
indirect and polymorphic: Vocabulary Types for Composite Class Design
ISO/IEC JTC1 SC22 WG21 Programming Language C++

P3019R12

Working Group: Library Evolution, Library

Date: 2025-01-12

Jonathan Coe <jonathanbcoe@gmail.com>

Antony Peacock <ant.peacock@gmail.com>

Sean Parent <sparent@adobe.com>

Abstract
We propose the addition of two new class templates to the C++ Standard Library: indirect<T> and polymorphic<T>.

Specializations of these class templates have value semantics and compose well with other standard library types
(such as vector), allowing the compiler to correctly generate special member functions.

The class template indirect confers value-like semantics on a dynamically-allocated object. An indirect may hold
an object of a class T. Copying the indirect will copy the object T. When an indirect<T> is accessed through a
const access path, constness will propagate to the owned object.

The class template polymorphic confers value-like semantics on a dynamically-allocated object. A polymorphic<T>
may hold an object of a class publicly derived from T. Copying the polymorphic<T> will copy the object of the derived
type. When a polymorphic<T> is accessed through a const access path, constness will propagate to the owned object.

This proposal is a fusion of two earlier individual proposals, P1950 and P0201. The design of the two proposed class
templates is sufficiently similar that they should not be considered in isolation.

History
Changes in R12

• Fix indirect synopsis to include explicit on the default constructor.

• Replace “may only be X” with “may be X only” in specification of indirect and polymorphic.

• Change constraints on T where T could be an incomplete type to mandates.

• Remove mandates that T is a complete type where this is implicitly required by type_traits.

• T in indirect needs to be copy-constructible only for the copy constructor(s).

• Add discussion of constraints and incomplete type support.

• Fix specification of <=> to use synth-three-way-result.

• Change constraints on operator== for indirect to mandates.

• Remove constraints on operator<=> for indirect.

• Updates to non-technical specification sections to reflect design revisions for constraints and comparison.

Changes in R11
• Remove unnecesary remove_const from the specification of hash for indirect.

• Add a default template type parameter for single-argument constructors for indirect and polymorphic and for
indirect’s perfect-forwarding assignment.

1

mailto:jonathanbcoe@gmail.com
mailto:ant.peacock@gmail.com
mailto:sparent@adobe.com

• Add postconditions to say that the moved-from indirect is valueless in move assigment, move constructor and
allocator-extended move construction. The same does not apply for polymorphic which permits a small buffer
optimization.

• Add drafting note for use of italicised code font for exposition only variables.

• Prevent T from being in_place_t or a specialization of in_place_type_t for both indirect and polymorphic.

• Collect in_place_t and in_place_type_t constructors together.

• Define UU as remove_cvref_t<U> to simplify various requirements.

• Use derived_from rather than is_base_of_v in requirements for polymorphic.

• Require is_same_v<remove_cvref_t<U>, U> for polymorphic constructors taking in_place_type_t<U>.

• Check is_same_v constraints first.

Changes in R10
• Correct naming of explicit ‘converting’ constructors to ‘single-argument’ constructors.

• Amend naming of indirect’s ‘converting’ constructor to ‘perfect-forwarded’ assignment.

• Correct changelog from R9.

Changes in R9
• Move throws clauses from individual constructor specifications to the start of constructors specification for

indirect and polymorphic.

• Re-order constructors.

• Add perfect-forwarded assignment operator to indirect.

• Add single-argument constructors to indirect and polymorphic.

• Add intializer list constructors to indirect and polymorphic.

• Avoid use of ‘heap’ and ‘free-store’ in favour of ‘dynamically-allocated storage’.

Changes in R8
• Wording cleanup in parallel with independent implementation.

• Add more explicit wording for use of allocator_traits::construct in indirect and polymorphic construc-
tors.

• Prevent indirect and polymorphic classes from being instantiated with in_place_t and specializations of
in_place_type_t.

• Strike mandates T is a complete type from indirect comparison operators and hash for consistency with reference
wrapper.

Changes in R7
• Discuss indirect’s non-conditional copy constructor in the light of implementation tricks that would enable it.

• Improve wording for assignment operators to remove ambiguity.

• Add motivation for valueless_after_move member function.

2

Changes in R6
• Add std::in_place_t argument to indirect constructors.

• Amend wording for assignment operators to provide strong exception guarantee.

• Amend wording for swap to consider the valueless state.

• Remove comparison operators for indirect where they can be compiler-synthesized.

• Rename erroneous exposition only variable allocator to alloc.

• Add drafting note on exception guarantees behaviour to swap.

Changes in R5
• Fix wording for assignment operators to provide strong exception guarantee.

• Add missing wording for valueless hash.

Changes in R4
• Use constraints to require that the object owned by indirect is copy constructible. This ensures that

std::is_copy_constructible_v does not give misleading results.

• Modify comparison of indirect allow comparsion of valueless objects. Comparisons are implemented in terms
of operator== and operator<=> returning bool and auto.

• Remove std::format support for std::indirect as it cannot handle a valueless state.

• Allow copy, move, assign and swap of valueless objects, discuss similarities with variant.

• No longer specify constructors as uses-allocator constructing anything.

• Require T to satisfy the requirements of Cpp17Destructible.

• Rename exposition only variables p_ to p and allocator_ to alloc.

• Add discussion on incomplete types.

• Add discussion on explicit constructors.

• Add discussion on arithmetic operators and update change table.

• Remove references to std::indirect/std::polymorphic values terms under [*.general] sections.

Changes in R3
• Add explicit to constructors.

• Add constructor indirect(U&& u, Us&&... us) overload and requisite constraints.

• Add constructor polymorphic(allocator_arg_t, const Allocator& a) overload.

• Add discussion on similarities and differences with variant.

• Add table of breaking and non-breaking changes to appendix C.

• Add missing comparison operators and ensure they are all conditionally noexcept.

• Add argument deduction guides for std::indirect.

• Address incorrect std::indirect usage in composite example.

• Additions to acknowledgements.

• Address wording for swap() relating to noexcept.

• Address constraints wording for std::indirect comparison operators.

3

• Copy constructor now uses
allocator_traits::select_on_container_copy_construction.

• Ensure swap and assign with self are nops.

• Move feature test macros to [version.syn].

• Remove std::optional specializations.

• Replace use of “erroneous” with “undefined behaviour”.

• Strong exception guarantee for copy assignment.

• Specify constructors as uses-allocator constructing T.

• Wording review and additions to <memory> synopsis [memory.syn]

Changes in R2
• Add discussion on returning auto for std::indirect comparison operators.

• Add discussion of emplace() to appendix.

• Update wording to support allocator awareness.

Changes in R1
• Add feature-test macros.

• Add std::format support for std::indirect

• Add Appendix B before and after examples.

• Add preconditions checking for types are not valueless.

• Add constexpr support.

• Allow quality of implementation support for small buffer optimization for polymorphic.

• Extend wording for allocator support.

• Change constraints to mandates to enable support for incomplete types.

• Change pointer usage to use allocator_traits pointer.

• Remove std::uses_allocator specliazations.

• Remove std::inplace_t parameter in constructors for std::indirect.

• Fix sizeof error.

Motivation
The standard library has no vocabulary type for a dynamically-allocated object with value semantics. When designing
a composite class, we may need an object to be stored indirectly to support incomplete types, reduce object size or
support open-set polymorphism.

We propose the addition of two new class templates to the standard library to represent indirectly stored values:
indirect and polymorphic. Both class templates represent dynamically-allocated objects with value-like semantics.
polymorphic<T> can own any object of a type publicly derived from T, allowing composite classes to contain
polymorphic components. We require the addition of two classes to avoid the cost of virtual dispatch (calling the
copy constructor of a potentially derived-type object through type erasure) when copying of polymorphic objects is
not needed.

4

Design requirements
We review the fundamental design requirements of indirect and polymorphic that make them suitable for composite
class design.

Special member functions
Both class templates are suitable for use as members of composite classes where the compiler will generate special
member functions. This means that the class templates should provide the special member functions where they
are supported by the owned object type T. As T may be an incomplete type, the special member functions are
unconditionally available to participate in overload resolution but would lead to an ill-formed program if they are
called for a type that does not support them.

Deep copies
Copies of indirect<T> and polymorphic<T> should own copies of the owned object created with the copy constructor
of the owned object. In the case of polymorphic<T>, this means that the copy should own a copy of a potentially
derived type object created with the copy constructor of the derived type object.

Note: Including a polymorphic component in a composite class means that virtual dispatch will be used (through
type erasure) in copying the polymorphic member. Where a composite class contains a polymorphic member from a
known set of types, prefer std::variant or indirect<std::variant> if indirect storage is required.

const propagation
When composite objects contain pointer, unique_ptr or shared_ptr members they allow non-const access to their
respective pointees when accessed through a const access path. This prevents the compiler from eliminating a source
of const-correctness bugs and makes it difficult to reason about the const-correctness of a composite object.

Accessors of unique and shared pointers do not have const and non-const overloads:

T* unique_ptr<T>::operator->() const;
T& unique_ptr<T>::operator*() const;

T* shared_ptr<T>::operator->() const;
T& shared_ptr<T>::operator*() const;

When a parent object contains a member of type indirect<T> or polymorphic<T>, access to the owned object (of
type T) through a const access path should be const qualified.

struct A {
enum class Constness { CONST, NON_CONST };
Constness foo() { return Constness::NON_CONST; }
Constness foo() const { return Constness::CONST; }

};

class Composite {
indirect<A> a_;

Constness foo() { return a_->foo(); }
Constness foo() const { return a_->foo(); }

};

int main() {
Composite c;
assert(c.foo() == A::Constness::NON_CONST);
const Composite& cc = c;
assert(cc.foo() == A::Constness::CONST);

}

5

Value semantics
Both indirect and polymorphic are value types whose owned object’s storage is managed by the specified allocator.

When a value type is copied it gives rise to two independent objects that can be modified separately.

The owned object is part of the logical state of indirect and polymorphic. Operations on a const-qualified object
do not make changes to the object’s logical state nor to the logical state of owned objects.

The valueless state and interaction with std::optional

Both indirect and polymorphic have a valueless state that is used to implement move. The valueless state is
not intended to be observable to the user. There is no operator bool or has_value member function. Accessing
the value of an indirect or polymorphic after it has been moved from is undefined behaviour. We provide a
valueless_after_move member function that returns true if an object is in a valueless state. This allows explicit
checks for the valueless state in cases where it cannot be verified statically.

Without a valueless state, moving indirect or polymorphic would require allocation and moving from the owned
object. This would be expensive and would require the owned object to be moveable. The existence of a valueless
state allows move to be implemented cheaply without requiring the owned object to be moveable.

Where a nullable indirect or polymorphic is required, using std::optional is recommended. This may become com-
mon practice since indirect and polymorphic can replace smart pointers in composite classes, where they are currently
used to (mis)represent component objects. Using dynamically-allocated storage for T should not make it nullable. Nul-
lability must be explicitly opted into by using std::optional<indirect<T>> or std::optional<polymorphic<T>>.

Allocator support
Both indirect and polymorphic are allocator-aware types. They must be suitable for use in allocator-aware
composite types and containers. Existing allocator-aware types in the standard, such as vector and map, take an
allocator type as a template parameter, provide allocator_type, and have constructor overloads taking an additional
allocator_type_t and allocator instance as arguments. As indirect and polymorphic need to work with, and in
the same way, as existing allocator-aware types, they too take an allocator type as a template parameter, provide
allocator_type, and have constructor overloads taking an additional allocator_type_t and allocator instance as
arguments.

Modelled types
The class templates indirect and polymorphic have strong similarities to existing class templates. These similarities
motivate much of the design; we aim for consistency with existing library types, not innovation.

Modelled types for indirect

The class template indirect owns an object of known type, permits copies, propagates const and is allocator aware.

• Like optional and unique_ptr, indirect can be in a valueless state; indirect can get into the valueless state
only after being moved from, or after assignment or construction from a valueless state.

• unique_ptr and optional have preconditions for operator-> and operator*: the behavior is undefined if
*this does not contain a value.

• unique_ptr and optional mark operator-> and operator* as noexcept: indirect does the same.

• optional and indirect know the underlying type of the owned object so can implement r-value qualified
versions of operator*. For unique_ptr, the underlying type is not known (it could be an instance of a derived
class) so r-value qualified versions of operator* are not provided.

• Like vector, indirect owns an object created by an allocator. The move constructor and move assignment
operator for vector are conditionally noexcept on properties of the allocator. Thus for indirect, the move
constructor and move assignment operator are conditionally noexcept on properties of the allocator. (Allocator
instances may have different underlying memory resources; it is not possible for an allocator with one memory
resource to delete an object in another memory resource. When allocators have different underlying memory

6

resources, move necessitates the allocation of memory and cannot be marked noexcept.) Like vector, indirect
marks member and non-member swap as noexcept and requires allocators to be equal.

• Like optional, indirect knows the type of the owned object so it can forward comparison operators and hash
to the underlying object. A valueless indirect, like an empty optional, hashes to an implementation-defined
value.

Modelled types for polymorphic

The class template polymorphic owns an object of unknown type, requires copies, propagates const and is allocator
aware.

• Like optional and unique_ptr, polymorphic can be in a valueless state; polymorphic can get into the valueless
state only after being moved from, or after assignment or construction from a valueless state.

• unique_ptr and optional have preconditions for operator-> and operator*: the behavior is undefined if
*this does not contain a value.

• unique_ptr and optional mark operator-> and operator* as noexcept: polymorphic does the same.

• Neither unique_ptr nor polymorphic know the underlying type of the owned object so cannot implement
r-value qualified versions of operator*. For optional, the underlying type is known, so r-value qualified
versions of operator* are provided.

• Like vector, polymorphic owns an object created by an allocator. The move constructor and move assignment
operator for vector are conditionally noexcept on properties of the allocator. Thus for polymorphic, the move
constructor and move assignment operator are conditionally noexcept on properties of the allocator. Like
vector, polymorphic marks member and non-member swap as noexcept and requires allocators to be equal.

• Like unique_ptr, polymorphic does not know the type of the owned object (it could be an instance of a derived
type). As a result, polymorphic cannot forward comparison operators or hash to the owned object.

Similarities and differences with variant

The sum type variant<Ts...> models one of several alternatives; indirect<T> models a single type T, but with
different storage constraints to T.

Like indirect, a variant can get into a valueless state. For variant, this valueless state is accessible when an
exception is thrown when changing the type: variant has bool valueless_by_exception(). When all of the types
Ts are comparable, variant<Ts...> supports comparison without preconditions: it is valid to compare variants when
they are in a valueless state. Variant comparisons can account for the valueless state with zero cost. A variant must
check which type is the engaged type to perform comparison; valueless is one of the possible states it can be in. For
indirect, allowing comparison when in a valueless state necessitates the addition of an otherwise redundant check.
After feedback from standard library implementers, we opt to allow hash and comparison of indirect in a valueless
state, at cost, to avoid making comparison or hash of indirect in a valueless state undefined behaviour.

variant allows valueless objects to be passed around via copy, assignment, move and move assignment. There is no
precondition on variant that it must not be in a valueless state to be copied from, moved from, assigned from or
move assigned from. While the notion that a valueless indirect or polymorphic is toxic and must not be passed
around code is appealing, it would not interact well with generic code which may need to handle a variety of types.
Note that the standard does not require a moved-from object to be valid for copy, move, assign or move assignment:
the restriction is only that it should be in a well-formed but unspecified state. However, there is no precedent for
standard library types to have preconditions on move, copy, assign or move assignment. We opt for consistency with
existing standard library types (namely variant, which has a valueless state) and allow copy, move, assignment
and move assignment of a valueless indirect and polymorphic. Handling of the valueless state for indirect and
polymorphic in move operations will not incur cost; for copy operations, the cost of handling the valueless state will
be insignificant compared to the cost of allocating memory. Introducing preconditions for copy, move, assign and
move assign in a later revision of the C++ standard would be a silent breaking change.

Like variant, indirect does not support formatting by forwarding to the owned object. There may be no owned
object to format so we require the user to write code to determine how to format a valueless indirect or to validate
that the indirect is not valueless before formatting *i (where i is an instance of indirect for some formattable
type T).

7

noexcept and narrow contracts
C++ library design guidelines recommend that member functions with narrow contracts (runtime preconditions)
should not be marked noexcept. This is partially motivated by a non-vendor implementation of the C++ standard
library that uses exceptions in a debug build to check for precondition violations by throwing an exception. The
noexcept status of operator-> and operator* for indirect and polymorphic is identical to that of optional and
unique_ptr. All have preconditions (*this cannot be valueless), all are marked noexcept. Whatever strategy was
used for testing optional and unique_ptr can be used for indirect and polymorphic.

Not marking operator-> and operator* as noexcept for indirect and polymorphic would make them strictly less
useful than unique_ptr in contexts where they would otherwise be a valid replacement.

Tagged constructors
Constructors for indirect and polymorphic taking an allocator or owned-object constructor arguments are tagged
with allocator_arg_t and in_place_t (or in_place_type_t) respectively. This is consistent with the standard
library’s use of tagged constructors in optional, any and variant.

Without in_place_t the constructor of indirect would not be able to construct an owned object using the
owned object’s allocator-extended constructor. indirect(std::in_place, std::allocator_arg, alloc, args)
unambiguously constructs an indirect with a default constructed allocator and an owned object constructed with
an allocator extended constructor taking an allocator alloc and constructor arguments args.

Single-argument constructors
In line with optional and variant, we add single-argument constructors to both indirect and polymorphic so
they can be constructed from single values without the need to use in_place or in_place_type. As indirect and
polymorphic are allocator-aware types, we also provide allocator-extended versions of these constructors, in line with
those from basic_optional [2] and existing constructors from indirect and polymorphic.

Initializer-list constructors
We add initializer-list constructors to both indirect and polymorphic in line with those in optional and variant.
As indirect and polymorphic are allocator-aware types, we provide allocator-extended versions of these constructors,
in line with those from basic_optional [2] and existing constructors from indirect and polymorphic.

Explicit constructors
Constructors for indirect and polymorphic are marked as explicit. This disallows “implicit conversion” from single
arguments or braced initializers. Given both indirect and polymorphic use dynamically-allocated storage, there
are no instances where an object could be considered semantically equivalent to its constructor arguments (unlike
pair or variant). To construct an indirect or polymorphic object, and with it use dynamically-allocated memory,
the user must explicitly use a constructor.

The standard already marks multiple argument constructors as explicit for the inplace constructors of optional and
any.

With some suitably compelling motivation, the explicit keyword could be removed from some constructors in a
later revision of the C++ standard without rendering code ill-formed.

Perfect-forwarded assignment
Perfect-forwarded assignment for indirect

We add a perfect-forwarded assignment operator for indirect in line with those from optional and variant.

template <class U=T>
constexpr optional& operator=(U&& u);

When assigning to an indirect, there is potential for optimisation if there is an existing owned object to be assigned
to:

8

indirect<int> i;
foo(i); // could move from `i`.
if (!i.valueless_after_move()) {

*i = 5;
} else {

i = indirect(5);
}

With perfect-forwarded assignment, handling the valueless state and potentially creating a new indirect object is done
within the perfect-forwarded assignment. The code below is equivalent to the code above:

indirect<int> i;
foo(i); // could move from `i`.
i = 5;

Perfect-forwarded assignment for polymorphic

There is no perfect-forwarded assignment for polymorphic as type information is erased. There is no optimisation
opportunity to be made as a new object will need creating regardless of whether the target of assignment is valueless
or not.

The valueless_after_move member function
Both indirect and polymorphic have a valueless_after_move member function that is used to query the object
state. This member function should rarely be called: it should be clear through static analysis whether or not an
object has been moved from. The valueless_after_move member function allows explicit checks for the valueless
state in cases where it cannot be verified statically or where explicit checks might be required by a coding standard
such as MISRA or High Integrity C++.

Design for polymorphic types
A type PolymorphicInterface used as a base class with polymorphic does not need a virtual destructor. The same
mechanism that is used to call the copy constructor of a potentially derived-type object will be used to call the
destructor.

To allow compiler-generation of special member functions of an abstract interface type PolymorphicInterface in
conjunction with polymorphic, PolymorphicInterface needs at least a non-virtual protected destructor and a
protected copy constructor. PolymorphicInterface does not need to be assignable, move constructible or move
assignable for polymorphic<PolymorphicInterface> to be assignable, move constructible or move assignable.

class PolymorphicInterface {
protected:

PolymorphicInterface(const PolymorphicInterface&) = default;
~PolymorphicInterface() = default;

public:
// virtual functions

};

For an interface type with a public virtual destructor, users would potentially pay the cost of virtual dispatch twice
when deleting polymorphic<I> objects containing derived-type objects.

All derived types owned by a polymorphic must be publicly copy constructible.

Prior work
This proposal continues the work started in [P0201] and [P1950].

Previous work on a cloned pointer type [N3339] met with opposition because of the mixing of value and pointer
semantics. We believe that the unambiguous value semantics of indirect and polymorphic as described in this
proposal address these concerns.

9

Impact on the standard
This proposal is a pure library extension. It requires additions to be made to the standard library header <memory>.

Technical specifications
Header <version> synopsis [version.syn]
Note to editors: Add the following macros with editor provided values to [version.syn]

#define __cpp_lib_indirect ??????L // also in <memory>
#define __cpp_lib_polymorphic ??????L // also in <memory>

Header <memory> synopsis [memory]
namespace std {

// [inout.ptr], function template inout_ptr
template<class Pointer = void, class Smart, class... Args>

auto inout_ptr(Smart& s, Args&&... args);

<ins>
// DRAFTING NOTE: not sure how to typeset <ins> reasonably in markdown

// [indirect], class template indirect
template<class T, class Allocator = allocator<T>>

class indirect;

// [indirect.hash], hash support
template <class T, class Alloc> struct hash<indirect<T, Alloc>>;

// [polymorphic], class template polymorphic
template <class T, class Allocator = allocator<T>>

class polymorphic;

namespace pmr {

template<class T> using indirect =
indirect<T, polymorphic_allocator<T>>;

template<class T> using polymorphic =
polymorphic<T, polymorphic_allocator<T>>;

}
</ins>
}

X.Y Class template indirect [indirect]
[Drafting note: The member alloc should be formatted as an exposition only identifier, but limitations of the
processor used to prepare this paper means not all uses are italicised.]

X.Y.1 Class template indirect general [indirect.general]

1. An indirect object manages the lifetime of an owned object. An indirect object is valueless if it has no owned
object. An indirect object may become valueless only after it has been moved from.

2. In every specialization indirect<T, Allocator>, if the type allocator_traits<Allocator>::value_type
is not the same type as T, the program is ill-formed. Every object of type indirect<T, Allocator> uses an
object of type Allocator to allocate and free storage for the owned object as needed.

10

3. Constructing an owned object with args... using the allocator a means calling
allocator_traits<Allocator>::construct(a, p, args...) where args is an expression pack, a is an
allocator, and p is a pointer obtained by calling allocator_traits<Allocator>::allocate.

4. The member alloc is used for any memory allocation and element construction performed by member functions
during the lifetime of each indirect object. The allocator alloc may be replaced only via assignment or swap().
Allocator replacement is performed by copy assignment, move assignment, or swapping of the allocator only if
([container.reqmts]): allocator_traits<Allocator>::propagate_on_container_copy_assignment::value,
or
allocator_traits<Allocator>::propagate_on_container_move_assignment::value, or
allocator_traits<Allocator>::propagate_on_container_swap::value is true within the implementation
of the corresponding indirect operation.

5. A program that instantiates the definition of the template indirect<T, Allocator> with a type for the T
parameter that is a non-object type, an array type, in_place_t, a specialization of in_place_type_t, or a
cv-qualified type is ill-formed.

6. The template parameter T of indirect may be an incomplete type.

7. The template parameter Allocator of indirect shall meet the Cpp17Allocator requirements.

8. If a program declares an explicit or partial specialization of indirect, the behavior is undefined.

X.Y.2 Class template indirect synopsis [indirect.syn]

template <class T, class Allocator = allocator<T>>
class indirect {
public:
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;

explicit constexpr indirect();

explicit constexpr indirect(allocator_arg_t, const Allocator& a);

constexpr indirect(const indirect& other);

constexpr indirect(allocator_arg_t, const Allocator& a,
const indirect& other);

constexpr indirect(indirect&& other) noexcept;

constexpr indirect(allocator_arg_t, const Allocator& a,
indirect&& other) noexcept(see below);

template <class U=T>
explicit constexpr indirect(U&& u);

template <class U=T>
explicit constexpr indirect(allocator_arg_t, const Allocator& a, U&& u);

template <class... Us>
explicit constexpr indirect(in_place_t, Us&&... us);

template <class... Us>
explicit constexpr indirect(allocator_arg_t, const Allocator& a,

in_place_t, Us&&... us);

11

template<class I, class... Us>
explicit constexpr indirect(in_place_t, initializer_list<I> ilist,

Us&&... us);

template<class I, class... Us>
explicit constexpr indirect(allocator_arg_t, const Allocator& a,

in_place_t, initializer_list<I> ilist,
Us&&... us);

constexpr ~indirect();

constexpr indirect& operator=(const indirect& other);

constexpr indirect& operator=(indirect&& other) noexcept(see below);

template <class U=T>
constexpr indirect& operator=(U&& u);

constexpr const T& operator*() const & noexcept;

constexpr T& operator*() & noexcept;

constexpr const T&& operator*() const && noexcept;

constexpr T&& operator*() && noexcept;

constexpr const_pointer operator->() const noexcept;

constexpr pointer operator->() noexcept;

constexpr bool valueless_after_move() const noexcept;

constexpr allocator_type get_allocator() const noexcept;

constexpr void swap(indirect& other) noexcept(see below);

friend constexpr void swap(indirect& lhs, indirect& rhs) noexcept(see below);

template <class U, class AA>
friend constexpr bool operator==(

const indirect& lhs, const indirect<U, AA>& rhs) noexcept(see below);

template <class U>
friend constexpr bool operator==(

const indirect& lhs, const U& rhs) noexcept(see below);

template <class U, class AA>
friend constexpr auto operator<=>(

const indirect& lhs, const indirect<U, AA>& rhs) noexcept(see below)
-> synth-three-way-result<T, U>;

template <class U>
friend constexpr auto operator<=>(

const indirect& lhs, const U& rhs) noexcept(see below)
-> synth-three-way-result<T, U>;

12

private:
pointer p; // exposition only
Allocator alloc = Allocator(); // exposition only

};

template <class Value>
indirect(Value) -> indirect<Value>;

template <class Allocator, class Value>
indirect(allocator_arg_t, Allocator, Value) -> indirect<Value,

typename allocator_traits<Allocator>::template rebind_alloc<Value>>;

X.Y.3 Constructors [indirect.ctor]

The following element applies to all functions in [indirect.ctor]:

Throws: Nothing unless allocator_traits<Allocator>::allocate or allocator_traits<Allocator>::construct
throws.

explicit constexpr indirect();

1. Constraints: is_default_constructible_v<Allocator> is true.

2. Mandates: is_default_constructible_v<T> is true.

3. Effects: Constructs an owned object of type T with an empty argument list, using the allocator alloc.

explicit constexpr indirect(allocator_arg_t, const Allocator& a);

4. Mandates: is_default_constructible_v<T> is true.

5. Effects: alloc is direct-non-list-initialized with a. Constructs an owned object of type T with an empty argument
list, using the allocator alloc.

constexpr indirect(const indirect& other);

6. Mandates: is_copy_constructible_v<T> is true.

7. Effects: alloc is direct-non-list-initialized with
allocator_traits<Allocator>::select_on_container_copy_construction(other.alloc). If other is
valueless, *this is valueless. Otherwise, constructs an owned object of type T with *other, using the allocator
alloc.

constexpr indirect(allocator_arg_t, const Allocator& a,
const indirect& other);

8. Mandates: is_copy_constructible_v<T> is true.

9. Effects: alloc is direct-non-list-initialized with a. If other is valueless, *this is valueless. Otherwise, constructs
an owned object of type T with *other, using the allocator alloc.

constexpr indirect(indirect&& other) noexcept;

10. Effects: alloc is direct-non-list-initialized from std::move(other.alloc). If other is valueless, *this is
valueless. Otherwise *this takes ownership of the owned object of other.

11. Postconditions: other is valueless.

constexpr indirect(allocator_arg_t, const Allocator& a, indirect&& other)
noexcept(allocator_traits<Allocator>::is_always_equal::value);

12. Mandates: If allocator_traits<Allocator>::is_always_equal::value is false then T is a complete type.

13. Effects: alloc is direct-non-list-initialized with a. If other is valueless, *this is valueless. Otherwise, if alloc
== other.alloc is true, constructs an object of type indirect that takes ownership of the owned object of
other. Otherwise, constructs an owned object of type T with *std::move(other), using the allocator alloc.

14. Postconditions: other is valueless.

13

template <class U=T>
explicit constexpr indirect(U&& u);

15. Constraints:
• is_same_v<remove_cvref_t<U>, indirect> is false,
• is_same_v<remove_cvref_t<U>, in_place_t> is false,
• is_constructible_v<T, U> is true and
• is_default_constructible_v<Allocator> is true.

16. Effects: Constructs an owned object of type T with std::forward<U>(u), using the allocator alloc.

template <class U=T>
explicit constexpr indirect(allocator_arg_t, const Allocator& a, U&& u);

17. Constraints:
• is_same_v<remove_cvref_t<U>, indirect> is false,
• is_same_v<remove_cvref_t<U>, in_place_t> is false and
• is_constructible_v<T, U> is true.

18. Effects: alloc is direct-non-list-initialized with a. Constructs an owned object of type T with std::
forward<U>(u), using the allocator alloc.

template <class... Us>
explicit constexpr indirect(in_place_t, Us&&... us);

19. Constraints:
• is_constructible_v<T, Us...> is true and
• is_default_constructible_v<Allocator> is true.

20. Effects: Constructs an owned object of type T with std::forward<Us>(us)..., using the allocator alloc.

template <class... Us>
explicit constexpr indirect(allocator_arg_t, const Allocator& a,

in_place_t, Us&& ...us);

21. Constraints: is_constructible_v<T, Us...> is true.

22. Effects: alloc is direct-non-list-initialized with a. Constructs an owned object of type T with std::
forward<Us>(us)..., using the allocator alloc.

template<class I, class... Us>
explicit constexpr indirect(in_place_t, initializer_list<I> ilist,

Us&&... us);

23. Constraints:
• is_constructible_v<T, initializer_list<I>&, Us...> is true, and
• is_default_constructible_v<Allocator> is true.

24. Effects: Constructs an owned object of type T with the arguments ilist, std::forward<Us>(us)..., using
the allocator alloc.

template<class I, class... Us>
explicit constexpr indirect(allocator_arg_t, const Allocator& a,

in_place_t, initializer_list<I> ilist,
Us&&... us);

25. Constraints: is_constructible_v<T, initializer_list<I>&, Us...> is true.

26. Effects: alloc is direct-non-list-initialized with a. Constructs an owned object of type T with the arguments
ilist, std::forward<Us>(us)..., using the allocator alloc.

X.Y.4 Destructor [indirect.dtor]

constexpr ~indirect();

1. Mandates: T is a complete type.

2. Effects: If *this is not valueless, destroys the owned object using allocator_traits<Allocator>::destroy
and then the storage is deallocated.

14

X.Y.5 Assignment [indirect.assign]

constexpr indirect& operator=(const indirect& other);

1. Mandates:

• is_copy_assignable_v<T> is true and
• is_copy_constructible_v<T> is true.

2. Effects: If addressof(other) == this is true, there are no effects.
Otherwise:

2.1. The allocator needs updating if
allocator_traits<Allocator>::propagate_on_container_copy_assignment::value
is true.

2.2. If other is valueless, *this becomes valueless and the owned object in *this, if any, is destroyed using
allocator_traits<Allocator>::destroy and then the storage is deallocated.

2.3. Otherwise, if alloc == other.alloc is true and *this is not valueless, equivalent to **this = *other.

2.4. Otherwise a new owned object is constructed in *this using allocator_traits<Allocator>::construct
with the owned object from other as the argument, using either the allocator in *this or the allocator in other
if the allocator needs updating.

2.5. The previously owned object in *this, if any, is destroyed using allocator_traits<Allocator>::destroy
and then the storage is deallocated.

2.6. If the allocator needs updating, the allocator in *this is replaced with a copy of the allocator in other.

3. Returns: A reference to *this.

4. Remarks: If any exception is thrown, the result of the expression this->valueless_after_move() remains
unchanged. If an exception is thrown during the call to T’s selected copy constructor, no effect. If an exception
is thrown during the call to T’s copy assignment, the state of its contained value is as defined by the exception
safety guarantee of T’s copy assignment.

constexpr indirect& operator=(indirect&& other) noexcept(
allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
allocator_traits<Allocator>::is_always_equal::value);

5. Mandates: is_copy_constructible_t<T> is true.

6. Effects: If addressof(other) == this is true, there are no effects. Otherwise:

6.1. The allocator needs updating if
allocator_traits<Allocator>::propagate_on_container_move_assignment::value
is true.

6.2. If other is valueless, *this becomes valueless and the owned object in *this, if any, is destroyed using
allocator_traits<Allocator>::destroy and then the storage is deallocated.

6.3. Otherwise, if alloc == other.alloc is true, swaps the owned objects in *this and other; the owned
object in other, if any, is then destroyed using allocator_traits<Allocator>::destroy and then the storage
is deallocated.

6.4. Otherwise constructs a new owned object with the owned object of other as the argument as an rvalue,
using either the allocator in *this or the allocator in other if the allocator needs updating.

6.5. The previously owned object in *this, if any, is destroyed using allocator_traits<Allocator>::destroy
and then the storage is deallocated.

6.6. If the allocator needs updating, the allocator in *this is replaced with a copy of the allocator in other.

7. Postconditions: other is valueless.

8. Returns: A reference to *this.

9. Remarks: If any exception is thrown, there are no effects on *this or other.

15

template <class U=T>
constexpr indirect& operator=(U&& u);

10. Constraints: Where UU is remove_cvref_t<U>,

• is_same_v<UU, indirect> is false,
• is_constructible_v<T, U> is true, and
• is_assignable_v<T&, U> is true.

11. Mandates: is_copy_constructible_t<T> is true.

12. Effects: If *this is valueless then equivalent to
*this = indirect(allocator_arg, alloc, std::forward<U>(u));. Otherwise, equivalent to
**this = std::forward<U>(u).

13. Returns: A reference to *this.

X.Y.6 Observers [indirect.observers]

constexpr const T& operator*() const & noexcept;
constexpr T& operator*() & noexcept;

1. Preconditions: *this is not valueless.

2. Returns: *p.

constexpr const T&& operator*() const && noexcept;
constexpr T&& operator*() && noexcept;

3. Preconditions: *this is not valueless.

4. Returns: std::move(*p).

constexpr const_pointer operator->() const noexcept;
constexpr pointer operator->() noexcept;

5. Preconditions: *this is not valueless.

6. Returns: p.

constexpr bool valueless_after_move() const noexcept;

7. Returns: true if *this is valueless, otherwise false.

constexpr allocator_type get_allocator() const noexcept;

8. Returns: alloc.

X.Y.7 Swap [indirect.swap]

constexpr void swap(indirect& other) noexcept(
allocator_traits<Allocator>::propagate_on_container_swap::value
|| allocator_traits<Allocator>::is_always_equal::value);

1. Preconditions: If
allocator_traits<Allocator>::propagate_on_container_swap::value
is true, then Allocator meets the Cpp17Swappable requirements. Otherwise get_allocator() ==
other.get_allocator() is true.

2. Effects: Swaps the states of *this and other, exchanging owned objects or valueless states. If
allocator_traits<Allocator>::propagate_on_container_swap::value
is true, then the allocators of *this and other are exchanged by calling swap as described in [swap-
pable.requirements]. Otherwise, the allocators are not swapped. [Note: Does not call swap on the owned objects
directly. –end note]

constexpr void swap(indirect& lhs, indirect& rhs) noexcept(
noexcept(lhs.swap(rhs)));

16

3. Effects: Equivalent to lhs.swap(rhs).

X.Y.8 Relational operators [indirect.relops]

template <class U, class AA>
constexpr bool operator==(const indirect& lhs, const indirect<U, AA>& rhs)

noexcept(noexcept(*lhs == *rhs));

1. Mandates: The expression *lhs == *rhs is well-formed and its result is convertible to bool.

2. Returns: If lhs is valueless or rhs is valueless,
lhs.valueless_after_move() == rhs.valueless_after_move(); otherwise *lhs == *rhs.

template <class U, class AA>
constexpr synth-three-way-result<T, U> operator<=>(const indirect& lhs,

const indirect<U, AA>& rhs)
noexcept(noexcept(synth-three-way(*lhs, *rhs)));

3. Returns: If lhs is valueless or rhs is valueless,
!lhs.valueless_after_move() <=> !rhs.valueless_after_move(); otherwise
synth-three-way(*lhs, *rhs).

X.Y.9 Comparison with T [indirect.comp.with.t]

template <class U>
constexpr bool operator==(const indirect& lhs, const U& rhs)

noexcept(noexcept(*lhs == rhs));

1. Mandates: The expression *lhs == rhs is well-formed and its result is convertible to bool.

2. Returns: If lhs is valueless, false; otherwise *lhs == rhs.

template <class U>
constexpr synth-three-way-result<T, U> operator<=>(const indirect& lhs,

const U& rhs)
noexcept(noexcept(synth-three-way(*lhs, rhs)));

3. Returns: If rhs is valueless, false < true; otherwise synth-three-way(*lhs, rhs).

X.Y.10 Hash support [indirect.hash]

template <class T, class Allocator>
struct hash<indirect<T, Allocator>>;

1. The specialization hash<indirect<T, Allocator>> is enabled ([unord.hash]) if and only if hash<T> is enabled.
When enabled for an object i of type indirect<T, Allocator>, then hash<indirect<T, Allocator>>()(i)
evaluates to either the same value as hash<T>()(*i), if i is not valueless; otherwise to an implementation-defined
value. The member functions are not guaranteed to be noexcept.

X.Z Class template polymorphic [polymorphic]
[Drafting note: The member alloc should be formatted as an exposition only identifier, but limitations of the
processor used to prepare this paper mean not all uses are italicised.]

X.Z.1 Class template polymorphic general [polymorphic.general]

1. A polymorphic object manages the lifetime of an owned object. A polymorphic object may own objects of
different types at different points in its lifetime. A polymorphic object is valueless if it has no owned object. A
polymorphic object may become valueless only after it has been moved from.

2. In every specialization polymorphic<T, Allocator>, if the type allocator_traits<Allocator>::value_type
is not the same type asT, the program is ill-formed. Every object of type polymorphic<T, Allocator> uses an
object of type Allocator to allocate and free storage for the owned object as needed.

17

3. Constructing an owned object of type U with args... using the allocator a means calling allocator_traits<Allocator>::construct(a,
p, args...) where args is an expression pack, a is an allocator, p points to storage suitable for an owned
object of type U.

4. The member alloc is used for any memory allocation and element construction performed by member functions
during the lifetime of each polymorphic value object, or until the allocator is replaced. The allocator may
be replaced only via assignment or swap(). Allocator replacement is performed by copy assignment, move
assignment, or swapping of the allocator only if (see [container.reqmts]):
allocator_traits<Allocator>::propagate_on_container_copy_assignment::value,
or
allocator_traits<Allocator>::propagate_on_container_move_assignment::value,
or
allocator_traits<Allocator>::propagate_on_container_swap::value is true within the implementation
of the corresponding polymorphic operation.

5. A program that instantiates the definition of polymorphic for a non-object type, an array type, in_place_t, a
specialization of in_place_type_t, or a cv-qualified type is ill-formed.

6. The template parameter T of polymorphic may be an incomplete type.

7. The template parameter Allocator of polymorphic shall meet the requirements of Cpp17Allocator.

8. If a program declares an explicit or partial specialization of polymorphic, the behavior is undefined.

X.Z.2 Class template polymorphic synopsis [polymorphic.syn]

template <class T, class Allocator = allocator<T>>
class polymorphic {
public:
using value_type = T;
using allocator_type = Allocator;
using pointer = typename allocator_traits<Allocator>::pointer;
using const_pointer = typename allocator_traits<Allocator>::const_pointer;

explicit constexpr polymorphic();

explicit constexpr polymorphic(allocator_arg_t, const Allocator& a);

constexpr polymorphic(const polymorphic& other);

constexpr polymorphic(allocator_arg_t, const Allocator& a,
const polymorphic& other);

constexpr polymorphic(polymorphic&& other) noexcept;

constexpr polymorphic(allocator_arg_t, const Allocator& a,
polymorphic&& other) noexcept(see below);

template <class U=T>
explicit constexpr polymorphic(U&& u);

template <class U=T>
explicit constexpr polymorphic(allocator_arg_t, const Allocator& a,

U&& u);

template <class U, class... Ts>
explicit constexpr polymorphic(in_place_type_t<U>, Ts&&... ts);

template <class U, class... Ts>
explicit constexpr polymorphic(allocator_arg_t, const Allocator& a,

18

in_place_type_t<U>, Ts&&... ts);

template <class U, class I, class... Us>
explicit constexpr polymorphic(in_place_type_t<U>,

initializer_list<I> ilist, Us&&... us);

template <class U, class I, class... Us>
explicit constexpr polymorphic(allocator_arg_t, const Allocator& a,

in_place_type_t<U>,
initializer_list<I> ilist, Us&&... us);

constexpr ~polymorphic();

constexpr polymorphic& operator=(const polymorphic& other);

constexpr polymorphic& operator=(polymorphic&& other) noexcept(see below);

constexpr const T& operator*() const noexcept;

constexpr T& operator*() noexcept;

constexpr const_pointer operator->() const noexcept;

constexpr pointer operator->() noexcept;

constexpr bool valueless_after_move() const noexcept;

constexpr allocator_type get_allocator() const noexcept;

constexpr void swap(polymorphic& other) noexcept(see below);

friend constexpr void swap(polymorphic& lhs,
polymorphic& rhs) noexcept(see below);

private:
Allocator alloc = Allocator(); // exposition only

};

X.Z.3 Constructors [polymorphic.ctor]

The following element applies to all functions in [polymorphic.ctor]:

Throws: Nothing unless allocator_traits<Allocator>::allocate
or allocator_traits<Allocator>::construct throws.

explicit constexpr polymorphic();

1. Constraints: is_default_constructible_v<Allocator> is true.

2. Mandates:

• is_default_constructible_v<T> is true and
• is_copy_constructible_v<T> is true.

3. Effects: Constructs an owned object of type T with an empty argument list using the allocator alloc.

explicit constexpr polymorphic(allocator_arg_t, const Allocator& a);

4. Mandates:
• is_default_constructible_v<T> is true and
• is_copy_constructible_v<T> is true.

19

5. Effects: alloc is direct-non-list-initialized with a. Constructs an owned object of type T with an empty argument
list using the allocator alloc.

constexpr polymorphic(const polymorphic& other);

6. Effects: alloc is direct-non-list-initialized with
allocator_traits<Allocator>::select_on_container_copy_construction(other.alloc). If other is
valueless, *this is valueless. Otherwise, constructs an owned object of type U, where U is the type of the owned
object in other, with the owned object in other using the allocator alloc.

constexpr polymorphic(allocator_arg_t, const Allocator& a,
const polymorphic& other);

7. Effects: alloc is direct-non-list-initialized with alloc. If other is valueless, *this is valueless. Otherwise,
constructs an owned object of type U, where U is the type of the owned object in other, with the owned object
in other using the allocator alloc.

constexpr polymorphic(polymorphic&& other) noexcept;

8. Effects: alloc is direct-non-list-initialized with std::move(other.alloc). If other is valueless, *this is
valueless. Otherwise, either *this takes ownership of the owned object of other or, owns an object of the
same type constructed from the owned object of other considering that owned object as an rvalue, using the
allocator alloc.

[Drafting note: The above is intended to permit a small-buffer-optimization and handle the case where allocators
compare equal but we do not want to swap pointers.]

constexpr polymorphic(allocator_arg_t, const Allocator& a,
polymorphic&& other)

noexcept(allocator_traits<Allocator>::is_always_equal::value);

9. Effects: alloc is direct-non-list-initialized with a. If other is valueless, *this is valueless. Otherwise, if alloc
== other.alloc is true, either constructs an object of type polymorphic that owns the owned object of other,
making other valueless; or, owns an object of the same type constructed from the owned object of other
considering that owned object as an rvalue. Otherwise, if alloc != other.alloc is true, constructs an object
of type polymorphic, considering the owned object in other as an rvalue, using the allocator alloc.

[Drafting note: The above is intended to permit a small-buffer-optimization and handle the case where allocators
compare equal but we do not want to swap pointers.]

template <class U=T>
explicit constexpr polymorphic(U&& u);

10. Constraints: Where UU is remove_cvref_t<U>,
• is_same_v<UU, polymorphic> is false,
• derived_from<UU, T> is true,
• is_copy_constructible_v<UU> is true,
• is_constructible_v<UU, U> is true,
• UU is not a specialization of in_place_type_t, and
• is_default_constructible_v<Allocator> is true.

11. Effects: Constructs an owned object of type U with std::forward<U>(u) using the allocator alloc.

template <class U=T>
explicit constexpr polymorphic(allocator_arg_t, const Allocator& a, U&& u);

12. Constraints: Where UU is remove_cvref_t<U>,
• is_same_v<UU, polymorphic> is false,
• derived_from<UU, T> is true,
• is_copy_constructible_v<UU> is true,
• is_constructible_v<UU, U> is true, and
• UU is not a specialization of in_place_type_t.

13. Effects: alloc is direct-non-list-initialized with a. Constructs an owned object of type U with std::
forward<U>(u) using the allocator alloc.

20

template <class U, class... Ts>
explicit constexpr polymorphic(in_place_type_t<U>, Ts&&... ts);

14. Constraints:
• is_same_v<remove_cvref_t<U>, U> is true,
• derived_from<U, T> is true,
• is_constructible_v<U, Ts...> is true,
• is_copy_constructible_v<U> is true, and
• is_default_constructible_v<Allocator> is true.

15. Effects: Constructs an owned object of type U with std::forward<Ts>(ts)... using the allocator alloc.

template <class U, class... Ts>
explicit constexpr polymorphic(allocator_arg_t, const Allocator& a,

in_place_type_t<U>, Ts&&... ts);

16. Constraints:
• is_same_v<remove_cvref_t<U>, U> is true,
• derived_from<U, T> is true,
• is_constructible_v<U, Ts...> is true, and
• is_copy_constructible_v<U> is true.

17. Effects: alloc is direct-non-list-initialized with a. Constructs an owned object of type U with std::
forward<Ts>(ts)... using the allocator alloc.

template <class U, class I, class... Us>
explicit constexpr polymorphic(in_place_type_t<U>,

initializer_list<I> ilist, Us&&... us);

18. Constraints:
• is_same_v<remove_cvref_t<U>, U> is true,
• is_same_v<U, polymorphic> is false,
• derived_from<U, T> is true,
• is_copy_constructible_v<U> is true,
• is_constructible_v<U, initializer_list<I>&, Us...> is true, and
• is_default_constructible_v<Allocator> is true.

19. Effects: Constructs an owned object of type U with the arguments ilist, std::forward<Us>(us)... using
the allocator alloc.

template <class U, class I, class... Us>
explicit constexpr polymorphic(allocator_arg_t, const Allocator& a,

in_place_type_t<U>,
initializer_list<I> ilist, Us&&... us);

20. Constraints:
• is_same_v<remove_cvref_t<U>, U> is true,
• is_same_v<U, polymorphic> is false,
• derived_from<U, T> is true,
• is_copy_constructible_v<U> is true, and
• is_constructible_v<U, initializer_list<I>&, Us...> is true.

21. Effects: alloc is direct-non-list-initialized with a. Constructs an owned object of type U with the arguments
ilist, std::forward<Us>(us)... using the allocator alloc.

X.Z.4 Destructor [polymorphic.dtor]

constexpr ~polymorphic();

1. Mandates: T is a complete type.

2. Effects: If *this is not valueless, destroys the owned object using allocator_traits<Allocator>::destroy
and then the storage is deallocated.

21

X.Z.5 Assignment [polymorphic.assign]

constexpr polymorphic& operator=(const polymorphic& other);

1. Mandates: T is a complete type.

2. Effects: If addressof(other) == this is true, there are no effects. Otherwise:

2.1. The allocator needs updating if
allocator_traits<Allocator>::propagate_on_container_copy_assignment::value
is true.

2.2. If other is not valueless, a new owned object is constructed in *this using
allocator_traits<Allocator>::construct with the owned object from other as the argument, using either
the allocator in *this or the allocator in other if the allocator needs updating.

2.3 The previously owned object in *this, if any, is destroyed using allocator_traits<Allocator>::destroy
and then the storage is deallocated.

2.4 If the allocator needs updating, the allocator in *this is replaced with a copy of the allocator in other.

3. Returns: A reference to *this.

4. Remarks: If any exception is thrown, there are no effects on *this.

constexpr polymorphic& operator=(polymorphic&& other) noexcept(
allocator_traits<Allocator>::propagate_on_container_move_assignment::value ||
allocator_traits<Allocator>::is_always_equal::value);

5. Mandates: If allocator_traits<Allocator>::is_always_equal::value is false, T is a complete type.

6. Effects: If addressof(other) == this is true, there are no effects. Otherwise:

6.1. The allocator needs updating if
allocator_traits<Allocator>::propagate_on_container_move_assignment::value
is true.

6.2. If alloc == other.alloc is true, swaps the owned objects in *this and other; the owned object in other,
if any, is then destroyed using allocator_traits<Allocator>::destroy and then the storage is deallocated.

6.3. Otherwise, if alloc != other.alloc is true; if other is not valueless, a new owned object is constructed in
*this using allocator_traits<Allocator>::construct with the owned object from other as the argument
as an rvalue, using either the allocator in *this or the allocator in other if the allocator needs updating.

6.4. The previously owned object in *this, if any, is destroyed using allocator_traits<Allocator>::destroy
and then the storage is deallocated.

6.5. If the allocator needs updating, the allocator in *this is replaced with a copy of the allocator in other.

7. Returns: A reference to *this.

8. Remarks: If any exception is thrown, there are no effects on *this or other.

X.Z.6 Observers [polymorphic.observers]

constexpr const T& operator*() const noexcept;
constexpr T& operator*() noexcept;

1. Preconditions: *this is not valueless.

2. Returns: A reference to the owned object.

constexpr const_pointer operator->() const noexcept;
constexpr pointer operator->() noexcept;

3. Preconditions: *this is not valueless.

4. Returns: A pointer to the owned object.

constexpr bool valueless_after_move() const noexcept;

22

5. Returns: true if *this is valueless, otherwise false.

constexpr allocator_type get_allocator() const noexcept;

6. Returns: alloc.

X.Z.7 Swap [polymorphic.swap]

constexpr void swap(polymorphic& other) noexcept(
allocator_traits<Allocator>::propagate_on_container_swap::value
|| allocator_traits<Allocator>::is_always_equal::value);

1. Preconditions: If
allocator_traits<Allocator>::propagate_on_container_swap::value
is true, then Allocator meets the Cpp17Swappable requirements. Otherwise get_allocator() ==
other.get_allocator() is true.

2. Effects: Swaps the states of *this and other, exchanging owned objects or valueless states. If
allocator_traits<Allocator>::propagate_on_container_swap::value
is true, then the allocators of *this and other are exchanged by calling swap as described in [swap-
pable.requirements]. Otherwise, the allocators are not swapped. [Note: Does not call swap on the owned objects
directly. –end note]

constexpr void swap(polymorphic& lhs, polymorphic& rhs) noexcept(
noexcept(lhs.swap(rhs)));

3. Effects: Equivalent to lhs.swap(rhs).

Reference implementation
A C++20 reference implementation of this proposal is available on GitHub at https://www.github.com/jbcoe/value
_types.

Acknowledgements
The authors would like to thank Andrew Bennieston, Bengt Gustafsson, Casey Carter, Daniel Krugler, David
Krauss, David Stone, Ed Catmur, Geoff Romer, German Diago, Jan Moeller, Jonathan Wakely, Josh Berne, Kilian
Henneberger, LanguageLawyer, Lewis Baker, Louis Dionne, Maciej Bogus, Malcolm Parsons, Matthew Calabrese,
Nathan Myers, Neelofer Banglawala, Nevin Liber, Nina Ranns, Patrice Roy, Roger Orr, Rostislav Khlebnikov, Stephan
T. Lavavej, Stephen Kelly, Thomas Koeppe, Thomas Russell, Tom Hudson, Tomasz Kaminski, Tony van Eerd and
Ville Voutilainen for suggestions and useful discussion.

References
A Preliminary Proposal for a Deep-Copying Smart Pointer
W. E. Brown, 2012
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf

A polymorphic value-type for C++
J. B. Coe, S. Parent 2019
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0201r6.html

A Free-Store-Allocated Value Type for C++
J. B. Coe, A. Peacock 2022
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1950r2.html

An allocator-aware optional type
P. Halpern, N. D. Ranns, V. Voutilainen, 2024
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2047r7.html

23

https://www.github.com/jbcoe/value_types
https://www.github.com/jbcoe/value_types
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3339.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0201r6.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p1950r2.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2047r7.html

MISRA Language Guidelines
https://ldra.com/misra/

High Integrity C++
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard

Appendix A: Detailed design decisions
We discuss some of the decisions that were made in the design of indirect and polymorphic. Where there are
multiple options, we discuss the advantages and disadvantages of each.

Two class templates, not one
It is conceivable that a single class template could be used as a vocabulary type for an indirect value type supporting
polymorphism. However, implementing this would impose efficiency costs on the copy constructor when the owned
object is the same type as the template type. When the owned object is a derived type, the copy constructor uses
type erasure to perform dynamic dispatch and call the derived type copy constructor. The overhead of indirection
and a virtual function call is not tolerable where the owned object type and template type match.

One potential solution would be to use a std::variant to store the owned type or the control block used to manage
the owned type. This would allow the copy constructor to be implemented efficiently when the owned type and
template type match. This would increase the object size beyond that of a single pointer as the discriminant must be
stored.

For the sake of minimal size and efficiency, we opted to use two class templates.

Copiers, deleters, pointer constructors, and allocator support
The older types indirect_value and polymorphic_value had constructors that take a pointer, copier, and deleter.
The copier and deleter could be used to specify how the object should be copied and deleted. The existence of a
pointer constructor introduces undesirable properties into the design of polymorphic_value, such as allowing the
possibility of object slicing on copy when the dynamic and static types of a derived-type pointer do not match.

We decided to remove the copier, delete, and pointer constructor in favour of adding allocator support. A pointer
constructor and support for custom copiers and deleters are not core to the design of either class template; both
could be added in a later revision of the standard if required.

We have been advised that allocator support must be a part of the initial implementation and cannot be added
retrospectively. As indirect and polymorphic are intended to be used alongside other C++ standard library types,
such as std::map and std::vector, it is important that they have allocator support in contexts where allocators are
used.

Pointer-like helper functions
Earlier revisions of polymorphic_value had helper functions to get access to the underlying pointer. These were
removed under the advice of the Library Evolution Working Group as they were not core to the design of the class
template, nor were they consistent with value-type semantics.

Pointer-like accessors like dynamic_pointer_cast and static_pointer_cast, which are provided for
std::shared_ptr, could be added in a later revision of the standard if required.

Constraints and incomplete type support
Using either SFINAE or requires clauses (from C++20 onwards), member functions can be constrained so that they
are available only when certain conditions are met.

For instance:

template <typename T>
class wrapper {

T t;

24

https://ldra.com/misra/
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard

public:
wrapper()
requires std::is_default_constructible_v<T>;

wrapper(const wrapper& other)
requires std::is_copy_constructible_v<T>;

};

The wrapper type is default constructible only if the wrapped type T is default constructible and copy constructible
only if the wrapped type T is copy constructible.

Imposing constraints like this requires that the type T is complete at the time the class template is instantiated.
Both polymorphic and indirect are designed to work with incomplete types so constraining member functions with
requires clauses (or SFINAE), as shown above, is not an option.

In revision 4 of this proposal, the authors were invited to use a deferred deduced type to allow constraints to be
applied to member functions. This would allow the class to be instantiated with T as an incomplete type, as member
function constraints would be checked at only member function instantiation time.

For instance:

template <typename T>
class constrained_wrapper {

T* t; // Use a pointer for incomplete type support.

public:
template <typename TT=T>
constrained_wrapper()
requires std::is_default_constructible_v<TT>;

// Constraining the copy constructor is more involved
// but possible and omitted for brevity.

};

By making the default constructor into a function template, and placing the constraint on the inferred template type
TT, evaluation of the constraint is deferred to function instantiation time, at which point the type TT will be deduced
to be T and will need to be complete for the constraint to be evaluated.

Support for indirect with constraints on a deferred deduced type differs across toolchains and inhibits usability. When
indirect’s member functions are constrained with a deferred deduced type, MSVC requires member functions to
be explicitly declared so that they can later be defaulted when the type is complete. Such behaviour makes using
a constrained indirect hard to teach and inconsistent with the design of current components (like vector) in the
standard library.

struct Number {}; // Complete type.

struct BinOp; // Incomplete type.

struct Expression {
std::variant<Number, constrained_indirect<BinOp>> info;

Expression();
Expression(const Expression&);
Expression(Expression&&);
Expression& operator=(const Expression&);
Expression& operator=(Expression&&);

};

Clang and GCC permit the far more succinct code below.

25

struct Number {}; // Complete type.

struct BinOp; // Incomplete type.

struct Expression {
std::variant<Number, constrained_indirect<BinOp>> info;

};

As proposed, indirect and polymorphic follow the design of vector and will sometimes falsely advertise copyability
or default constructibility. If correct type-traits should be imposed upon standard library types that support incomplete
types, this should be done consistently across types in a future revision of the standard.

struct Copyable {
Copyable() = default;
Copyable(const Copyable&) = delete;

};

struct NonCopyable {
NonCopyable() = default;
NonCopyable(const NonCopyable&) = delete;

};

struct Incomplete;

static_assert(std::is_copy_constructible_v<std::vector<Copyable>>); // Passes.
static_assert(std::is_copy_constructible_v<std::vector<NonCopyable>>); // Passes.
static_assert(std::is_copy_constructible_v<std::vector<Incomplete>>); // Passes.

static_assert(std::is_copy_constructible_v<indirect<Copyable>>); // Passes.
static_assert(std::is_copy_constructible_v<indirect<NonCopyable>>); // Passes.
static_assert(std::is_copy_constructible_v<indirect<Incomplete>>); // Passes.

static_assert(std::is_copy_constructible_v<polymorphic<Copyable>>); // Passes.
static_assert(std::is_copy_constructible_v<polymorphic<NonCopyable>>); // Passes.
static_assert(std::is_copy_constructible_v<polymorphic<Incomplete>>); // Passes.

indirect and polymorphic use static assertions (mandates clauses) which are evaluated at function instantiation
time to provide better compiler errors.

For example, the code sample below:

indirect<NonCopyable> copy(const indirect<NonCopyable>& i) {
return i;

}

gives the following errors:

indirect.h:LINE:COLUMN: error: static assertion failed
LINE | static_assert(std::copy_constructible<T>);

note: in instantiation of member function 'indirect<NonCopyable>::indirect' requested here
LINE | return i;

Arthur O’Dwyer has written a blog post on the topic of constraints and incomplete types https://quuxplusone.github
.io/blog/2020/02/05/vector-is-copyable-except-when-its-not.

Implicit conversions
We decided that there should be no implicit conversion of a value T to an indirect<T> or polymorphic<T>. An
implicit conversion would require using a memory resource and memory allocation, which is best made explicit by the
user.

26

https://quuxplusone.github.io/blog/2020/02/05/vector-is-copyable-except-when-its-not
https://quuxplusone.github.io/blog/2020/02/05/vector-is-copyable-except-when-its-not

Rectangle r(w, h);
polymorphic<Shape> s = r; // error

To transform a value into indirect or polymorphic, the user must use the appropriate constructor.

Rectangle r(w, h);
polymorphic<Shape> s(std::in_place_type<Rectangle>, r);
assert(dynamic_cast<Rectangle*>(&*s) != nullptr);

Explicit conversions
The older class template polymorphic_value had explicit conversions, allowing construction of a polymorphic_value<T>
from a polymorphic_value<U>, where T was a base class of U.

polymorphic_value<Quadrilateral> q(std::in_place_type<Rectangle>, w, h);
polymorphic_value<Shape> s = q;
assert(dynamic_cast<Rectangle*>(&*s) != nullptr);

Similar code cannot be written with polymorphic as it does not allow conversions between derived types:

polymorphic<Quadrilateral> q(std::in_place_type<Rectangle>, w, h);
polymorphic<Shape> s = q; // error

This is a deliberate design decision. polymorphic is intended to be used for ownership of member data in composite
classes where compiler-generated special member functions will be used.

There is no motivating use case for explicit conversion between derived types outside of tests.

A converting constructor could be added in a future version of the C++ standard.

Comparisons for indirect

We implement comparisons for indirect in terms of operator== and operator<=> returning bool and auto
respectively.

The alternative would be to implement the full suite of comparison operators, forwarding them to the underlying type
and allowing non-boolean return types. Support for non-boolean return types would support unusual (non-regular)
user-defined comparison operators which could be helpful when the underlying type is part of a domain-specific-
language (DSL) that uses comparison operators for a different purpose. However, this would be inconsistent with
other standard library types like optional, variant and reference_wrapper. Moreover, we’d likely give only partial
support for a theoretical DSL which may well make use of other operators like operator+ and operator- which are
not supported for indirect.

Supporting operator() operator[]

There is no need for indirect or polymorphic to provide a function call or an indexing operator. Users who wish to
do that can simply access the value and call its operator. Furthermore, unlike comparisons, function calls or indexing
operators do not compose further; for example, a composite would not be able to automatically generate a composited
operator() or an operator[].

Supporting arithmetic operators
While we could provide support for arithmetic operators, +, - ,*, /, to indirect in the same way that we support
comparisons, we have chosen not to do so. The arithmetic operators would need to support a valueless state for which
there is no precedent in the standard library.

Support for arithmetic operators could be added in a future version of the C++ standard. If support for arithmetic
operators for valueless or empty objects is later added to the standard library in a coherent way, it could be added for
indirect at that time.

27

Member function emplace

Neither indirect nor polymorphic support emplace as a member function. The member function emplace could be
added as :

template <typename ...Ts>
indirect::emplace(Ts&& ...ts);

template <typename U, typename ...Ts>
polymorphic::emplace(in_place_type<U>, Ts&& ...ts);

This would be API noise. It offers no efficiency improvement over:

some_indirect = indirect(/* arguments */);

some_polymorphic = polymorphic(in_place_type<U>, /* arguments */);

Support for an emplace member function could be added in a future version of the C++ standard.

Small Buffer Optimisation
It is possible to implement polymorphic with a small buffer optimisation, similar to that used in std::function.
This would allow polymorphic to store small objects without allocating memory. Like std::function, the size of
the small buffer is left to be specified by the implementation.

The authors are sceptical of the value of a small buffer optimisation for objects from a type hierarchy. If the buffer is
too small, all instances of polymorphic will be larger than needed. This is because they will allocate memory in
addition to having the memory from the (empty) buffer as part of the object size. If the buffer is too big, polymorphic
objects will be larger than necessary, potentially introducing the need for indirect<polymorphic<T>>.

We could add a non-type template argument to polymorphic to specify the size of the small buffer:

template <typename T, typename Alloc, size_t BufferSize>
class polymorphic;

However, we opt not to do this to maintain consistency with other standard library types. Both std::function and
std::string leave the buffer size as an implementation detail. Including an additional template argument in a later
revision of the standard would be a breaking change. With usage experience, implementers will be able to determine
if a small buffer optimisation is worthwhile, and what the optimal buffer size might be.

A small buffer optimisation makes little sense for indirect as the sensible size of the buffer would be dictated by
the size of the stored object. This removes support for incomplete types and locates storage for the object locally,
defeating the purpose of indirect.

Appendix B: Before and after examples
We include some minimal, illustrative examples of how indirect and polymorphic can be used to simplify composite
class design.

Using indirect for binary compatibility using the PIMPL idiom
Without indirect, we use std::unique_ptr to manage the lifetime of the implementation object. All const-qualified
methods of the composite will need to be manually checked to ensure that they are not calling non-const qualified
methods of component objects.

Before, without using indirect

// Class.h

class Class {
class Impl;
std::unique_ptr<Impl> impl_;

public:

28

Class();
~Class();
Class(const Class&);
Class& operator=(const Class&);
Class(Class&&) noexcept;
Class& operator=(Class&&) noexcept;

void do_something();
};

// Class.cpp

class Impl {
public:
void do_something();

};

Class::Class() : impl_(std::make_unique<Impl>()) {}

Class::~Class() = default;

Class::Class(const Class& other) : impl_(std::make_unique<Impl>(*other.impl_)) {}

Class& Class::operator=(const Class& other) {
if (this != &other) {

Class tmp(other);
using std::swap;
swap(*this, tmp);

}
return *this;

}

Class(Class&&) noexcept = default;
Class& operator=(Class&&) noexcept = default;

void Class::do_something() {
impl_->do_something();

}

After, using indirect

// Class.h

class Class {
indirect<class Impl> impl_;

public:
Class();
~Class();
Class(const Class&);
Class& operator=(const Class&);
Class(Class&&) noexcept;
Class& operator=(Class&&) noexcept;

void do_something();
};

// Class.cpp

29

class Impl {
public:
void do_something();

};

Class::Class() : impl_(indirect<Impl>()) {}
Class::~Class() = default;
Class::Class(const Class&) = default;
Class& Class::operator=(const Class&) = default;
Class(Class&&) noexcept = default;
Class& operator=(Class&&) noexcept = default;

void Class::do_something() {
impl_->do_something();

}

Using polymorphic for a composite class
Without polymorphic, we use std::unique_ptr to manage the lifetime of component objects. All const-qualified
methods of the composite will need to be manually checked to ensure that they are not calling non-const qualified
methods of component objects.

Before, without using polymorphic

class Canvas;

class Shape {
public:
virtual ~Shape() = default;
virtual std::unique_ptr<Shape> clone() = 0;
virtual void draw(Canvas&) const = 0;

};

class Picture {
std::vector<std::unique_ptr<Shape>> shapes_;

public:
Picture(const std::vector<std::unique_ptr<Shape>>& shapes) {

shapes_.reserve(shapes.size());
for (auto& shape : shapes) {

shapes_.push_back(shape->clone());
}

}

Picture(const Picture& other) {
shapes_.reserve(other.shapes_.size());
for (auto& shape : other.shapes_) {

shapes_.push_back(shape->clone());
}

}

Picture& operator=(const Picture& other) {
if (this != &other) {

Picture tmp(other);
using std::swap;
swap(*this, tmp);

}

30

return *this;
}

void draw(Canvas& canvas) const;
};

After, using polymorphic

class Canvas;

class Shape {
protected:
~Shape() = default;

public:
virtual void draw(Canvas&) const = 0;

};

class Picture {
std::vector<polymorphic<Shape>> shapes_;

public:
Picture(const std::vector<polymorphic<Shape>>& shapes)

: shapes_(shapes) {}

// Picture(const Picture& other) = default;

// Picture& operator=(const Picture& other) = default;

void draw(Canvas& canvas) const;
};

Appendix C: Design choices, alternatives and breaking changes
The table below shows the main design components considered, the key design decisions made, and the cost and impact
of alternative design choices. As presented in this paper, the design of class templates indirect and polymorphic
has been approved by the LEWG. The authors have until C++26 is standardized to consider making any breaking
changes; after C++26, whilst breaking changes will still be possible, the impact of these changes on users could be
potentially significant and unwelcome.

Component Decision Alternative Change impact Breaking change?
Member emplace No member

emplace
Add member
emplace

Pure addition No

operator bool No operator
bool

Add operator
bool

Changes
semantics

No

indirect
comparsion
preconditions

Allow comparison
of valueless
objects

indirect must
not be valueless

Previously valid
code would
invoke undefined
behaviour

Yes

indirect hash
preconditions

Allow hash of
valueless objects

indirect must
not be valueless

Previously valid
code would
invoke undefined
behaviour

Yes

31

Component Decision Alternative Change impact Breaking change?
Copy and copy
assign
preconditions

Object can be
valueless

Forbids copying
of valueless
objects

Previously valid
code would
invoke undefined
behaviour

Yes

Move and move
assign
preconditions

Object can be
valueless

Forbids moving
of valueless
objects

Previously valid
code would
invoke undefined
behaviour

Yes

Requirements on
T in
polymorphic<T>

No requirement
that T has virtual
functions

Add Mandates to
require T to have
virtual functions

Code becomes
ill-formed

Yes

State of default-
constructed
object

Default-
constructed
object (where
valid) has a value

Make default-
constructed
object valueless

Changes
semantics;
necessitates
adding operator
bool and
allowing move,
copy and
compare of
valueless (empty)
objects

Yes

Small buffer
optimisation for
polymorphic

SBO is not
required, settings
are hidden

Add buffer size
and alignment as
template
parameters

Breaks ABI;
forces
implementers to
use SBO

Yes

noexcept for
accessors

Accessors are
noexcept like
unique_ptr and
optional

Remove
noexcept from
accessors

User functions
marked
noexcept could
be broken

Yes

Specialization of
optional

No specialization
of optional

Specialize
optional to use
valueless state

Breaks ABI;
engaged but
valueless optional
would become
indistinguishable
from a
disengaged
optional

Yes

Permit user
specialization

No user
specialization is
permitted

Permit
specialization for
user-defined
types

Previously
ill-formed code
would become
well-formed

No

Explicit
constructors

Constructors are
marked
explicit

Non-explicit
constructors

Conversion for
single arguments
or braced
initializers
becomes valid

No

Support
comparisons for
indirect

Comparisons are
supported when
the owned type
supports them

No support for
comparisons

Previously valid
code would
become ill-formed

Yes

Support
arithmetic
operations for
indirect

No support for
arithmetic
operations

Forward
arithemtic
operations to the
owned type when
it supports them

Previously
ill-formed code
would become
well-formed

No

32

Component Decision Alternative Change impact Breaking change?
Support
operator () for
indirect

No support for
operator ()

Forward
operator() to
the owned type
when it is
supported

Previously
ill-formed code
would become
well-formed

No

Support
operator [] for
indirect

No support for
operator []

Forward
operator[] to
the owned type
when it is
supported

Previously
ill-formed code
would become
well-formed

No

33

	indirect and polymorphic: Vocabulary Types for Composite Class Design
	Abstract
	History
	Changes in R12
	Changes in R11
	Changes in R10
	Changes in R9
	Changes in R8
	Changes in R7
	Changes in R6
	Changes in R5
	Changes in R4
	Changes in R3
	Changes in R2
	Changes in R1

	Motivation
	Design requirements
	Special member functions
	Deep copies
	const propagation
	Value semantics
	The valueless state and interaction with std::optional
	Allocator support
	Modelled types
	Modelled types for indirect
	Modelled types for polymorphic
	Similarities and differences with variant

	noexcept and narrow contracts
	Tagged constructors
	Single-argument constructors
	Initializer-list constructors
	Explicit constructors
	Perfect-forwarded assignment
	Perfect-forwarded assignment for indirect
	Perfect-forwarded assignment for polymorphic

	The valueless_after_move member function
	Design for polymorphic types

	Prior work
	Impact on the standard
	Technical specifications
	Header <version> synopsis [version.syn]
	Header <memory> synopsis [memory]
	X.Y Class template indirect [indirect]
	X.Y.1 Class template indirect general [indirect.general]
	X.Y.2 Class template indirect synopsis [indirect.syn]
	X.Y.3 Constructors [indirect.ctor]
	X.Y.4 Destructor [indirect.dtor]
	X.Y.5 Assignment [indirect.assign]
	X.Y.6 Observers [indirect.observers]
	X.Y.7 Swap [indirect.swap]
	X.Y.8 Relational operators [indirect.relops]
	X.Y.9 Comparison with T [indirect.comp.with.t]
	X.Y.10 Hash support [indirect.hash]

	X.Z Class template polymorphic [polymorphic]
	X.Z.1 Class template polymorphic general [polymorphic.general]
	X.Z.2 Class template polymorphic synopsis [polymorphic.syn]
	X.Z.3 Constructors [polymorphic.ctor]
	X.Z.4 Destructor [polymorphic.dtor]
	X.Z.5 Assignment [polymorphic.assign]
	X.Z.6 Observers [polymorphic.observers]
	X.Z.7 Swap [polymorphic.swap]

	Reference implementation
	Acknowledgements
	References
	Appendix A: Detailed design decisions
	Two class templates, not one
	Copiers, deleters, pointer constructors, and allocator support
	Pointer-like helper functions
	Constraints and incomplete type support
	Implicit conversions
	Explicit conversions
	Comparisons for indirect
	Supporting operator() operator[]
	Supporting arithmetic operators
	Member function emplace
	Small Buffer Optimisation

	Appendix B: Before and after examples
	Using indirect for binary compatibility using the PIMPL idiom
	Before, without using indirect
	After, using indirect

	Using polymorphic for a composite class
	Before, without using polymorphic
	After, using polymorphic

	Appendix C: Design choices, alternatives and breaking changes

