
immediately after the associated operation completes:

● Requires explicit management of the lifetime of that operation state (for example by
wrapping it in std::optional)

● May cause the lifetime of the receiver associated with the outer operation to end while
within its set_value, set_error, or set_stopped member function

Note that both of these are simply implementation concerns, they don’t have any user-facing
impact.

Ad Hoc

The algorithms could be considered one-by-one with a separate nested operation state lifetime
being determined for each of them. Initially this does not seem compelling as it variously suffers
from all the issues of the previous two proposals and has the added disadvantage of the
cognitive load it forces onto users. However one of our examples actually contains motivation
for this approach in the form of std::execution::continue_on.

In the previous example involving std::execution::then were it the case that
std::execution::continue_on exhibits the “minimal” behavior (see above) then it would
have to decay-copy the value generated by std::execution::then so it could safely destroy
the operation state thereof. Thereafter it would have to move that value to pass it to the value
channel of the final receiver thereby introducing a copy or move where none needed to exist.

Rather than clinging firmly to the minimal approach we could arrive at a principle whereunder
operations destroy their predecessor’s operation state as soon as they are finished with the
values generated thereby. For cases like std::execution::continue_on (wherein the values

generated by the predecessor are simply passed through and therefore the operation is not
“finished with” them for its duration) this would defer responsibility for the destruction to the
successor thereof (note that this would reify itself as the successor simply destroying its
predecessor’s operation state which would, transitively, destroy the predecessor’s
predecessor’s operation state).

If we want to continue the analogies with synchronous code as has been done throughout this
paper we could think of the above as a workaround for the fact that RVO does not exist in the
asynchronous world.

Implementation-Defined
The standard could remain silent on the matter of the lifetimes of nested operation states and
leave them completely up to the implementers of the standard library.

This initially seems like a tempting position: Implementers are free to choose whatever makes
the most sense for their users, and whatever gives them the largest gains in terms of storage
used, performance sacrificed or gained, et cetera.

From a user’s point-of-view however this is a confluence of the minimal and maximal options. In
order to be technically correct (and portable) users must write their code as if the minimal option
has been chosen, except when reasoning about when the destructors of objects nested in their
operation state will fire, in which case they must assume either minimal or maximal (whichever
happens to produce the most conservative results on a case-by-case basis).

Everyone reading this paper likely understands that not all users (or perhaps any) are as perfect
as would be required by the preceding paragraph. They will incorrectly reason about lifetimes,
lifetime duration of scoped resources, et cetera. Depending on implementation choices these
may work. Thereafter we will be in the universe of Hyrum’s Law [10]. Instead of considering
lifetimes carefully and deciding to standardize a carefully-chosen option we will live in a universe
of fait accompli wherein the de facto standard is whatever some implementer happened to
arrive at when they first implemented std::execution.

Proposal
In Wrocław, November 2024, LEWG expressed openness to considering principled reduction of
operation state lifetimes for certain algorithms (see “Review History”). Discussion centered
around two kinds of algorithms: Those for which lifetime reduction provides storage
optimizations, and those for which the lifetime extension discussed at length in this paper may
be especially surprising.

let_value, let_error, & let_stopped

The let_* family of algorithms falls into the former of the two categories discussed above:
Ending the lifetime of the operation state of the first sub operation after the values received
therefrom have been stored in the parent’s operation state allows the storage occupied thereby
to be reused for the operation state of the second operation (i.e. the operation state formed by
connecting the sender returned by the invocable).

Note that ending the lifetime of sub operation states early does not present this opportunity for
other algorithms: Because they only ever contain a single child operation state there are no
savings to be gained by ending the lifetime of that operation state early (i.e. before the end of
the overall operation state’s lifetime). Additionally, as was discussed in LEWG in Wrocław,
requiring this of other algorithms would add overhead since a std::optional (or equivalent)
would need to be used to track the status of the sub operation state’s lifetime.

Also note that the implementation of the let_* family of algorithms in libunifex already uses the
above-described lifetime management strategy [11], and therefore adopting this change would
be standardizing existing practice.

As such this paper proposes that each of let_value, let_error, and let_stopped end the
lifetime of the “predecessor” operation state:

● After persisting the values sent thereby, and
● Before calling the provided invocable to obtain a sender for the successor operation

Note that, due to the way in which std::execution is worded, translating the above into usable
wording is not straightforward. This plain English description is therefore presented for LEWG’s
consideration while a discussion takes place regarding how to update the wording to reflect the
above.

split

split falls into the second of the above-described categories. The sub operation state’s lifetime
potentially persists long after the completion of the operation associated therewith. This is
because split senders are a handle to a shared state which serves to transform the sender
provided when obtaining the split sender into a multi-shot sender ([1] at §4.7). This lifetime
extension is potentially surprising as it extends the lifetime of the operation state associated with
the completed sub operation until the last split sender is done with the shared state (which at
that point only serves the purpose of holding the values sent by the sub operation). Concern
was expressed during LEWG discussion in Wrocław that the operation state might, for example,
hold locks leading to non-obvious deadlocks which would be difficult to reason about.

Given the above split should be respecified to end the lifetime of the sub operation state:

● After persisting the values sent thereby, and
● Before allowing the operation initiated by connecting and starting any split sender to

complete with those values

Note that there is significant discussion among parties involved in the standardization and
evolution of std::execution about whether split should be allowed to ship at all in its current
form. Particularly upcoming work on asynchronous scopes [12] may provide cause to reconsider
split and several parties have expressed that they intend to raise national body comments
proposing its removal.

Review History

R0
Presented to LEWG in Wrocław (November 2024), the following polls were taken:

POLL: We welcome a paper that explores a principled reduction of operation state lifetimes for
specific S/R algorithms (described as ad-hoc in P3373).

SF F N A SA

10 7 0 0 0

Attendance: 16 IP, 4 online
of Authors: 1
Author’s Position: SF
Outcome: Consensus in favor

Revision History

R1
● Proposed a concrete course of action

Acknowledgements
The author would like to thank:

● Ian Petersen and Lewis Baker for their input on this design space and the alternatives
therein as well as for feedback on this paper, and

● Bryan St. Amour and Eric Niebler for assistance with wording considerations related to
this paper

The author would like to acknowledge Inbal Levi for impelling him to write this paper.

References
[1] Michał Dominiak et al. std::execution P2300R10
[2] J. Wakely. Working Draft, C++ Extensions for Networking N4771
[3] K. Shoop et al. Cancellation is serendipitous-success P1677R2
[4] B. Revzin. Exploring the Design Space for a Pipeline Operator P2672
[5] https://github.com/NVIDIA/stdexec/tree/main
[6] https://github.com/facebookexperimental/libunifex
[7] C. Kohlhoff. A Universal Model for Asynchronous Operations N3747
[8] J. Hoberock et al. A Unified Executors Proposal for C++ P0443R14
[9] C. Kohlhoff. Networking TS changes to improve completion token flexibility and performance
P1943R0
[10] https://www.hyrumslaw.com/
[11]
https://github.com/facebookexperimental/libunifex/blob/03a211667e7598311c6bdcefdb3d489d3
41a42f0/include/unifex/let_value.hpp#L144
[12] I. Petersen et al. async_scope – Creating scopes for non-sequential concurrency P3149R8

	Of Operation States and Their Lifetimes
	Abstract
	Background
	Operation States and Stack Frames
	Directed Graphs
	Relationships Between Operations

	Examples
	std::execution::then
	Alternate Synchronous Analogues
	std::execution::let_value

	Discussion
	std::execution::then
	std::execution::let_value
	Temporaries and Lifetime Extension
	Networking TS
	Extending the Receiver Contract

	Possible Designs
	Status Quo
	Minimal
	Ad Hoc
	Implementation-Defined

	Proposal
	let_value, let_error, & let_stopped
	split

	Review History
	R0

	Revision History
	R1

	Acknowledgements
	References

