
A sender query for completion behaviour
Document #: P3206R0
Date: 2025-01-13
Project: Programming Language C++
Audience: SG1
Reply-to: Maikel Nadolski

<maikel.nadolski@gmail.com>

1 Abstract
A sender query is proposed to improve the lifetime management for child operation states. There is no wording
in this paper yet.

2 Introduction
This proposal partially continues on [P2257R0]. It proposes the query execution::get_completion_behaviour
that determines whether an async operation completes inline, synchronous or asynchronously with a call to
execution::start. This corresponds to the completion guarantees in [P2257R0]. The current proposal does
not include a query to investigate whether starting an operation will block an execution agent.

Knowing whether an operation completes synchronously changes the way how the lifetime of the operation state
can be managed, and inline completion implies synchronous completion. No guarantees regarding the completion
behaviour are being made, if no suitable overload for a sender and environment pair is being found.

Awaitables have a very similar way to convey this information by returning true or false for await_ready().
Without this proposal senders in std::execution are missing a tool to do so.

This query proves to be instrumental in optimizing the behavior for some algorithms, including but not limited
to sync_wait(), repeat()-like algorithms, the as_awaitable() helper or a scheduler-affine coroutine task type.

2.1 sync_wait algorithm
A possible implementation of sync_wait synchronizes the completion of the input operation with some sig-
naling mechanism. If the input operation is known to complete synchronously, sync_wait does not need the
synchronization primitives in its implementation.

2.2 repeat-like algorithms
Consider a typical repeat-like sender algorithm that repeats the construction and initiation of an input operation.

A usual implementation reconstructs and starts a child operation from within the value completion of an in-
termediate receiver. If the completion behaviour of the child operation is not known, one needs to mitigate a
possible recursive call stack e.g., by rescheduling on a lightweight scheduler.

If the child operation completes synchronously a repeat-like algorithm can be implemented with a while loop,
similar to the following snippet:

1

mailto:maikel.nadolski@gmail.com
https://wg21.link/p2257r0
https://wg21.link/p2257r0


bool stopped{false};
optional<connect_result_t<Sender, repeat_receiver>> child_op(

std::in_place,
emplace_from{[&] { return exection::connect(sender, repeat_receiver{&stopped}); }});

while (!stopped) {
execution::start(*child_op);
child_op.emplace(

emplace_from{[&] { return exection::connect(sender, repeat_receiver{&stopped}); }});
}

2.3 as_awaitable
The current specification of as_awaitable transforms senders into awaitable that can not use symmetric transfer,
even if it would be feasible, because the necessary information is not available. Consequently, starting the
following code will run into stack-exhaustion on a typical machine
struct promise;

struct coroutine : std::coroutine_handle<promise>
{

using promise_type = ::promise;
};

struct promise : std::execution::with_awaitable_senders<promise>
{

coroutine get_return_object() { return {coroutine::from_promise(*this)}; }
std::suspend_never initial_suspend() noexcept { return {}; }
std::suspend_never final_suspend() noexcept { return {}; }
void return_void() {}
void unhandled_exception() {}

};

coroutine f() {
// this will most likely produce stack-overflow
for (int i = 0; i < 1'000'000; ++i) {

co_await std::execution::just();
}

}

int main()
{

f();
}

Note, that senders are allowed to provide custom implementations for as_awaitable by providing the respective
class member method. To the author it is not clear how this customization point scales with the composition
of sender algorithms and synchronous senders. This proposal allows to statically detect synchronous or inline
completion behaviour of the operation and transforms a sender into an awaitable that symmetrically transfers
the control back to its parent coroutine in a scheduler-affine fashion. Transforming a synchronous sender can,
for example, look like this
template <synchronous-single-sender<env_type> S>
struct awaiter {
S sender;
variant<monostate, single-value-result-of<S>, exception_ptr> result;

2



bool await_ready() { return false; }

template <class P>
coroutine_handle<P> await_suspend(coroutine_handle<P> h) {
auto op = connect(std::move(sender), receiver_t{&result, get_env(h.promise())});
op.start();
return h;

}

single-value-result-of<S>
await_resume() {

// Check the state of result and
// either return the value or
// rethrow the exception

}
};

2.4 scheduler-affine task type
Consider a scheduler-affine coroutine task type that ensures that each awaited expression completes on the
currently assigned scheduler.

Ideally, one wants to avoid to reschedule an await-expression if it did not change the current execution resource.
This opens up the question on how to identify such senders and awaitables that complete on the scheduler that
started them.

One family of senders are those whose value completion scheduler is known and is equal to the starting scheduler.

Another family of senders are those whose corresponding sender-awaitable will resume on the current thread of
execution. This proposal helps to identify the second group of senders.

3 Proposal
Let sndr denote a sender and env an environment type.
I propose a customization point object execution::get_completion_behaviour(sndr, env) with an interface
that is similar to get_completion_signatures. Authors of sender algorithms can define

1. a possibly env-dependent member method on the sender type
template <class InputSender>
struct example_sender_adaptor {

// [...]

template <class Self, class... Env>
requires (sizeof...(Env) <= 1)

constexpr auto get_completion_behaviour(this Self&& self, Env&&... env) noexcept {
return execution::get_completion_behaviour(

std::forward_like<Self>(self.sender), std::forward<Env>(env)...);
}

InputSender sender;
};

3



2. a type alias if the completion behaviour is statically known and does not depend on the environment
struct example_sender1 {

// [...]

using completion_behaviour = constant<execution::completion_behaviour::asynchronous>;
};

3.1 execution::get_completion_behaviour
The return type of get_completion_behaviour(sndr, env) is convertible to execution::completion_behaviour.

— completion_behaviour::inline_completion: The connected receiver’s completion-signal will occur on
the calling thread before execution::start() returns.

— completion_behaviour::synchronous: The connected receiver’s completion-signal happens-before
execution::start() returns.

— completion_behaviour::asynchronous: The connected receiver’s completion-signal will not occur on the
calling thread before execution::start() returns.

— completion_behaviour::unknown: The completion behaviour is unknown.

If get_completion_behaviour(sndr, env) is an invalid expression no guarantee will be made.

4 Implementation Experience
libunifex uses a blocking(const Sender&) -> blocking_kind query to provide this information for optimiza-
tions, which is very similar to get_completion_behaviour. It’s valid values are

— maybe: the completion behaviour is not known
— never: the receiver will never be called on the current thread before start() returns.
— always: the receiver is guaranteed to be called on some thread strongly-happens-before start() returns.
— always_inline: the receiver is guaranteed to be called inline on the current thread before start() returns.

The main difference of this proposal to the implementation at libunifex is, that the query in this proposal
acts additionally on the environment instead of only a sender. Note, that libunifex does not have receiver
environments and the completion behaviour is considered to be a property of the operation.

5 Design Alternatives
It was considered to make the query directly dependent on the operation state instead of a sender and environment
pair. While it would technically work to query the operation states directly, it would also require to instantiate
those operation state types.

Another alternative is to consider a boolean predicate, such as completes_synchronously(sndr, env), instead.
Note, that inline_completion implies synchronous completion. In practise, standardized senders that are
synchronous will complete inline but it is the synchronous completion property that enables the optimizations.
The current proposal can distinguish between both completion types, inline and synchronous, and therefore it
was chosen over the boolean predicate formulation.

6 Implications on Sender Factories and Adaptors
The following section describes how to compute the values for the query for each sender algorithm in
std::execution and its default implementations. Domain specializations are allowed to change those values.

For sake of computations we assume the following total order of values:

4



unknown < asynchronous < synchronous < always_inline

6.1 Sender Factories
In general, each sender factory needs to provide the information from its respective implementation.

6.1.1 schedule(run_loop::scheduler)

— get_completion_behaviour: asynchronous

6.1.2 just(), just_error(), just_stopped()

— get_completion_behaviour: inline_completion

6.1.3 read_env()

— get_completion_behaviour: inline_completion

6.2 Sender Adaptors
6.2.1 finally(sender1, sender2), continues_on(sender, scheduler), starts_on(scheduler,

sender)

Let sndr denote the expression finally(sender1, sender2).

— get_completion_behaviour(sndr, env) returns
min(get_completion_behaviour(sender1, env), get_completion_behaviour(sender2, env))

6.2.2 then(sender, fn), upon_error(sender, fn), upon_stopped(sender, fn)

Let sndr denote the expression then(sender, fn).

— get_completion_behaviour(sndr, env) returns get_completion_behaviour(sender, env)

6.2.3 let_value(sender, fn), let_error(sender, fn), let_stopped(sender, fn)

Let sndr denote the expression let_value(sender, fn). Let rs... denote the set of all possible result-senders
returned from fn.

— get_completion_behaviour(sndr, env) returns
min(get_completion_behaviour(sender, env), get_completion_behaviour(rs, env)...)

6.2.4 into_variant(sender), stopped_as_optional(sender)

Let sndr denote the expression into_variant(sender, fn).

— get_completion_behaviour(sndr, env) returns get_completion_behaviour(sender, env)

6.2.5 bulk(sender, shape, fn)

Let sndr denote the expression bulk(sender, shape, fn).

— get_completion_behaviour(sndr, env): get_completion_behaviour(sender, env)

6.2.6 when_all(senders...)

Let sndr denote the expression when_all(senders...).

— get_completion_behaviour(sndr, env) returns min(get_completion_behaviour(senders, env)...)

5



6.2.7 split(sender)

Let sndr denote the expression split(sender).

— get_completion_behaviour(sndr, env):
— Returns a dynamic value. The operation of split(sender) completes inline if the input

operation has completed before starting a new copy of split. Otherwise the query returns
get_completion_behaviour(sender, env).

7 References
[P2257R0] Dalton M. Woodard. 2020-11-22. Blocking is an insufficient description for senders and receivers.

https://wg21.link/p2257r0

6

https://wg21.link/p2257r0

	Abstract
	Introduction
	sync_wait algorithm
	repeat-like algorithms
	as_awaitable
	scheduler-affine task type

	Proposal
	execution::get_completion_behaviour

	Implementation Experience
	Design Alternatives
	Implications on Sender Factories and Adaptors
	Sender Factories
	schedule(run_loop::scheduler)
	just(), just_error(), just_stopped()
	read_env()

	Sender Adaptors
	finally(sender1, sender2), continues_on(sender, scheduler), starts_on(scheduler, sender)
	then(sender, fn), upon_error(sender, fn), upon_stopped(sender, fn)
	let_value(sender, fn), let_error(sender, fn), let_stopped(sender, fn)
	into_variant(sender), stopped_as_optional(sender)
	bulk(sender, shape, fn)
	when_all(senders...)
	split(sender)


	References

