
Formatting of chrono Time Values 
Document number: P3148R1 
Date: 2025-01-13 
Audience: Library Evolution Working Group 
Reply to: Alan Talbot 

cpp@alantalbot.com 

History 

R1 

P3148R0 and P2945R1 were partially reviewed in Wrocław. There was considerable discussion 
resulting in consensus in favor of “the need for additional timepoint specifiers” and “the need for 
defining precision on timepoint specifiers”, both “along the lines of what is described in [these 
papers]”. 

This revision proposes a different approach to the zero-padding problem and clarifies the design. 
There are also improvements to the discussion of the position and behavior of the precision 
specifier, a particular concern raised in Wrocław. 

R0 

During the 2023-12-19 LEWG telecon meeting, we reviewed two papers (P2945 and P3015) 
addressing some limitations in the C++20/23 support for formatting chrono library time values. 
There was strong consensus to preserve the existing formatting behaviors (which have been ship-
ping in C++20 implementations), and equally strong consensus to request further work with the 
goal of addressing the concerns for C++26. 

This paper is in response to that request. It addresses some of the issues raised by these papers 
and attempts to reconcile some of the differences. It also addresses some closely related issues 
that I believe are important. 

Abstract 
The chrono library text formatting facility [time.format] has no convenient way to adjust the 
precision of fractional seconds (for integral timepoints and durations). It also lacks a few related 
features and has some limitations and problems in its handling of 12 hour time. This paper is a 
response to P2945 and P3015 that addresses these issues. 

Limitations in C++23 

Fractional Seconds in Clock Times 

The %S and %T conversion specifiers produce fractional seconds at the precision necessary to 
represent the underlying timepoint (or 6 places if that isn’t possible). This can be very useful but 
is not always desired. A means of controlling the precision (for instance, displaying whole seconds 
even though the underlying representation is in microseconds) is needed. 



P3148R1 

2 

12-Hour Time 

The %I and %r conversion specifiers produce hours which are zero-padded to two digits. This is 
not a presentation that is ever used in practice. A means of formatting the hours less than 10 as 
one digit is needed. 

Furthermore, the %r conversion specifier suffixes the time with a space followed by either “AM” 
or “PM”. While this format is widely used in Western language applications, many other varia-
tions are also seen (some of which are more common). For example: 

• The space may or may not be used. 
• The spelling may be AM or A (PM or P). 
• The case may be upper or lower. 
• The distinction may be made using font alone—bold face for PM is typical. 

While attempting to directly support all of these is not necessary (see Appropriate Scope), a way 
to get 12-hour time without the suffix is needed so that other formats can be easily constructed. 

There are no direct equivalents to %T and %R for 12-hour time. While they are not strictly neces-
sary, this seems like an oversight given the very large number of people who use 12-hour time. 

Fractional Durations 

The %H and %M conversion specifiers produce whole hours and minutes but do not allow any way 
to get fractional hours or minutes. The %S conversion specifier produces fractional seconds but 
with no control over the precision. Fractional times are very common in many domains (e.g. hours 
and 10ths in a timesheet, or seconds and 100ths in a ski race report) so a way to produce them 
is needed. 

All of these specifiers zero pad numbers less than 10. This is needed to support clock time but is 
usually unacceptable in other contexts, so a way to avoid it is needed. 

The Standard is silent about modulus in time formatting, but it is assumed for minutes and 
seconds by major implementations. Interestingly, it is not assumed for hours, so modulo 24 hours 
is not provided. Unbounded minutes and especially seconds are needed for non-clock applica-
tions, and modulo 24 hours are needed for multiple day timers. 

Seconds Since Epoch 

As explained in P2945, all the other well-known time and date formatting systems provide a con-
version specifier to extract the number of seconds since the clock’s epoch (and they all use %s). 
Such strong agreement in existing practice suggests that this feature is needed. 

Workarounds 
It is important to point out that all of these limitations can be circumvented one way or another 
in C++23, either by converting to a timepoint or duration based on a different ratio, or by 
converting to a built-in numeric type and formatting that using existing facilities. (In the case of 
12-hour time, this would also require some math.) These manipulations are not particularly 
complex, nor are they likely to be costly at runtime, but I do not feel that it is appropriate to have 
to manipulate values mathematically to produce simple, widely used formatting results. I believe 
doing so is morally equivalent to writing: 



P3148R1 

3 

println("{}", int(numbers::pi * 100000) / 100000.); 
This is very outdated and error-prone at best, but fortunately it can be replaced by: 

println("{:.5f}", numbers::pi); 
Furthermore, the formatting facilities are meant to be accessible to beginning C++ users, while 
the mathematical intricacies of chrono types are (quite appropriately) not. 

There are more technical reasons why formatting control is a better solution than value manip-
ulation. These are discussed in more detail in P2945, but the basic issue is that there are situa-
tions where the user does not have access to the chrono objects (or access is difficult), but can 
provide specifiers for formatting the chrono objects. 

Appropriate Scope 
An important question to ask about any addition to the Standard Library is: what should we try 
to support and what is best left to the user or the larger C++ community? In this case we have a 
very flexible and powerful time and date facility that we have decided is appropriate to embrace 
as part of the Standard Library (a decision with which I entirely agree). Given that, it seems only 
fair to the users of that library that we provide reasonably complete integration with other over-
lapping facilities of the Library such as formatting, especially as both time and date and output 
formatting are features that a very new C++ programmer is likely to want to use. 

Conversely, attempting to support all the many possible formats for the 12-hour time AM/PM 
indication is neither necessary nor practical. In this case it is better to make it easy for the user 
to add whatever adornments are required. 

Suggested Solutions 
New features have green backgrounds in the tables. 

Hours 

Hours are a special case because the existing %H is zero-padded but is not modulo 24. Hours that 
can run past 23 but are zero-padded below 10 are probably of very limited use, but that’s what 
the existing specifier seems to do. The standard needs to clarify this and provide both modulo 24 
and non-padded fractional hours. If padded fractional hours are needed, the fill feature can easily 
provide them. 

Specifier Meaning 29h + 15min 3h 16h 

%H Hours, zero-padded 29 03 16 

%K Hours modulo 24, zero-padded 05 03 16 

%k Hours, fractional 29.25 3 16 

%I Hours modulo 12, zero-padded 05 03 04 

%i Hours modulo 12 5 3 4 



P3148R1 

4 

Minutes 

Minutes lack a way to get fractions and remove the leading zero. Since it’s easy to add the leading 
zero back in if you need it, and it’s easy to remove any unwanted precision, only one additional 
specifier is needed. 

Specifier Meaning 15min+45s 3min 

%M Minutes modulo 60, zero-padded 15 03 

%f Minutes, fractional 15.75 3 

Seconds 

Seconds are just like minutes, but the %S specifier already provides fractional seconds. Since it’s 
easy to remove any unwanted precision, only one additional specifier is needed. Note that for 
timepoints, %s will be seconds since the clock’s epoch, thus matching the time formatting facili-
ties in other languages (see P2945). 

Specifier Meaning 90s+500ms 3s+500ms 

%S Seconds modulo 60, zero-padded, fractional 30.500 03.500 

%s Seconds, fractional 90.500 3.500 

Composite Specifiers 

These are convenience specifiers which reduce typing (and are easier to remember). The 
proposed versions handle 12 hour time (correctly). 

Specifier Equivalent Meaning 15h+25min+45s 

%T %H:%M:%S 24 hour time with fractional seconds 15:25:45 

%N %i:%M:%S 12 hour time with fractional seconds 3:25:45 

%R %H:%M 24 hour time (no seconds) 15:25 

%P %i:%M 12 hour time (no seconds) 3:25 

%r :%I:%M:%S %p 24 hour time mod 12 w/ frac seconds & AM/PM 03:25:45 PM 

%l :%i:%M:%S %p 12 hour time with fractional seconds and AM/PM 3:25:45 PM 

Precision 

The optional precision specification affects any fractional conversion specifier, regardless of 
where it appears in the format specification. If there is more than one fractional conversion 
specifier in the format specification, all are affected (although I can think of no use case where 
more than one fractional conversion specifier would appear in a single format specification). The 
C++23 behavior for floating point duration types is unchanged, but the prohibition against using 
a precision specification on non-floating point types is removed. The precision specification will 
truncate the value to the precision as if by floor. 

Note: The method of truncating numbers to a precision (floor, ceiling, or round) has to be specified 
(I have chosen floor arbitrarily), but does not have to be user-controllable. It seems very unlikely 
that users will be concerned about the value of the first discarded digit. For environments where 
that level of control is needed, the aforementioned workarounds provide flexible solutions. 



P3148R1 

5 

For fractional conversion specifiers, if the precision specification is not present and the precision 
of the input cannot be exactly represented with an integer, then the format is a decimal floating-
point number with a fixed format and a precision matching that of the precision of the input (or 
a precision of 6 places if the conversion to floating-point cannot be made within 18 fractional 
digits). Note: This is meant to match the behavior specified for %S in C++23. 

Impact 
My approach has been to make this a pure addition—no existing code would be changed (in 
recognition of Hyrum’s Law). If LEWG feels that changing the meaning of some existing features 
is a possibility, then this proposal can be implemented with better and fewer letters and the 
library would be more consistent and easier to understand. My ideas for changing existing 
meanings are: 

Change the behavior of %I to match the proposed %i. This is very unlikely to break code, since 
anyone using %I today has to check for the zero and remove it. 

Change the behavior of %r to match the proposed %l. This is very unlikely to break code, since 
anyone using %r today has to check for the zero and remove it. Another alternative is to remove 
%r altogether (and get back another character). Even fixed it’s not very useful since it only offers 
one of many formatting conventions (see 12-Hour Time above). 

I noticed in passing that there are three redundant conversion specifiers: %h, %n, and %t. All of 
these characters would be useful, either for this proposal (%h) or for future enhancements. 

Alternative Designs 
P2945 makes the point that using the existing precision specifier can put the precision confusingly 
far from its intended target. For example, the precision here applies to seconds, not hours: 

.0%H:%M:%S 

The suggested alternative is to put a different precision specifier adjacent to the format specifier: 
%H:%M:%.0S 

While I understand the motivation for this design, I believe that the disadvantages outweigh the 
benefits, and that it won’t be an issue in practice anyway. My reasoning is as follows: 

1. The precision specifier at the start of the format string is existing behavior, not just for 
times but for built-in types. I believe it is already confusing and annoying to prohibit it for 
integral times (as C++23 does). Adding another precision specifier in the same format 
specifier would make the confusion worse. 

2. However, if we don’t prohibit it, what would using it do exactly? For example, what would 
it mean to say: .1%H:%M:%.2S? 

3. We also end up with things like: %.3H:%.2M:%.1S What does this do? I cannot think of 
any use cases for more than one precision in any one time format string. 

4. I believe this will rarely come up in real use. The use of precision on hours and minutes is 
very unlikely to be combined with colon notation. For precision on seconds, no one is 
likely to use .1%H:%M:%S when .1%T does the same thing. 



P3148R1 

6 

Another option suggested by P2945 is to add a trailing specifier which produces the fractional 
part of the seconds value. But since the latest version of that paper proposes a modifier on 
seconds to specify precision, this would seem to serve no purpose. It also suggests that a decimal 
be permitted within the specifier to include the decimal in the output, but that is not necessary 
since placing a decimal before the % would have the same effect. 

References 
P2945R0/1: Additional format specifiers for time_point. Revzin. 
P3015R0: Rebuttal to Additional format specifiers for time_point. Hinnant. 

Acknowledgements 
Thanks to Barry Revzin, Howard Hinnant and Victor Zverovich for their feedback on this proposal. 


	History
	R1
	R0

	Abstract
	Limitations in C++23
	Fractional Seconds in Clock Times
	12-Hour Time
	Fractional Durations
	Seconds Since Epoch

	Workarounds
	Appropriate Scope
	Suggested Solutions
	Hours
	Minutes
	Seconds
	Composite Specifiers
	Precision

	Impact
	Alternative Designs
	References
	Acknowledgements

