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1 History 
1.1 Changes from P3086R2 

- Revised the Motivation section. 
- Added 9 named requirements (ProOverload, ProDispatch, ProBasicConvention, ProConvention, 

ProBasicReflection, ProReflection, ProBasicFacade, ProFacade, ProAccessible). 
- Added class template proxy_indirect_accessor. 
- Changed the definition of proxy::invoke() and proxy::reflect() into free functions 

proxy_invoke() and proxy_reflect(). 
- Added accessibility support to proxy (the ProAccessible requirements and function template 

access_proxy()). 
- Added proxy::operator bool(), proxy::operator->() and 

proxy::operator*(). 
- Changed the definition of std::swap(proxy, proxy) into a friend function. 
- Removed the Appendix section. 

1.2 Changes from P3086R1 
As per review comments from LEWGI in Tokyo, 

- Removed function template make_proxy from the proposed wording. 
- Updated the wording of concept facade, allowing tuple-like types in the definition of a 

facade or dispatch. 
- Revised the semantics of concept facade to allow fallbacks in the invocation of a dispatch. 
- Moved the proposed location of the library from a new header to <memory>. 
- Added a section for freestanding specifications in section 6. 
- Added discussion comparing with P3019R6 in section 5. 
- Added discussion of ordering and hash support in section 5. 
- Added another section for open questions. 
- In the appendix, added specification of another two helper macros 

PRO_DEF_MEMBER_DISPATCH_WITH_DEFAULT and 
PRO_DEF_FREE_DISPATCH_WITH_DEFAULT. 
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1.3 Changes from P3086R0 
- Added support for noexcept in the abstraction model and updated the noexcept clause of 

proxy::invoke and proxy::operator(). 
- Removed concept basic_facade and the constraints on the class template proxy to 

allow more potential optimizations in code generation. 

2 Introduction 
This is a proposal for a reduced initial set of features to support general non-intrusive polymorphism in 

C++. Specifically, we are mostly proposing a subset of features suggested in P0957R9 with some 
significant improvements per user feedback: 

- Class template proxy, representing type-erased pointers at runtime. 
- Enum class constraint_level and struct proxiable_ptr_constraints, representing 

compile-time constraints of a pointer to model a proxy. 
- Concepts facade and proxiable. 

For decades, object-based virtual table has been a de facto implementation of runtime polymorphism in 
many (compiled) programming languages including C++. There are many drawbacks in this mechanism, 
including life management (because each object may have different size and ownership), reflection 
(because it is hard to balance between usability and memory allocation) and intrusiveness. To 
workaround these drawbacks, some languages like Java or C# choose to sacrifice performance by 
mandating runtime GC to facilitate lifetime management, and JIT-compile the source code at runtime to 
generate full metadata. We improved the theory and made it possible to implement generic non-intrusive 
polymorphism based on pointer semantics. 

Comparing to P0957R9, some of the major changes are listed as follows: 

1. The facilities to help defining dispatches and facades are removed. We are seeking easier 
ways to define these constructs by introducing new syntactic sugar, but this is not in the scope of 
this paper. 

2. Per user feedback, struct proxiable_ptr_constraints is proposed as an abstraction of 
constraints to pointers, making it easier to learn and use. The requirements of facade are also 
revised. 

3. Per user feedback, overloads are split from the dispatch definition. 
4. Per user feedback, proxy::invoke() was redesigned as proxy_invoke with better support 

for accessibility. 
5. Added concept facade. 

The rest of the paper is organized as follows: section 3 illustrates the motivation and scope of the 
proposed library; section 4 summarizes the impact on the standard; section 5 includes the pivotal 

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0957r9.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0957r9.pdf
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decisions in the design; section 6 illustrates the technical specifications; the last sections summarize the 
paper. 

3 Motivation and Scope 
Polymorphism in OOP theory is an effective way to decouple components within a single 

programming language and allows deployment of stable ABI, therefore it is widely supported in modern 
programming languages including C++ and is vital in large-scale programming to decouple components 
and increase extendibility. Currently, there are two types of mechanisms for polymorphism in the 
standard: inheritance with virtual functions and polymorphic wrappers. Because the existing 
polymorphic wrappers in the standard, such as function, move_only_function, 
function_ref, any, pmr::polymorphic_allocator, etc., have limited extendibility with 
regard to a variety of polymorphic requirements, inheritance-based polymorphism is usually inevitable 
in large systems nowadays. 

Proxy is designed to help users build extendable and efficient polymorphic programs. To make 
implementations efficient in C++, it is helpful to collect requirements and generate high-quality code at 
compile-time as possible. The basic goal of Proxy is to eliminate the usability and performance 
limitations in traditional OOP and functional programming. 

This following section illustrates the implementation status of the proposed library, the limitations in 
inheritance-based polymorphism with concrete system design requirements and how the proposed 
library could help. 

3.1 Implementation status 
As proof of concept, we have implemented technical specifications as a single-header template library. 

The implementation, including unit tests and benchmarks, could be found in our GitHub repo. As we 
tested, the implementation compiles with the latest releases of GCC, Clang and MSVC, as the language 
standard is set to C++20 or later. We also maintain a copy of the technical specifications online to 
facilitate navigation. Note that this paper is the first one of the series and scopped to the foundation of 
the library. Extensions like class template basic_facade_builder or class template 
operator_dispatch in the library are not included in this paper. 

3.2 Non-intrusive 
To take advantage of virtual functions to implement runtime polymorphism, a C++ type needs to 

inherit a base type. This is intrusive to the derived type, not only semantically, but also affects the 
memory layout, even if runtime polymorphism or RTTI is not used in a certain context. On the other 
hand, since virtual functions can only be member functions, only a part of C++ expressions can be made 
polymorphic by using virtual functions. 

https://github.com/microsoft/proxy
https://microsoft.github.io/proxy/docs/specifications.html
https://microsoft.github.io/proxy/docs/basic_facade_builder.html
https://microsoft.github.io/proxy/docs/operator_dispatch.html
https://microsoft.github.io/proxy/docs/operator_dispatch.html
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Here is an example that makes any "formattable" type polymorphic by using the Proxy library, 
demonstrating its capability to make an arbiturary print() call apply to an abstract binding without 
using virtual functions (live demo). This is not implementable with the inheritance-based approach 
because a "formattable" type, like an int or tuple, may not inherit from any base type. Note that 
facade_builder is not included in this paper, but FFormattable below meets the ProFacade 
requirements which is introduced in this paper. make_proxy is introduced in a separate paper 
P3401R0. 

// Define a "facade" that supports "format" 
struct FFormattable : facade_builder 
    ::support_format 
    ::build {}; 
 
proxy<FFormattable> p = make_proxy<FFormattable>(1024);  // Make an 
int polymorphic, even though int does not inherit anything 
print("{:#06x}", *p);  // Prints "0x0400" 

3.3 Well-managed 
The library provides a GC-like capability that manages the lifetimes of different objects efficiently 

without the need for an actual garbage collector. 

Here is an example of "simple factory". Suppose there are 3 "drawable" entities in a system: rectangle, 
circle, and point. Specifically. 

- Rectangles have width, height, transparency, and 

- Circles have radius, transparency, and 

- Points do not have any property. 

3.3.1 Inheritance-based approach 

With the virtual keyword, a base class could be defined: 

class IDrawable { 
 public: 
  virtual void Draw() const = 0; 
}; 
 

3 "drawable" entities could be defined as 3 derived classes: 

class Rectangle : public IDrawable { 
 public: 
  void Draw() const override; 
  void SetWidth(double width); 
  void SetHeight(double height); 
  void SetTransparency(double); 

https://godbolt.org/z/q1P37hxP4
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3401r0.pdf
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}; 
class Circle : public IDrawable { 
 public: 
  void Draw() const override; 
  void SetRadius(double radius); 
  void SetTransparency(double transparency); 
}; 
class Point : public IDrawable { 
 public: 
  void Draw() const override; 
}; 
 

The factory function could be designed as follows: 

IDrawable* MakeDrawableFromCommand(const string& s); 
 

However, the semantics of the return type is ambiguous because it is a raw pointer type and does not 
indicate the lifetime of the object. For instance, it could be allocated via operator new, from a 
memory pool or even a global object. To make it the semantics cleaner, an experienced engineer may 
use smart pointers and change the return type to unique_ptr<IDrawable>: 

unique_ptr<IDrawable> MakeDrawableFromCommand(const string& s); 
 

Although the code compiles, unfortunately, it introduces a bug: the destructor of 
std::unique_ptr<IDrawable> will call the destructor of IDrawable, but won't call the 
destructor of its derived classes and may result in resource leak. It is necessary to add a virtual destructor 
with empty implementation to IDrawable to avoid such leak: 

class IDrawable { 
 public: 
  virtual void Draw() const = 0; 
  virtual ~IDrawable() {} 
}; 
 

Some types like Point are stateless and theoretically don't need to be created every time when 
needed. Is it possible to optimize the performance in this case? Because unique_ptr<IDrawable> 
is not copyable, this may require further API change, for example, using shared_ptr instead: 

shared_ptr<IDrawable> MakeDrawableFromCommand(const string& s); 
 

If we decided to change one API from unique_ptr to shared_ptr, other APIs needs to be 
changed to stay compatible as well, every polymorphic type needs to inherit 
enable_shared_from_this, which may be significantly expensive in a large system. 
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3.3.2 The Proxy library 

To define an abstraction of "drawable", we need to define the dispatch Draw and facade FDrawable. 

Here is a sample definition: 

PRO_DEF_MEM_DISPATCH(MemDraw, Draw); 
struct FDrawable : facade_builder 
    ::add_convention<MemDraw, void() const> 
    ::build {}; 
 

Again, facade_builder and PRO_DEF_MEM_DISPATCH are not in the scope of this paper, but 
FDrawable meets the ProFacade requirements which is introduced in this paper.  

The required 3 types could be implemented as normal types without any virtual function or 
inheritance: 

class Rectangle { 
 public: 
  void Draw() const; 
  void SetWidth(double width); 
  void SetHeight(double height); 
  void SetTransparency(double); 
}; 
class Circle { 
 public: 
  void Draw() const; 
  void SetRadius(double radius); 
  void SetTransparency(double transparency); 
}; 
class Point { 
 public: 
  void Draw() const; 
}; 
 

We can define the factory function directly without further concern in lifetime management: 

proxy<FDrawable> MakeDrawableFromCommand(const string& s); 

 
In the implementation, proxy<FDrawable> could be instantiated from all kinds of pointers with 

potentially different lifetime management strategy. For example, Rectangle may be created every 
time when requested from a memory pool, Circle may be small enough to be embedded into the 
proxy (aka. SBO, small buffer optimization), the value of Point could be cached throughout the 
lifetime of the program (live demo): 

proxy<FDrawable> MakeDrawableFromCommand(const string& s) { 

https://microsoft.github.io/proxy/docs/basic_facade_builder.html
https://microsoft.github.io/proxy/docs/PRO_DEF_MEM_DISPATCH.html
https://godbolt.org/z/zKTbn9e57
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  vector<string> parsed = ParseCommand(s); 
  if (!parsed.empty()) { 
    if (parsed[0] == "Rectangle") { 
      if (parsed.size() == 3u) { 
        static pmr::unsynchronized_pool_resource 
rectangle_memory_pool; 
        pmr::polymorphic_allocator<> alloc{&rectangle_memory_pool}; 
        return allocate_proxy<FDrawable, Rectangle>( 
            alloc, stod(parsed[1]), stod(parsed[2])); 
      } 
    } else if (parsed[0] == "Circle") { 
      if (parsed.size() == 2u) { 
        Circle circle{stod(parsed[1])}; 
        return make_proxy<FDrawable>(circle);  // SBO may apply 
      } 
    } else if (parsed[0] == "Point") { 
      if (parsed.size() == 1u) { 
        static Point instance;  // global singleton 
        return &instance; 
      } 
    } 
  } 
  throw runtime_error{"Invalid command"}; 
} 
 

Note that make_proxy is introduced in a separate paper P3401R0 that can effectively avoid heap 
allocation when the underlying object is small. 

3.3.3 Conclusion 

Lifetime management with inheritance-based polymorphism is error-prone and inflexible, while Proxy 
allows easy customization of any lifetime management strategy, including but not limited to raw 
pointers and various smart pointers with potentially pooled memory management. 

Specifically, SBO (Small Buffer Optimization, aka., SOO, Small Object Optimization) is a common 
technique to avoid unnecessary memory allocation. However, for inheritance-based polymorphism, 
there is little facilities in the standard that support SBO; for other standard polymorphic wrappers, 
implementations may support SBO, but there is no standard way to configure so far. For example, if the 
size of std::any is n, it is theoretically impossible to store the concrete value whose size is larger 
than n without external storage. 

3.4 Fast 
To better understand the performance of the library, we designed 15 benchmarks against our 

implementation, tested in four different environments, and automated them in our GitHub pipeline to 

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3401r0.pdf
https://github.com/microsoft/proxy/tree/main/benchmarks
https://github.com/microsoft/proxy/actions/workflows/pipeline-ci.yml
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generate benchmarking reports for every code change. Everyone can download the reports and raw 
benchmarking data attached to each build. The numbers shown below were generated from a recent CI 
build. 

3.4.1 Indirect Invocation 

Both proxy objects and virtual functions can perform indirect invocations. However, since they have 
different semantics and memory layout, it should be interesting to see how they compare to each other. 

Because make_proxy can effectively place a small object alongside metadata, the benchmarks are 
divided into two categories: invocation on small objects (4 bytes) and on large objects (48 bytes). By 
invoking 1,000,000 object of 100 different types, we got the first two rows of the report: 
 

MSVC on 
Windows Server 
2022 (x64) 

GCC on 
Ubuntu 24.04 
(x64) 

Clang on 
Ubuntu 24.04 
(x64) 

Apple Clang on 
macOS 15 
(ARM64) 

Indirect invocation on 
small objects via 
proxy vs. virtual 
functions 

�proxy is 
about 261.7% 
faster 

�proxy is 
about 44.6% 
faster 

�proxy is 
about 71.6% 
faster 

�proxy is 
about 4.0% 
faster 

Indirect invocation on 
large objects via 
proxy vs. virtual 
functions 

�proxy is 
about 186.1% 
faster 

�proxy is 
about 15.5% 
faster 

�proxy is 
about 17.0% 
faster 

�proxy is 
about 10.5% 
faster 

Table 1 – Indirect invocation benchmarking report 

 

From the report, proxy is faster in all four environments, especially on Windows Server. This result 
is expected because the implementation of proxy directly stores the metadata of the underlying object, 
making it more cache friendly. 

3.4.2 Lifetime Management 

In many applications, lifetime management of various objects can become a performance hotspot 
compared to indirect invocations. We benchmarked this scenario by creating 600,000 small or large 
objects within a single vector (with reserved space). 

Besides proxy, there are three typical standard options for storing arbitrary types: unique_ptr, 
shared_ptr, and any. variant is not included because it is essentially a tagged union and can only 
provide storage for a known set of types (though useful in data context management). 

For small objects, proxy and any usually won't allocate additional storage. For large objects, proxy 
and shared_ptr offer allocator support (via allocate_proxy (P3401R0) and 

https://github.com/microsoft/proxy/actions/runs/11550031482#artifacts
https://github.com/microsoft/proxy/actions/runs/11550031482#artifacts
https://en.wikipedia.org/wiki/Tagged_union
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3401r0.pdf
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allocate_shared) to improve performance, while there is no direct API to customize 
unique_ptr or any. 

Here are the types we used in the benchmarks: 

Small types Large types 
int array<char, 100> 
shared_ptr<int> array<string, 3> 
unique_lock<mutex> unique_lock<mutex> + void*[15] 

 

By comparing proxy with other solutions, we got the following numbers: 
 

MSVC on 
Windows 
Server 2022 
(x64) 

GCC on 
Ubuntu 24.04 
(x64) 

Clang on 
Ubuntu 24.04 
(x64) 

Apple Clang 
on macOS 15 
(ARM64) 

Basic lifetime management 
for small objects with proxy 
vs. unique_ptr 

�proxy is 
about 467.0% 
faster 

�proxy is 
about 413.0% 
faster 

�proxy is 
about 430.1% 
faster 

�proxy is 
about 341.1% 
faster 

Basic lifetime management 
for small objects with proxy 
vs. shared_ptr (without 
memory pool) 

�proxy is 
about 639.2% 
faster 

�proxy is 
about 509.3% 
faster 

�proxy is 
about 492.5% 
faster 

�proxy is 
about 484.2% 
faster 

Basic lifetime management 
for small objects with proxy 
vs. shared_ptr (with 
memory pool) 

�proxy is 
about 198.4% 
faster 

�proxy is 
about 696.1% 
faster 

�proxy is 
about 660.0% 
faster 

�proxy is 
about 188.5% 
faster 

Basic lifetime management 
for small objects with proxy 
vs. any 

�proxy is 
about 55.3% 
faster 

�proxy is 
about 311.0% 
faster 

�proxy is 
about 323.0% 
faster 

�proxy is 
about 18.3% 
faster 

Basic lifetime management 
for large objects with proxy 
(without memory pool) vs. 
unique_ptr 

�proxy is 
about 17.4% 
faster 

�proxy is 
about 14.8% 
faster 

�proxy is 
about 29.7% 
faster 

�proxy is 
about 6.3% 
slower 

Basic lifetime management 
for large objects with proxy 
(with memory pool) vs. 
unique_ptr 

�proxy is 
about 283.6% 
faster 

�proxy is 
about 109.6% 
faster 

�proxy is 
about 204.6% 
faster 

�proxy is 
about 88.6% 
faster 

Basic lifetime management 
for large objects with proxy 
vs. shared_ptr (both 
without memory pool) 

�proxy is 
about 29.2% 
faster 

�proxy is 
about 6.4% 
faster 

�proxy is 
about 6.5% 
faster 

�proxy is 
about 4.8% 
faster 
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Basic lifetime management 
for large objects with proxy 
vs. shared_ptr (both with 
memory pool) 

�proxy is 
about 10.8% 
faster 

�proxy is 
about 9.9% 
faster 

�proxy is 
about 8.3% 
faster 

�proxy is 
about 53.2% 
faster 

Basic lifetime management 
for large objects with proxy 
(without memory pool) vs. 
any 

�proxy is 
about 13.4% 
faster 

�proxy is 
about 1.3% 
slower 

�proxy is 
about 0.9% 
faster 

�proxy is 
about 9.5% 
faster 

Basic lifetime management 
for large objects with proxy 
(with memory pool) vs. any 

�proxy is 
about 270.7% 
faster 

�proxy is 
about 80.1% 
faster 

�proxy is 
about 136.9% 
faster 

�proxy is 
about 120.4% 
faster 

Table 2 – Lifetime management benchmarking report 

 

From the report: 

- proxy is much faster than any other 3 when the underlying object is small or managed with memory 
pools. 

- proxy is slightly slower than unique_ptr when the underlying object is large and not managed 
with a memory pool. 

- The performance of any varies in different environments but is generally slower than proxy. 

3.4.3 Conclusion 

Although the test environments (GitHub-hosted runners) may differ from actual production 
environments, the test results show significant performance advantages of Proxy in both indirect 
invocations and lifetime management. 

4 Impact on the Standard 
For existing polymorphic wrappers in the standard, including function, move_only_function, 

polymorphic_allocator and any, proxy can facilitate implelemtation with high quality. For 
new libraries in the standard, inventing new polymorphic wrappers is no longer necessary since proxy 
is ready for general polymorphism requirements. 

The following example utilizes operator() to implement similar function wrapper as 
std::function and std::move_only_function while supporting multiple overloads (live 
demo). 

template <class... Overloads> 
struct FMovableCallable : facade_builder 
    ::add_convention<operator_dispatch<"()">, Overloads...> 
    ::build {}; 

https://docs.github.com/en/actions/using-github-hosted-runners/using-github-hosted-runners/about-github-hosted-runners
https://godbolt.org/z/TaMoax3PY
https://godbolt.org/z/TaMoax3PY
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template <class... Overloads> 
struct FCopyableCallable : facade_builder 
    ::support_copy<constraint_level::nontrivial> 
    ::add_facade<FMovableCallable<Overloads...>> 
    ::build {}; 
 
// MyFunction has similar functionality as function, 
// but supports multiple overloads 
// MyMoveOnlyFunction has similar functionality as 
// move_only_function but supports multiple overloads 
template <class... Overloads> 
using MyFunction = proxy<FMovableCallable<Overloads...>>; 
template <class... Overloads> 
using MyMoveOnlyFunction = proxy<FCopyableCallable<Overloads...>>; 
 
int main() { 
  auto f = [](auto&&... v) { 
    printf("f() called. Args: "); 
    ((cout << v << ":" << typeid(decltype(v)).name() << ", "), ...); 
    puts(""); 
  }; 
  MyFunction<void(int)> p0{&f}; 
  (*p0)(123);  // Prints "f() called. Args: 123:i," (assuming GCC) 
  MyMoveOnlyFunction<void(), void(int), void(double)> p1{&f}; 
  (*p1)();  // Prints "f() called. Args:" 
  (*p1)(456);  // Prints "f() called. Args: 456:i," 
  (*p1)(1.2);  // Prints "f() called. Args: 1.2:d," 
} 

5 Considerations and Design Decisions 
Comaring to P0957R9, the major changes in the decisions are: 

1. Added some named requirements. 
2. Simplified semantics of dispatches and facades. 
3. Supported multiple overloads of a convention. 
4. Added support for custom accessibility. 

Specific considerations and design decisions have been made in the following aspects. 

5.1 Pointer semantics 
We decided to design Proxy based on pointer semantics for both usability and performance 

considerations. To allow balancing between extensibility and performance in specific cases, 3 
abstractions of constraints are proposed with preferred defaults. 

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0957r9.pdf
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5.1.1 Motivation 

Currently, the standard polymorphic wrapper types, including function and any, are based-on 
value semantics. Polymorphic wrappers based on value semantics have certain limitations in lifetime 
management compared to pointer semantics. Designing the Proxy library based on pointer semantics 
decouples the responsibility of lifetime management from Proxy, which provides more flexibility and 
helps consistency in API design without reducing runtime performance. 

For example, in cases where allocator customization is required for performance considerations, 
function and any are not supported. Back to C++14, function used to have several constructors 
that take an allocator argument, but these constructors were removed per discussion in P0302R1 
(Removing Allocator Support in std::function), because "the semantics are unclear, and there are 
technical issues with storing an allocator in a type-erased context and then recovering that allocator later 
for any allocations needed during copy assignment". Similarly, any, introduced in C++17, does not 
allow customization in allocator at all. With the proposed Proxy library, it becomes easy to implement 
such requirements with customized pointers, even in hybrid lifetime management scenarios, as 
demonstrated earlier in 3.3.2. 

5.1.2 Constraints 

To allow implementation balance between extendibility and performance, a set of constraints to a 
pointer is introduced, including maximum size, maximum alignment, copyability, relocatability and 
destructibility. The term "relocatability" was introduced in P1144R9, "equivalent to a move and a 
destroy". This paper uses the term "relocatability" but does not depend on the technical specifications of 
P1144R9. 

While the size and alignment could be described with std::size_t, there is no direct primitive in 
the standard to describe the constraint level of copyability, relocatability or destructibility. Thus, 4 levels 
of constraints, matching the standard wording, are defined in this paper: none, nontrivial, nothrow and 
trivial. 

5.1.3 Implementation 

Inheritance-based polymorphism or most of the standard polymorphic wrappers are based on value 
semantics. For inheritance, although polymorphism is expressed with pointer or reference of a base type, 
the VTABLE is bound to the value itself. For other standard polymorphic wrappers, like function or 
any, the lifetime of the stored values is bound to these polymorphic wrappers without allocator 
customization. These limitations make it difficult to implement requirements like 3.3 without extra 
considerations in the code design or performance decrement. 

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0302r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0302r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p1144r9.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p1144r9.html
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Figure 1 – Expected memory layout of IDrawable* (pointing to Rectangle) 

 

 
Figure 2 – Expected memory layout of proxy<FDrawable> (containing unique_ptr<Rectangle>) 

 

 
Figure 3 – Expected memory layout of proxy<FDrawable> (containing sbo-ptr<Rectangle>) 
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Figure 4 – Expected memory layout of proxy_view<FDrawable> (containing Rectangle*) 

 

Because of pointer semantics, the expected memory layout of proxy is also different from traditional 
inheritance. For instance, Figure 1 and Figure 2 shows their expected memory layout, respectively. The 
expected memory layout of proxy<FDrawable> is similar with the implementation of 
move_only_function in libstdc++, where the pointer of the actual object is dereferenced inside the 
virtual dispatch via _S_access.  

In some cases where the object is small or the metadata is small, proxy is expected to embed the data 
within its footprint as shown in Figure 3 and Figure 4. These optimizations can further improve caching 
at runtime. (sbo-ptr was introduced in P3401R0, proxy_view<F> is an alias of 
proxy<observer_facade<F>>, both facilities are in the scope of this paper). 

 

 Proxy Inheritance-based polymorphism 

Abstraction PRO_DEF_MEM_DISPATCH(MemDraw, Draw); 

struct FDrawable : facade_builder 

    ::add_convention<MemDraw, void() const> 

    ::build {}; 

 

struct IDrawable { 

  virtual void Draw() const = 0; 

  virtual ~IDrawable() {} 

}; 

 

Client p->Draw();  // p is a value of proxy<FDrawable> 

 

p->Draw();  // p is a value of IDrawable* 

 

Table 3 – Sample code to compile 

 

Processor 
architecture 

Compiler family Version Compiler flags 

x86-64 (AMD64) Clang 19.1.0 -std=c++20 -O3 -DNDEBUG 

ARM64 Clang 19.1.0 -std=c++20 -O3 -DNDEBUG 

RISC-V RV64 Clang 19.1.0 -std=c++20 -O3 -DNDEBUG 

Table 4 – Sample compiler configurations 

https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00584_source.html
https://gcc.gnu.org/onlinedocs/libstdc++/latest-doxygen/a00584_source.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3401r0.pdf
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To evaluate the quality of code generation, we tried to compile the "Drawable" example from section 
3.3 with various compilers and compare the generated assembly between the sample implementation of 
Proxy and traditional inheritance-based polymorphism. Specifically, the sample code to compile is listed 
in Table 3, the sample compiler configurations for different processor architectures are listed in Table 4. 

 

Proxy Inheritance-based polymorphism 
mov     rax, qword ptr [rdi] 
add     rdi, 8 
jmp     qword ptr [rax + 16] 

mov     rdi, qword ptr [rdi] 
mov     rax, qword ptr [rdi] 
jmp     qword ptr [rax] 

Table 5 – Generated code from Clang 19.1.0 (x86-64) 

 

Proxy Inheritance-based polymorphism 
ldr     x8, [x0], #8 
ldr     x1, [x8, #16] 
br      x1 

ldr     x0, [x0] 
ldr     x8, [x0] 
ldr     x1, [x8] 
br      x1 

Table 6 – Generated code from Clang 19.1.0 (ARMv8-A) 

 

Proxy Inheritance-based polymorphism 

ld      a1, 0(a0) 
ld      a5, 16(a1) 
addi    a0, a0, 8 
jr      a5 

ld      a0, 0(a0) 
ld      a1, 0(a0) 
ld      a5, 0(a1) 
jr      a5 

Table 7 – Generated code from Clang 19.1.0 (RISC-V RV64) 

 

Trying to compile the two pieces of sample code with 3 different compilers, the generated assembly 
are shown in Table 5, Table 6 and Table 7. From the instructions we can see: 

1. Invocations from std::proxy could be properly inlined, except for the virtual dispatch on the 
client side, similar to inheritance-based polymorphism. 

2. Because std::proxy is based on pointer semantics, the "dereference" operation may happen 
inside the virtual dispatch, which generates different instructions. 

3. With Clang x86-64 and RISC-V RV64, proxy generates the same number of instructions from the 
client side, compared to inheritance-based polymorphism. With Clang ARMv8-A, proxy generates 
one instruction less. This may indicate proxy cannot be implemented with virtual functions, and 
won't surprising increase the binary size. 

5.2 Language vs. Library 
During review of P0957 series, one of the most asked questions is that why proxy is not a language 

feature, like Java or Rust. Our answer is divided into two parts: 

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0957r9.pdf


18 
 

1. We believe a programming language needs more than an abstraction of "interface" (like Java) or 
"trait" (like Rust) for general runtime polymorphism while allowing best-in-class code 
generation for modern processors. Specifically, the capability to handle different lifetime models 
and various expression forms (calling a member function is not the only expression allowed in 
C++). 

2. When it comes to the runtime binding to be manipulated in an application, we believe the class 
template in C++ is good enough to standardize the behavior with acceptable accessibility, and 
therefore no language feature should be expected for this part. 

5.3 Proxy 
To provide a unified API to improve ease of use and reduce learning costs, the design of Proxy 

consults the "proxy" and "facade" design pattern from "Design Patterns: Abstraction and Reuse of 
Object-Oriented Design". 

5.3.1 Facade: Abstraction of Runtime Polymorphism 

Although we are not proposing a syntax to define something like "interface", corresponding named 
requirements and concepts are proposed. To describe the requirements of runtime polymorphism based 
on pointer semantics, the term "facade" is introduced. The runtime polymorphic requirements defined by 
facade are divided into three parts: 

1. Conventions: How are the indirect invocations defined. 
2. Reflections: What compile-time metadata to be carried to runtime. 
3. Constraints: Specific constraints of applicable pointer types, as a compile-time value. 

These requirements can be easily expressed with the type system of C++. A facade type models a 
compile-time tag to specify a proxy. The figure below shows the basic schema of a facade: 

facade: The runtime abstraction spec 
  ├─ convention_types: A tuple-like type 
  │    └─ <element>: Each element describes a convention 
  │         ├─ is_direct: A bool constant 
  │         ├─ dispatch_type: A callable type 
  │         ├─ overload_types: A tuple-like type 
  │         │    └─ <element>: Each element describes an overload 
  │         └─ accessor: An optional class template for accessibility 
  ├─ reflection_types: A tuple-like type 
  │    └─ <element>: Each element describes a reflection 
  │         ├─ is_direct: A bool constant 
  │         ├─ reflector_type: A reflector type 
  │         └─ accessor: An optional class template for accessibility 
  └─ constraints: A constant of type proxiable_ptr_constraints 
       ├─ max_size: size_t 

https://link.springer.com/chapter/10.1007/3-540-47910-4_21
https://link.springer.com/chapter/10.1007/3-540-47910-4_21
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       ├─ max_align: size_t 
       ├─ copyability: constraint_level 
       ├─ relocatability: constraint_level 
       └─ destructibility: constraint_level 

5.3.2 Reflection 

Reflection is an essential requirement in type erasure, and the proposed class template proxy supports 
general-purpose static (compile-time) reflection other than type_info. 

As type_info is usually not adequate to carry enough useful information of a type to inspect at 
runtime. In other languages like C# or Java, users are allowed to acquire detailed metadata of a type-
erased type at runtime with simple APIs, but this is not true for function, any or inheritance-based 
polymorphism in C++. Although these reflection facilities add certain runtime overhead to these 
languages, they do help users write simple code in certain scenarios. In C++, as the reflection 
specifications keeps evolving, there will be more static reflection facilities in the standard with more 
specific type information deduced at compile-time than type_info. It becomes possible for general-
purpose reflection to become zero-overhead in C++ polymorphism. 

As a result, we decided to make proxy support general-purpose static reflection. Here is an example 
to make proxy support RTTI with library extension basic_facade_builder::support_rtti 
(not in the scope of this paper, but live demo is available): 

struct RttiAware : facade_builder 
    ::support_rtti 
    ::build {}; 
 

Users may call proxy_typeid() to get the implementation-defined name of a type at runtime: 

proxy<RttiAware> p; 
puts(proxy_typeid(*p).name());  // Prints "v" (assuming GCC) 
p = make_proxy<RttiAware>(123); 
puts(proxy_typeid(*p).name());  // Prints "i" 
puts(p.reflect().GetName()); 

5.3.3 Invocation fallbacks 

Since P3086R0, we have received feature requests to support invocation fallbacks, specifically, 

1. There is a need for APIs to interact with the underlying pointer types. One example would be 
creating a weak_ptr from a shared_ptr stored in a value of proxy. 

2. For types that do not support certain semantics, there is a need for fallback to a default 
implementation with guarantee not to generate duplicate code before linking. 

https://microsoft.github.io/proxy/docs/basic_facade_builder.html
https://godbolt.org/z/11bjEG3fr
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The semantics of facade has been updated to support such fallback. If a dispatch cannot be invoked 
with the dereferenced type of the contained value in the proxy, we fall back to the pointer itself 
without dereferencing it, and eventually fall back to a default implementation without the context of the 
proxy. 

5.3.4 Ordering and hash support 

Since ordering and hash support is not trivial to implement for a polymorphic wrapper like proxy, 
similar with move_only_function, we decided not to propose them in this paper. 

5.3.5 Freestanding 

As per our implementation experience, there is no technical issue to implement the proposed library 
(not including facilities that are not proposed, yet in our codebase) as freestanding, therefore we propose 
the whole library to be standardized as freestanding. 

5.4 Compared to other solutions 
This section summarizes the design of several other C++ libraries and typical programming languages 

in polymorphism. They all have certain limitations in usability or performance, which are resolved in the 
proposed "proxy" library. 

5.4.1 Compared with other active proposals 

P3019R6: indirect and polymorphic: Vocabulary Types for Composite Class Design 

This paper proposed two class templates to the standard library: indirect<T> and 
polymorphic<T>. Among them, polymorphic<T> confers value-like semantics on a dynamically 
allocated object that publicly derived from T. Although it facilitates lifetime management of an object 
that has virtual functions, it still requires a type to opt-in the existing virtual mechanism in the standard 
to have runtime polymorphism. In addition, pointer semantics of proxy allows more flexible storage and 
lifetime management, including SBO and shared semantics as mentioned earlier. 

5.4.2 The "dyno" library 

The "dyno" is an open-source C++ library that also aims to "solve the problem of runtime 
polymorphism better than vanilla C++ does". Here is a sample usage copied from its documentation: 

using namespace dyno::literals; 
 
// Define the interface of something that can be drawn 
struct Drawable : decltype(dyno::requires_( 
  "draw"_s = dyno::method<void (std::ostream&) const> 
)) { }; 
 

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p3019r6.html
https://github.com/ldionne/dyno/tree/56ced251f5751ef4e3fe66d4f28ccbc75b902d70
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// Define how concrete types can fulfill that interface 
template <typename T> 
auto const dyno::default_concept_map<Drawable, T> = 
dyno::make_concept_map( 
  "draw"_s = [](T const& self, std::ostream& out) { self.draw(out); } 
); 
 
// Define an object that can hold anything that can be drawn. 
struct drawable { 
  template <typename T> 
  drawable(T x) : poly_{x} { } 
 
  void draw(std::ostream& out) const 
  { poly_.virtual_("draw"_s)(out); } 
 
private: 
  dyno::poly<Drawable> poly_; 
}; 
 

The "dyno" library also provides some macros to simplify the definition above, which will not be 
discussed in this paper. As illustrated in its documentation, the "goodies" we get from the "dyno" library 
are: 

Non-intrusive 
An interface can be fulfilled by a type without requiring any modification to that type. Heck, a type can 
even fulfill the same interface in different ways! With Dyno, you can kiss ridiculous class hierarchies 
goodbye. 
 
100% based on value semantics 
Polymorphic objects can be passed as-is, with their natural value semantics. You need to copy your 
polymorphic objects? Sure, just make sure they have a copy constructor. You want to make sure they 
don't get copied? Sure, mark it as deleted. With Dyno, silly clone() methods and the proliferation of 
pointers in APIs are things of the past. 
 
Not coupled with any specific storage strategy 
The way a polymorphic object is stored is really an implementation detail, and it should not interfere 
with the way you use that object. Dyno gives you complete control over the way your objects are stored. 
You have a lot of small polymorphic objects? Sure, let's store them in a local buffer and avoid any 
allocation. Or maybe it makes sense for you to store things on the heap? Sure, go ahead. 
 
Flexible dispatch mechanism to achieve best possible performance 
Storing a pointer to a vtable is just one of many different implementation strategies for performing 
dynamic dispatch. Dyno gives you complete control over how dynamic dispatch happens, and can in fact 
beat vtables in some cases. If you have a function that's called in a hot loop, you can for example store it 
directly in the object and skip the vtable indirection. You can also use application-specific knowledge 
the compiler could never have to optimize some dynamic calls — library-level devirtualization. 
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For "non-intrusive", the design direction also applies to the proposed "proxy" library. 

For "100% based on value semantics", the design direction is different from the proposed "proxy" 
library, while Proxy is based on pointer semantics, as discussed in 5.1.1, value semantics has certain 
limitations in lifetime management. 

For "Not coupled with any specific storage strategy", I don't think the statement is accurate for the 
"dyno" library. Looking at the definition of the class template "dyno::poly": 

template < 
  typename Concept, 
  typename Storage = dyno::remote_storage, 
  typename VTablePolicy = 
dyno::vtable<dyno::remote<dyno::everything>> 
> 
struct poly; 
 

Since the Storage is defined on the template, even we can specify different storage strategies at 
compile-time, one instantiation of poly is always bound to a specific storage strategy. Such limitations 
make it difficult to have different lifetime management strategies at runtime without additional 
overhead. The "simple factory" mentioned in Error! Reference source not found. is a good example of 
such requirements. As mentioned earlier, the proposed "proxy" library allows different lifetime 
management strategies of one instantiation of proxy and thus does not have such limitations. 

Taking a closer look at the implementation of "dyno::sbo_storage", which is designed to eliminate 
heap allocation, we can see a runtime conditional logic when getting the pointer of the underlying 
object, which is a "hot" expression each time a polymorphic expression is performed: 

return static_cast<T*>(uses_heap() ? ptr_ : &sb_); 
 

Such overhead could be eliminated in the proposed "proxy" library, as discussed in 5.1.3. 

For "Flexible dispatch mechanism to achieve best possible performance", I don't think de-virtualization 
is a major requirement of runtime polymorphism. 

5.4.3 The "DGPVC" library 

Although the Concepts can define "how should concrete implementations look like", not all the 
information that could be represented by a concept is suitable for polymorphism. For example, we could 
declare an inner type of a type in a concept definition, like: 

template <class T> 
concept bool Foo() { 
  return requires { 
    typename T::bar; 

https://github.com/ldionne/dyno/blob/56ced251f5751ef4e3fe66d4f28ccbc75b902d70/include/dyno/poly.hpp#L62-L67
https://github.com/ldionne/dyno/blob/56ced251f5751ef4e3fe66d4f28ccbc75b902d70/include/dyno/storage.hpp#L236-L244
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  }; 
} 
 

But it is unnecessary to make this piece of information polymorphic because this expression makes no 
sense at runtime. Some feedback suggests that it is acceptable to restrict the definition of a concept from 
anything not suitable for polymorphism, including but not limited to inner types, friend functions, 
constructors, etc. This solution does not seem to be compatible with the C++ type system because: 

1. There is no such mechanism to verify whether a definition of a concept is suitable for polymorphism, 
and 

2. There is no such mechanism to specify a type by a concept, like 
some_class_template<SomeConcept>, because a concept is not a type. 

The "Dynamic Generic Programming with Virtual Concepts" (DGPVC) is a solution that adopts this. 
However, on the one hand, it introduces some syntax, mixing the "concepts" with the "virtual qualifier", 
which makes the types ambiguous. From the code snippets included in the paper, we can tell that 
"virtual concept" is an "auto-generated" type. Compared to introducing new syntax, I prefer to make it a 
"magic class template", which at least "looks like a type" and much easier to understand. On the other 
hand, there seems not to be enough description about how to implement the entire solution introduced in 
the paper, and it remains hard for us to imagine how are we supposed to implement for the expressions 
that cannot be declared virtual, e.g., friend functions that take values of the concrete type as parameters. 

6 Technical Specifications 
6.1 Feature test macro 

In [version.syn], add: 

#define __cpp_lib_proxy YYYYMML // also in <memory> 
 

The placeholder value shall be adjusted to denote this proposal's date of adoption. 

6.2 Named requirements 

6.2.1 The ProOverload requirements 

A type O meets the ProOverload requirements if it matches one of the following definitions, where R 
is the return type, Args... are the argument types. 

Definitions of O 
R(Args...) 
R(Args...) noexcept 
R(Args...) & 
R(Args...) & noexcept 
R(Args...) && 

https://github.com/andyprowl/virtual-concepts/blob/ed3a5690c353b6998abcd3368a9b448f1bb2aa19/draft/Dynamic%20Generic%20Programming%20with%20Virtual%20Concepts.pdf
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R(Args...) && noexcept 
R(Args...) const 
R(Args...) const noexcept 
R(Args...) const& 
R(Args...) const& noexcept 
R(Args...) const&& 
R(Args...) const&& noexcept 

 

6.2.2 The ProDispatch requirements 

A type D meets the ProDispatch requirements of types T and O if D is a trivial type, O meets the 
ProOverload requirelemts, and the following expressions are well-formed and have the specified 
semantics (let R be return type of O, Args... be the argument types of O. args... denotes values of 
type Args..., v denotes a value of type T, cv denotes a value of type const T). 

Definitions of O Expressions Semantics 
R(Args...) INVOKE<R>(D{}, v, 

std::forward<Args>(args)...) 
Invokes dispatch type D with an 
lvalue reference of type T and 
args..., may throw. 

R(Args...) 
noexcept 

INVOKE<R>(D{}, v, 
std::forward<Args>(args)...) 

Invokes dispatch type D with an 
lvalue reference of type T and 
args..., shall not throw. 

R(Args...) & INVOKE<R>(D{}, v, 
std::forward<Args>(args)...) 

Invokes dispatch type D with an 
lvalue reference of type T and 
args..., may throw. 

R(Args...) & 
noexcept 

INVOKE<R>(D{}, v, 
std::forward<Args>(args)...) 

Invokes dispatch type D with an 
lvalue reference of type T and 
args..., shall not throw. 

R(Args...) 
&& 

INVOKE<R>(D{}, std::move(v), 
std::forward<Args>(args)...) 

Invokes dispatch type D with a 
rvalue reference of type T and 
args..., may throw. 

R(Args...) 
&& noexcept 

INVOKE<R>(D{}, std::move(v), 
std::forward<Args>(args)...) 

Invokes dispatch type D with a 
rvalue reference of type T and 
args..., shall not throw. 

R(Args...) 
const 

INVOKE<R>(D{}, cv, 
std::forward<Args>(args)...) 

Invokes dispatch type D with a 
const reference of type T and 
args..., may throw. 

R(Args...) 
const 
noexcept 

INVOKE<R>(D{}, cv, 
std::forward<Args>(args)...) 

Invokes dispatch type D with a 
const reference of type T and 
args..., shall not throw. 
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R(Args...) 
cosnt& 

INVOKE<R>(D{}, cv, 
std::forward<Args>(args)...), 
or d(nullptr, 
std::forward<Args>(args)...) 

Invokes dispatch type D with a 
const reference of type T and 
args..., may throw. 

R(Args...) 
const& 
noexcept 

INVOKE<R>(D{}, cv, 
std::forward<Args>(args)...) 

Invokes dispatch type D with a 
const reference of type T and 
args..., shall not throw. 

R(Args...) 
const&& 

INVOKE<R>(D{}, std::move(cv), 
std::forward<Args>(args)...) 

Invokes dispatch type D with a 
const rvalue reference of type T and 
args..., may throw. 

R(Args...) 
const&& 
noexcept 

INVOKE<R>(D{}, std::move(cv), 
std::forward<Args>(args)...) 

Invokes dispatch type D with a 
const rvalue reference of type T 
and args..., shall not throw. 

 

6.2.3 The ProBasicConvention requirements 

A type C meets the ProBasicConvention requirements if the following expressions are well-formed and 
have the specified semantics. 

Expressions Semantics 
C::is_direct A core constant expression of type bool, specifying whether the 

convention applies to a pointer type itself (true), or the element 
type of a pointer type (false). 

typename 
C::dispatch_type 

A trivial type that defines how the calls are forwarded to the concrete 
types. 

typename 
C::overload_types 

A tuple-like type of one or more distinct types Os. Each type O in Os 
shall meet the ProOverload requirements. 

6.2.4 The ProConvention requirements 

A type C meets the ProConvention requirements of a type P if C meets the ProBasicConvention 
requirements, and the following expressions are well-formed and have the specified semantics. 

Expressions Semantics 
typename 
C::overload_types 

A tuple-like type that contains one or more distinct types Os. Each type 
O in Os shall meet the ProOverload requirements, and 
- when C::is_direct is true, typename C::dispatch_type 
shall meet the ProDispatch requirements of P and O, 
- or otherwise, when C::is_direct is false, let QP be a qualified 
reference type of P with the cv ref qualifiers defined by O (QP is an 
lvalue reference type if O does not define a ref qualifier), qp be a value 
of QP, *std::forward<QP>(qp) shall be well-formed, and 
typename C::dispatch_type shall meet the ProDispatch 
requirements of decltype(*std::forward<QP>(qp)) and `. 
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6.2.5 The ProBasicReflection requirements 

A type R meets the ProBasicReflection requirements if the following expressions are well-formed and 
have the specified semantics. 

Expressions Semantics 
R::is_direct A core constant expression of type bool, specifying whether the 

reflection applies to a pointer type itself (true), or the element type 
of a pointer type (false). 

typename 
R::reflector_type 

A trivial type that defines the data structure reflected from the type. 

 

6.2.6 The ProReflection requirements 

A type R meets the ProReflection requirements of a type P if R meets the ProBasicReflection 
requirements, and the following expressions are well-formed and have the specified semantics (let T be 
P when R::is_direct is true, or otherwise typename 
std::pointer_traits<P>::element_type). 

Expressions Semantics 
typename 
R::reflector_type{std::in_place_type<T>} 

A core constant expression that 
constructs a value of type typename 
R::reflector_type, reflecting 
implementation-defined metadata of 
type T. 

 

6.2.7 The ProBasicFacade requirements 

A type F meets the ProBasicFacade requirements if the following expressions are well-formed and 
have the specified semantics. 

Expressions Semantics 
typename 
F::convention_types 

A tuple-like type that contains any number of distinct types Cs. 
Each type C in Cs shall meet the ProBasicConvention 
requirements. 

typename 
F::reflection_types 

A tuple-like type that contains any number of distinct types Rs. 
Each type R in Rs shall define reflection on pointer types. 

F::constraints A core constant expression of type 
proxiable_ptr_constraints that defines constraints to 
pointer types. 
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6.2.8 The ProFacade requirements 

A type F meets the ProFacade requirements of a type P if F meets the ProBasicFacade requirements, 
and P meets the requirements defined by F::constraints, and the following expressions are well-
formed and have the specified semantics. 

Expressions Semantics 
typename 
F::convention_types 

A tuple-like type that contains any number of distinct types Cs. 
Each type C in Cs shall meet the ProConvention requirements of 
P. 

typename 
F::reflection_types 

A tuple-like type that contains any number of distinct types Rs. 
Each type R in Rs shall meet the ProReflection requirements of 
P. 

 

6.2.9 The ProAccessible requirements 

Given that F is a type meeting the ProBasicFacade requirements, a type T meets the ProAccessible 
requirements of type F, if the following expressions are well-formed and have the specified semantics. 

 

Expressions Semantics 
typename T::template 
accessor<F> 

A type that provides accessibility to proxy. It shall be a nothrow-
default-constructible, trivially-copyable type, and shall not be final. 

 

6.3 Header <memory> synopsis 
// all freestanding 
namespace std { 
  enum class constraint_level { none, nontrivial, nothrow, trivial }; 
 
  struct proxiable_ptr_constraints { 
    std::size_t max_size; 
    std::size_t max_align; 
    constraint_level copyability; 
    constraint_level relocatability; 
    constraint_level destructibility; 
  }; 
 
  template <class F> 
    concept facade = see below; 
 
  template <class P, class F> 
    concept proxiable = see below; 
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  template <class F> 
    class proxy_indirect_accessor; 
 
  template <class F> 
    class proxy; 
 
  template <class F, class A> 
    proxy<F>& access_proxy(A& a) noexcept; 
 
  template <class F, class A> 
    const proxy<F>& access_proxy(const A& a) noexcept; 
 
  template <class F, class A> 
    proxy<F>&& access_proxy(A&& a) noexcept; 
 
  template <class F, class A> 
    const proxy<F>&& access_proxy(const A&& a) noexcept; 
 
  template <bool IsDirect, class D, class O, class F, class... Args> 
    see below proxy_invoke(proxy<F>& p, Args&&... args); 
 
  template <bool IsDirect, class D, class O, class F, class... Args> 
    see below proxy_invoke(const proxy<F>& p, Args&&... args); 
 
  template <bool IsDirect, class D, class O, class F, class... Args> 
    see below proxy_invoke(proxy<F>&& p, Args&&... args); 
 
  template <bool IsDirect, class D, class O, class F, class... Args> 
    see below proxy_invoke(const proxy<F>&& p, Args&&... args); 
 
  template <bool IsDirect, class R, class F> 
    const R& proxy_reflect(const proxy<F>& p) noexcept; 
} 

6.4 Constraints 
template <class F> 
  concept facade = see below; 
 

The concept facade<F> specifies that a type F models a facade of proxy. If F depends on an 
incomplete type, and its evaluation could yield a different result if that type were hypothetically 
completed, the behavior is undefined. facade<F> is true when F meets the ProBasicFacade 
requirements; otherwise, it is false. 
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Note that concept facade does not impose strong constraints on the dependent convention and 
reflection types. 

 
template <class P, class F> 
  concept proxiable = see below; 
 

The concept proxiable<P, F> specifies that proxy<F> can potentially contain a value of type P. 
For a type P, if P is an incomplete type, the behavior of evaluating proxiable<P, F> is undefined. 
proxiable<P, F> is true when F meets the ProFacade of P; otherwise, it is false. 

6.5 Proxy 

6.5.1 Class template proxy_indirect_accessor 
namespace std { 
  template <class F> 
  class proxy_indirect_accessor : see below {} 
} 
 

Class template proxy_indirect_accessor provides indirection accessibility for proxy. To 
instantiate proxy_indirect_accessor<F>, F shall model concept facade. As per facade<F>, 
typename F::convention_types shall be a tuple-like type containing any number of distinct 
types Cs, and typename F::reflection_types shall be a tuple-like type containing any 
number of distinct types Rs. For each type T in Cs or Rs, if T meets the ProAccessible requirements of 
F and T::is_direct is false, typename T::template accessor<F> is inherited by 
proxy_indirect_accessor<F> with public visibility. 

6.5.2 Class template proxy 

6.5.2.1 General 
namespace std { 
  template <class F> 
  class proxy : see below { 
  public: 
    proxy() noexcept; 
    proxy(nullptr_t) noexcept; 
    proxy(const proxy& rhs) noexcept(see below) requires(see below); 
    proxy(proxy&& rhs) noexcept(see below) requires(see below); 
    template <class P> 
      proxy(P&& ptr) noexcept(see below) requires(see below); 
    template <class P, class... Args> 
      explicit proxy(in_place_type_t<P>, Args&&... args) 
          noexcept(see below) requires(see below); 
    template <class P, class U, class... Args> 
      explicit proxy(in_place_type_t<P>, initializer_list<U> il, Args&&... args) 
          noexcept(see below) requires(see below); 
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    proxy& operator=(nullptr_t) noexcept(see below) requires(see below); 
    proxy& operator=(const proxy& rhs) noexcept(see below) requires(see below); 
    proxy& operator=(proxy&& rhs) noexcept(see below) requires(see below); 
    template <class P> 
      proxy& operator=(P&& ptr) noexcept(see below) requires(see below); 
    ~proxy() noexcept(see below) requires(see below); 
 
    bool has_value() const noexcept; 
    explicit operator bool() const noexcept; 
    void reset() noexcept(see below) requires(see below); 
    void swap(proxy& rhs) noexcept(see below) requires(see below); 
    template <class P, class... Args> 
      P& emplace(Args&&... args) noexcept(see below) requires(see below); 
    template <class P, class U, class... Args> 
      P& emplace(initializer_list<U> il, Args&&... args) 
          noexcept(see below) requires(see below); 
 
    proxy_indirect_accessor<F>* operator->() noexcept; 
    const proxy_indirect_accessor<F>* operator->() const noexcept; 
    proxy_indirect_accessor<F>& operator*() & noexcept; 
    const proxy_indirect_accessor<F>& operator*() const& noexcept; 
    proxy_indirect_accessor<F>&& operator*() && noexcept; 
    const proxy_indirect_accessor<F>&& operator*() const&& noexcept; 
 
    friend void swap(proxy& lhs, proxy& rhs) noexcept(see below); 
    friend bool operator==(const proxy& lhs, nullptr_t) noexcept; 
 
  private: 
    proxy_indirect_accessor<F> ia;  // exposition only 
  }; 
} 
 

Class template proxy is a general-purpose polymorphic wrapper for C++ pointers. It also supports 
flexible lifetime management without garbage collection at runtime. 

To instantiate proxy<F>, F shall model concept facade. As per facade<F>, typename 
F::convention_types shall be a tuple-like type containing any number of distinct types Cs, and 
typename F::reflection_types shall be a tuple-like type containing any number of distinct 
types Rs. For each type T in Cs or Rs, if T meets the ProAccessible requirements of F and 
T::is_direct is true, typename T::template accessor<F> is inherited by proxy<F> 
with public visibility. 

Any instance of proxy<F> at any given time either proxies a pointer or does not proxy a pointer. 
When an instance of proxy<F> proxies a pointer, it means that an object of some pointer type P, 
referred to as the proxy's contained value, where proxiable<P, F> is true, is allocated within the 
storage of the proxy object. Implementations are not permitted to use additional storage, such as 
dynamic memory, to allocate its contained value. The contained value shall be allocated in a region of 
the proxy<F> storage suitably aligned for the type P. 

The following constants are defined for exposition only: 
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Name Value 

template <class P, class... Args> 
HasNothrowPolyConstructor<P, Args...> 

conditional_t<proxiable<P, F>, 
is_nothrow_constructible<P, Args...>, 
false_type>::value 

template <class P, class... Args> 
HasPolyConstructor<P, Args...> 

conditional_t<proxiable<P, F>, 
is_constructible<P, Args...>, 
false_type>::value 

HasTrivialCopyConstructor F::constraints.copyability == 
constraint_level::trivial 

HasNothrowCopyConstructor F::constraints.copyability >= 
constraint_level::nothrow 

HasCopyConstructor F::constraints.copyability >= 
constraint_level::nontrivial 

HasNothrowMoveConstructor F::constraints.relocatability >= 
constraint_level::nothrow 

HasMoveConstructor F::constraints.relocatability >= 
constraint_level::nontrivial 

HasTrivialDestructor F::constraints.destructibility == 
constraint_level::trivial 

HasNothrowDestructor F::constraints.destructibility >= 
constraint_level::nothrow 

HasDestructor F::constraints.destructibility >= 
constraint_level::nontrivial 

template <class P, class... Args> 
HasNothrowPolyAssignment 

HasNothrowPolyConstructor<P, Args...> && 
HasNothrowDestructor 

template <class P, class... Args> 
HasPolyAssignment 

HasPolyConstructor<P, Args...> && 
HasDestructor 

HasTrivialCopyAssignment HasTrivialCopyConstructor && 
HasTrivialDestructor 

HasNothrowCopyAssignment HasNothrowCopyConstructor && 
HasNothrowDestructor 

HasCopyAssignment HasNothrowCopyAssignment || 
(HasCopyConstructor && HasMoveConstructor 
&& HasDestructor) 

HasNothrowMoveAssignment HasNothrowMoveConstructor && 
HasNothrowDestructor 

HasMoveAssignment HasMoveConstructor && HasDestructor 

6.5.2.2 Construction and destruction 
proxy() noexcept; 
proxy(nullptr_t) noexcept; 

Postconditions: *this does not contain a value. 
Remarks: No contained value is initialized. 

 
proxy(const proxy& rhs) noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasCopyConstructor. 
Effects: If rhs.has_value() is false, constructs an object that has no value. Otherwise, 
equivalent to proxy(in_place_type<P>, rhs.cast<P>()) where P is the type of the 
contained value of rhs. 
Postconditions: has_value() == rhs.has_value(). 
Throws: Any exception thrown by the selected constructor of P. 
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Remarks: The expression inside noexcept is equivalent to HasNothrowCopyConstructor. 
Specifically, 

- if the constraints are not satisfied, the constructor is deleted, or 
- if HasTrivialCopyConstructor is true, the constructor is trivial. 

 
proxy(proxy&& rhs) noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasMoveConstructor. 
Effects: If rhs.has_value() is false, constructs an object that has no value. Otherwise, 
equivalent to (proxy(in_place_type<P>, std::move(rhs.cast<P>())), 
rhs.reset()), where P is the type of the contained value of rhs. 
Postconditions: rhs does not contain a value. 
Throws: Any exception thrown by the selected constructor of P. 
Remarks: The expression inside noexcept is equivalent to HasNothrowMoveConstructor. 
If the constraints are not satisfied, the constructor is deleted. 

 
template <class P> 
  proxy(P&& ptr) noexcept(see below) requires(see below); 

Let VP be decay_t<P>. 
Constraints: The expression inside requires is equivalent to HasPolyConstructor<VP, 
P> in conjunction with that decay_t<P> is not the same type as proxy nor a specialization of 
in_place_type_t. 
Effects: Initializes the contained value as if direct-initializing an object of type VP with 
std::forward<P>(ptr). 
Postconditions: *this contains a value of type VP. 
Throws: Any exception thrown by the selected constructor of VP. 
Remarks: The expression inside noexcept is equivalent to 
HasNothrowPolyConstructor<VP, P>. 

 
template <class P, class... Args> 
  explicit proxy(in_place_type_t<P>, Args&&... args) 
      noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasPolyConstructor<P, 
Args...>. 
Effects: Initializes the contained value as if direct-non-list-initializing an object of type P with the 
arguments std::forward<Args>(args).... 
Postconditions: *this contains a value of type P. 
Throws: Any exception thrown by the selected constructor of P. 
Remarks: The expression inside noexcept is equivalent to HasNothrowPolyConstructor 
<P, Args...>. 

 
template <class P, class U, class... Args> 
  explicit proxy(in_place_type_t<P>, initializer_list<U> il, 
      Args&&... args) 
      noexcept(see below) requires(see below); 
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Constraints: The expression inside requires is equivalent to HasPolyConstructor<P, 
initializer_list<U>&, Args...>. 
Effects: Initializes the contained value as if direct-non-list-initializing an object of type P with the 
arguments il, std::forward<Args>(args).... 
Postconditions: *this contains a value of type P. 
Throws: Any exception thrown by the selected constructor of P. 
Remarks: The expression inside noexcept is equivalent to 
HasNothrowPolyConstructor<P, initializer_list<U>&, Args...>. 

 
~proxy() noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasDestructor. 
Effects: As if by reset(). 
Throws: Any exception thrown by the destructor of the contained value. 
Remarks: The expression inside noexcept is equivalent to HasNothrowDestructor. 
Specifically, 

- if the constraints are not satisfied, the destructor is deleted, or 
- if HasTrivialDestructor is true, the destructor is trivial. 

 
6.5.2.3 Assignment 
proxy& operator=(nullptr_t) noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasDestructor. 
Effects: If has_value() is true, destroys the contained value. 
Postconditions: *this does not contain a value. 
Remarks: The expression inside noexcept is equivalent to HasNothrowDestructor. 

 
proxy& operator=(const proxy& rhs) noexcept(see below) requires(see 
below); 

Constraints: The expression inside requires is equivalent to HasCopyAssignment. 
Effects: As if by proxy(rhs).swap(*this). No effects if an exception is thrown. 
Returns: *this. 
Throws: Any exception thrown during copy construction, relocation, or destruction of the contained 
value. 
Remarks: The expression inside noexcept is equivalent to HasNothrowCopyAssignment. 
Specifically, 

- if the constraints are not satisfied, the assignment operator is deleted, or 
- if HasTrivialCopyAssignment is true, the assignment operator is trivial. 

 
proxy& operator=(proxy&& rhs) noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasMoveAssignment. 
Effects: As if by proxy(std::move(rhs)).swap(*this). 
Returns: *this. 
Throws: Any exception thrown during relocation, destruction, or swap of the contained value. 
Remarks: The expression inside noexcept is equivalent to HasNothrowMoveAssignment. If 
the constraints are not satisfied, the assignment operator is deleted. 
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template <class P> 
  proxy& operator=(P&& ptr) noexcept(see below) requires(see below); 

Let VP be decay_t<P>. 
Constraints: The expression inside requires is equivalent to HasPolyAssignment<VP, P>. 
Effects: As if by proxy(std::forward<P>(p)).swap(*this). 
Returns: *this. 
Throws: Any exception thrown during construction, destruction, or swap of the contained value. 
Remarks: The expression inside noexcept is equivalent to 
HasNothrowPolyAssignment<VP, P>. 

 
template <class P, class... Args> 
  P& emplace(Args&&... args) noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasPolyAssignment<P, 
Args...>. 
Effects: Calls *this = nullptr. Then initializes the contained value as if direct-non-list-
initializing an object of type P with the arguments std::std::forward<Args>(args).... 
Postconditions: *this contains a value of type P. 
Returns: A reference to the new contained value. 
Throws: Any exception thrown during the destruction of the previous contained value or by the 
selected constructor of P. 
Remarks: The expression inside noexcept is equivalent to 
HasNothrowPolyAssignment<P, Args...>. If an exception is thrown during the call to 
P's constructor, *this does not contain a value, and the previous contained value (if any) has been 
destroyed. 

 
template <class P, class U, class... Args> 
  P& emplace(initializer_list<U> il, Args&&... args) 
      noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasPolyAssignment<P, 
initializer_list<U>&, Args...>. 
Effects: Calls *this = nullptr. Then initializes the contained value as if direct-non-list-
initializing an object of type P with the arguments il, 
std::std::forward<Args>(args).... 
Postconditions: *this contains a value of type P. 
Returns: A reference to the new contained value. 
Throws: Any exception thrown during the destruction of the previous contained value or by the 
selected constructor of P. 
Remarks: The expression inside noexcept is equivalent to 
HasNothrowPolyAssignment<P, initializer_list<U>&, Args...>. If an 
exception is thrown during the call to P's constructor, *this does not contain a value, and the 
previous contained value (if any) has been destroyed. 
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6.5.2.4 Swap 
void swap(proxy& rhs) noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasMoveConstructor. 
Effects: See the table below: 

 *this contains a value *this does not contain a value 
rhs contains a 
value 

Swap the contained values of 
*this and rhs with a temporary 
storage. If an exception is thrown, 
each of *this and rhs is in a 
valid state with unspecified value. 

Equivalent to (*this = 
std::move(rhs)); post 
condition is that *this contains a 
value and rhs does not contain a 
value. 

rhs does not 
contain a value 

Equivalent to (rhs = 
std::move(*this)); post 
condition is that *this does not 
contain a value and rhs contains a 
value. 

no effect 

 
Remarks: The expression inside noexcept is equivalent to HasNothrowMoveConstructor. 

 
friend void swap(proxy& lhs, proxy& rhs) noexcept(see below); 

Effects: Equivalent to lhs.swap(rhs).  
Remarks: The expression inside noexcept is equivalent to HasNothrowMoveConstructor. 

 
6.5.2.5 Observers 
bool has_value() const noexcept; 
explicit operator bool() const noexcept; 

Returns: true if and only if *this contains a value. 
 
friend bool operator==(const proxy& lhs, nullptr_t) noexcept; 

Returns: !lhs.has_value(). 
 
proxy_indirect_accessor<F>* operator->() noexcept; 

Returns: addressof(ia). 
 
const proxy_indirect_accessor<F>* operator->() const noexcept; 

Returns: addressof(ia). 
 
proxy_indirect_accessor<F>& operator*() & noexcept; 

Returns: ia. 
 
const proxy_indirect_accessor<F>& operator*() const& noexcept; 

Returns: ia. 
 
proxy_indirect_accessor<F>&& operator*() && noexcept; 

Returns: std::move(ia). 
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const proxy_indirect_accessor<F>&& operator*() const&& noexcept; 

Returns: std::move(ia). 
 
6.5.2.6 Modifiers 
void reset() noexcept(see below) requires(see below); 

Constraints: The expression inside requires is equivalent to HasDestructor. 
Effects: If *this contains a value, destroys the contained value; otherwise, no effect. 
Postconditions: *this does not contain a value. 
Remarks: The expression inside noexcept is equivalent to HasNothrowDestructor. If an 
exception is thrown during the call to P's destructor, *this is in a valid state with unspecified 
value. 

 

6.5.3 Proxy manipulation functions 

template <class F, class A> 
proxy<F>& access_proxy(A& a) noexcept; 
template <class F, class A> 
const proxy<F>& access_proxy(const A& a) noexcept; 
template <class F, class A> 
proxy<F>&& access_proxy(A&& a) noexcept; 
template <class F, class A> 
const proxy<F>&& access_proxy(const A&& a) noexcept; 

Preconditions: F shall model concept facade. As per facade<F>, typename 
F::convention_types shall be a tuple-like type containing distinct types Cs. There shall be a 
type C in Cs where A is the same type as typename C::template accessor<F>. a shall be 
instantiated from a proxy object. 
Returns: A reference to the proxy that instantiated a. 

 
template <bool IsDirect, class D, class O, class F, class... Args> 
see below proxy_invoke(proxy<F>& p, Args&&... args); 
template <bool IsDirect, class D, class O, class F, class... Args> 
see below proxy_invoke(const proxy<F>& p, Args&&... args); 
template <bool IsDirect, class D, class O, class F, class... Args> 
see below proxy_invoke(proxy<F>&& p, Args&&... args); 
template <bool IsDirect, class D, class O, class F, class... Args> 
see below proxy_invoke(const proxy<F>&& p, Args&&... args); 

Preconditions: There shall be a convention type Conv defined in typename 
F::convention_types where Conv::is_direct == IsDirect && 
std::is_same_v<typename Conv::dispatch_type, D> is true. O is required to be 
defined in typename Conv::overload_types. p shall contain a value. 
Effects: Invokes a proxy with a specified dispatch type, an overload type, and arguments. Let ptr 
be the contained value of p with the same cv ref-qualifiers, Args2... be the argument types of O, 
R be the return type of O, 
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• if IsDirect is true, let v be std::forward<decltype(ptr)>(ptr), or otherwise, 
• if IsDirect is false, let v be *std::forward<decltype(ptr)>(ptr), 
equivalent to: 
• INVOKE<R>(D{}, std::forward<decltype(v)>(v), 

static_cast<Args2>(args)...) if the expression is well-formed, or otherwise, 
• INVOKE<R>(D{}, nullptr, static_cast<Args2>(args)...). 
Return type: The return type of O. 

 
template <bool IsDirect, class R, class F> 
const R& proxy_reflect(const proxy<F>& p) noexcept; 

Preconditions: There shall be a reflection type Refl defined in typename 
F::reflection_types where Refl::is_direct == IsDirect && 
std::is_same_v<typename Refl::reflection_type, R> is true. p shall contain a 
value. 
Effects: Let P be the type of the contained value of p. Retrieves a value of type const R& 
constructed from in_place_type<T>, where T is P when IsDirect is true, or otherwise T 
is typename std::pointer_traits<P>::element_type when IsDirect is false. 
Remarks: The reference obtained from proxy_reflect() may be invalidated if p is 
subsequently modified. 
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8 Open questions 
As per review comments from LEWGI in Tokyo: 

8.1 Naming of class template proxy 
During the review there was some controversy over the name "proxy". Despite potential confusion 

with networking proxies, the use of distinct namespaces should mitigate ambiguity. Specifically, 

- Clarity of Purpose: "proxy" accurately describes the functionality of the library, which is to serve 
as an intermediary that represents or stands in for another object. This clarity helps users 
immediately understand the role of the library without additional context. 

- Consistency with Established Terminology: In programming, a "proxy" often refers to an object 
that controls access to another object, which is consistent with the behavior of the proposed 
library. This consistency with established patterns aids in learning and understanding for those 
already familiar with the concept. 
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- Domain Differentiation: While "proxy" is also a term used in networking, the concept of 
namespaces in C++ effectively separates concerns and prevents ambiguity. Just as std::copy 
and std::filesystem::copy have distinct functionalities within their respective domains, 
so too would a "proxy" within the std namespace be distinct from a networking proxy within a 
different namespace, such as std::net. 

- Precedent for Overlapping Terms: There are numerous examples in C++ where the same term 
may have different meanings in different contexts, yet this does not typically lead to confusion 
due to the language's structure and namespace system. 

In summary, we believe "proxy" is a term that conveys the intended functionality with precision, aligns 
with existing programming concepts, and can be clearly differentiated within the C++ namespace 
system. These factors make it a suitable choice for the library’s name. In the meantime, we have come 
up with 3 alternatives to be considered: 

Name Pros Cons 
agent Implies action on behalf of 

another, without direct stand-in 
implications. 

May imply autonomous action, 
which is not the case with the 
proposed feature. 

handle Well-understood term in 
programming, especially for 
resource management. 

Overused and may not convey the 
semantics of a pointer to another 
object. 

poly Reflects the capability of the 
proposed library to exhibit 
different behaviors at runtime. 

May inadvertently suggest a 
connection to the traditional use of 
polymorphism in C++ through 
virtual functions, which is not the 
case here. 

delegate Implies that operations are 
passed on to another entity. 

Already has a distinct meaning in 
other programming languages, 
which could lead to confusion. 

8.2 Naming of constraints in concept facade 
In the paper, the term "constraints" is utilized within concept facade to denote the restrictions 

applied to the pointer types that can be used to instantiate a proxy. This terminology was selected for 
its clear conveyance of the intended functionality and its familiarity within the C++ committee. 

However, it has been brought to attention that the term "constraints" is also a key term within the 
domain of Concepts in C++, which may lead to ambiguity due to its general nature. While the term's 
broad recognition is beneficial for understanding, the potential for confusion with the established use in 
Concepts is acknowledged. To mitigate this concern, the proposal remains open to alternative 
nomenclature that would preserve the term's descriptive quality while distinguishing it from its broader 
usage in Concepts. Suggestions such as "pointer_constraints" or "proxy_constraints" may offer a more 
specific reference, thereby reducing ambiguity. 
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9 Summary 
The Proxy library is an extendable and efficient solution for polymorphism. We believe this feature 

will largely improve the usability of the C++ programming language, especially in large-scale 
programming. 
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