
Implication for C++

Document #: WG21 P2971R3
Date: 2025–01–13
Audience: EWG ⇒ LEWG ⇒ CWG ⇒ LWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 What Is Implication? 1
2 What Isn’t Implication? 2
3 Implication Intuition 3
4 Implication Properties 4
5 Is Implication Useful? 5
6 Why a Core Language Feature? . 6
7 Design Decisions 8

8 Standard Library Impact 9
9 Implementation Experience . . . 10
10 Proposed Core Wording 11
11 Proposed Library Wording 14
12 Acknowledgments 14
13 Bibliography 15
14 Document Chronology 15

Abstract

This paper proposes to introduce operator=>, the implication operator, into the C++ core lan-
guage. Both formal and informal (intuitive) specifications of this operator are provided, as is
rationale and implementation experience toward its adoption. Core language wording is pro-
posed along with a small amount of library wording to take account of this new operator.

1 What Is Implication?

A semantic definition of a particular set of command types, then, is a
rule for constructing . . . a verification condition on the antecedents and
consequents.

— ROBERT W. FLOYD

There are 24 = 16 possible binary operators taking truth values as operands. Of these, C++
supports in its core language only two such binary logical operators, namely && and ||.1 These
two operators’ semantics, very well-known to C++ programmers, are often taught or specified via
a truth table such as the following:

Table 1: Customary definitions2 of operators && and ||

p q p&&q p||q

true true true true
true false false true
false true false true
false false false false

Copyright © 2023–2025 by Walter E. Brown. All rights reserved.
1These operators are also identified via the C++ alternative tokens and and or, respectively. See [lex.digraph], espe-

cially [tab:lex.digraph] therein.
2Some disciplines prefer to use digits (typically 0 and 1) or other symbols to denote truth values. In this paper, we

will consistently use C++’s keyword notation for code.

1

mailto:webrown.cpp@gmail.com

2 P2971R3: Implication for C++

Implication is the name given to another of the 16 possible binary logical operators. In the
parlance of (discrete) mathematics and/or logic, it is frequently denoted via a right-arrow symbol
such as =⇒ .3 Implication’s left and right operands are commonly termed the antecedent and
the consequent, respectively, of the operator.4 An implication expression of the form p =⇒ q

(p=>q in code font5) is read as “p implies q.”

With antecedent p and consequent q, implication’s semantics are specified thusly:

Table 2: Definition of implication operator

p q p=>q

true true true
true false false
false true true
false false true

While perhaps not obvious from a casual inspection, the semantics of our proposed operator=>
are identical to those of a corresponding predicate of the form (!p)||q.6 However, such equiva-
lence is easily demonstrated via a truth table:

Table 3: Two ways of writing an implication

p q !p||q p=>q

true true true true
true false false false
false true true true
false false true true

Finally, we note that it is a common practice, in written mathematics and logic as well as
(especially) in everyday usage, to express an implication in prose. Such prose expression typi-
cally takes the form “If antecedent, then consequent.” The equivalent prose forms “antecedent
only if consequent” and “consequent if antecedent” (note the order of the latter’s operands) are
encountered somewhat less frequently, but are certainly not unusual.7

2 What Isn’t Implication?

While attempting to discuss implication with numerous students and colleagues over the
course of many years, we have frequently encountered considerable confusion. Such confusion
has most often arisen because the commonplace use of “if” to introduce a prose implication
is at first erroneously perceived to overlap (or sometimes even to conflict) with the customary
programming language use of the keyword if to introduce a conditional flow of control.8

3Other symbols in relatively common use for implication include the glyphs ⊢ (spoken as turnstile or nail) and ∴
(therefore).

4In some contexts, the antecedent is instead known as the premise or hypothesis, while the consequent is instead
labelled the conclusion or consequence.

5Note that we have opted to use => as our token to denote implication. We make this choice based on its self-evident
similarity in appearance to the traditional (Bourbaki, 1954) =⇒ operator.

6We recognize that the parentheses in the expression (!p)||q are redundant. However, it has been our experience
that many (especially less experienced) C++ programmers are uncertain of the relative precedence of the not and or
operators. Having clarified the intent, we will mostly eschew such redundancy in the remainder of this paper.

7There are also other, less obvious, prose forms, such as “All antecedents are consequents.” Even more convoluted
forms are possible, often involving negation of one or both operands. For example, it can be useful to recognize the
equivalence of the “if p then q” form, known as the positive, with the contrapositive form “if not q then not p.” Moreover,
plain English words such as “when,” “unless,” “necessary,” and “sufficient” can conceal and yet induce an implication:
“p is sufficient for q” means p implies q, whereas “p is necessary for q” means q implies p.

8More advanced students have dragged even the ternary conditional operator (··· ? ··· : ···) into the conversation!

P2971R3: Implication for C++ 3

Because these overlapping uses are entirely unrelated, let’s untangle any possible confusion
caused by recycling “if” for multiple programming purposes:

• When used to affect inter-statement control flow, programming languages typically use the
keyword if in the English sense of “when” or “in the event that”: “When the following
predicate is true, then execute the subsequent statement block; when the predicate is
instead false, then execute the alternative statement block (if any).” No implication is
involved here, just a commonplace conditional flow of control.

• In contrast, an implication is a bool-producing binary operator (operator=> in our nomen-
clature) that arises strictly in the context of an expression. By itself, it has no effect on any
flow of control, except that it may short-circuit (avoid) evaluating its right operand in the
same manner as do the && and || operators.

In brief, the notion of implication is unrelated to that of conditional flow of control. Their only
interaction may occur when an implication comprises all or part of an if statement’s predicate,
as in a statement that begins if(p=>q)···.

3 Implication Intuition

It is not only the violin that shapes the violinist, we are all shaped by the
tools we train ourselves to use....

— EDSGER W. DIJKSTRA

Most programmers seem to have no trouble comprehending implication’s semantics when
an antecedent’s value is true; it generally seems clear to them that the outcome in that case
depends entirely on the truth value of the consequent. However, more than a few seem to find it
unintuitive that the operator’s result is uniformly true whenever an antecedent’s value is false,
regardless of the consequent’s truth value.

One way of understanding implication is as a promise. Let us consider the following example:
“If it is raining, then I will carry an umbrella.”

Under what circumstances will have I failed to keep my promise? Clearly I’ve broken my
promise when both (a) it is raining and (b) I don’t carry an umbrella. In other words, I’ve lied
when the implication’s antecedent (“it’s raining”) is true yet its consequent (“I’m carrying an
umbrella”) is false; there is no other state of affairs in which I can legitimately be accused of
deceit or dishonesty.

Therefore, if you’re going to accuse me of lying, you must have evidence of my perfidy; this in-
sight is captured in the second row (highlighted below) of an implication’s truth table. Otherwise,
as shown in the remaining three rows of implication’s truth table, you can’t prove that I’ve failed
to keep my word and so must conclude that I’ve been faithful to my promise.9 In particular, if
it’s not raining (captured in the last two rows of the table), it just doesn’t matter whether I’m
carrying an umbrella and so my promise is intact in even those cases.

Accordingly, if we summarize this state of affairs in tabular form (see below), we discover that
such a table is isomorphic to the truth table for implication. To see the correspondence, first let
p denote “raining?” and q denote “umbrella?”, after which the implication p=>q (equivalently,
!p||q) will denote “faithful?”:

9Otherwise, you risk slandering me (!) by making a false accusation.

4 P2971R3: Implication for C++

Table 4: Truth table for the example promise

raining? umbrella? faithful?

yes yes yes
yes no no (!)
no yes yes
no no yes

Let’s consider one last example, this time from the domain of computer programming. Assume
we wish to invoke a niladic function f; programming languages such as C++ require10 that f be
defined before calling it. We can state this requirement as an implication “if I call f, then f will
have been defined.” This corresponds to the following truth table:

Table 5: Truth table for successful function call

call f? f defined? successful?

yes yes yes
yes no no (error!)
no yes yes
no no yes

A quick inspection shows that this is once again the truth table defining an implication operator.
As before, if we do call f, it must be defined (row 1), else we have an error (row 2, highlighted);
the bottom two rows of the table show that if we’re not going to call f, we don’t care whether f’s
been defined.

4 Implication Properties

A good tool improves the way you work. A great tool improves the way
you think.

— JEFF DUNTEMANN

Like any other operator, implication has a number of axioms and identities that are potentially
exploitable in code. The following table summarizes those properties that we have from time to
time found to be of use in coding (or in reasoning about) implication expressions.

Table 6: Some potentially useful properties of implication

Original code Equivalent code Remarks

true=>q q definition rows 1,2
false=>q true definition rows 3,4

p=>true true definition rows 1,3
p=>false not p definition rows 2,4

p=>(q && r) (p=>q) && (p=>r) distributivity of => over &&
p=>(q || r) (p=>q) || (p=>r) distributivity of => over ||

p=>q !q=>!p contrapositive

p=>q=>r p=>(q=>r) right-associativity (see below)

p=>q=>···=>z !p || !q || ··· || z (assumes right-associativity)

10For purposes of illustration, we have selected only one of the requirements for a successful call operation. We have
observed that many requirements (such as constraints and preconditions) seem to lend themselves well to formulation
as implications. See §5 for some of the examples that contributed to this observation.

P2971R3: Implication for C++ 5

Treating unparenthesized implication as a C++ right-associative operator11 is somewhat un-
usual, as all other C++ binary operators are today left-associative. Nonetheless, since (a) an
implication p=>q can be equivalently reformulated as a conditional expression p ? q : true,
and (b) such ternary operators are right-associative by definition,12 we have opted to treat them
identically in this regard.

5 Is Implication Useful?

Maybe if implication is added, it’ll turn out to be one of those things I never
thought I was missing until it was there, and then I could never imagine
life without it. Sort of like my wife.

— ALEX C. WAGNER

Implication is undeniably useful, as it is heavily employed by C++’s own specification! Here are
several examples, mostly from Working Draft [N4958], each first citing the textual specification
and then illustrating the corresponding desired code13 using an implication expression.

• From [unique.ptr.single.general]/2:
“If the deleter’s type D is not a reference type, D shall meet the Cpp17Destructible require-
ments.”
In code: static_assert(nonreference_type<D> => destructible_type<D>);

• From [optional.relops]/2:
“Returns: If x.has_value() != y.has_value(), false; otherwise if x.has_value() ==
false, true; otherwise *x == *y.”
In code: return (x.has_value() == y.has_value()) and (x.has_value()=>*x == *y);

• From [out.ptr.t]/3:
“If Smart is a specialization of shared_ptr and sizeof...(Args) == 0, the program is
ill-formed.”
In code: static_assert(shared_ptr_type<Smart> => sizeof...(Args) > 0uz));

• From Table 47 [tab:meta.unary.prop]:
Preconditions for type trait is_final: “If T is a class type, T shall be a complete type.”
In code: requires(class_like_type<T> => complete_obj_type<T>)

• From Table 47 [tab:meta.unary.prop]:
Preconditions for type traits is_empty, has_virtual_destructor, etc.: “If T is a non-
union class type, T shall be a complete type.”
In code: requires(class_type<T> => complete_obj_type<T>)

• From [N4908]’s [propagate_const.requirements]/1:
“T shall be an object pointer type or a class type for which decltype(*declval<T&>())
is an lvalue reference; otherwise the program is ill-formed.”
In code: static_assert((obj_ptr_type<T> or class_like_type<T>) and
(class_like_type<T> => requires(T & t) requires lref_type<decltype(*t)>;));

11While it seems the dominant practice to treat implication as right-associative, there is some precedent for alter-
nate associations. See the discussions at https://math.stackexchange.com/questions/12223/associativity-of-logical-
connectives, which nonetheless includes the observations (a) “This is the commonly accepted syntactic associativity rule:
implication, like the function space constructor, associates to the right” and (b) “The most common convention I have
seen is that p->q->r means p->(q->r). . . . This convention is very common in type theory, because it works well with
the Curry-Howard isomorphism.”

12[expr.cond]/1: “Conditional expressions group right-to-left.”
13The code is taken from the author’s private implementation of the standard library. In this implementation, the

author has freely experimented with several adaptations that match the spirit, but not always the letter, of the library as
specified by any C++ Working Draft. For example, bool-valued type traits have been (a) largely reformulated as concepts
and (b) consistently renamed with a suffix _type.

https://math.stackexchange.com/questions/12223/associativity-of-logical-connectives
https://math.stackexchange.com/questions/12223/associativity-of-logical-connectives

6 P2971R3: Implication for C++

6 Why a Core Language Feature?

The tools are half of the trade.

— IRISH PROVERB

In brief, implication must be a core language feature because users can’t write a function
that accomplishes the equivalent. Just as users can’t write functions that provide the exact
semantics of native operator&& and operator||, this inability is due to implication’s desired
short-circuiting behavior. As stated in [P0927R2], “they cannot be ordinary C++ functions be-
cause all function arguments are guaranteed to be evaluated before the function is entered.”

The remainder of this section presents a number of alternative approaches that were consid-
ered and rejected.

6.1 Rejected: Macro Implementations
We have seen several function macros that attempt to define implication (or implication-like)

primitives. Alas, most of these have been subtly (or not-so-subtly) wrong! Let’s consider each of
the following variations found in the wild (lightly edited for uniform naming, macro hygiene, and
ease of comparison):

1 #define IMPLIES(p,q) ((p) <= (q))
2 #define IMPLIES(p,q) (int(p) <= int(q))
3 #define IMPLIES(p,q) ((p) ? (q) : true)
4 #define IMPLIES(p,q) (!(p) or (q))

The definition in line #1 takes advantage of [conv.prom]/7 (integral promotion), while that in
line #2 appeals to [conv.integral]/2 (integral conversion) rules. We disqualify these from further
consideration because they sacrifice short-circuit evaluation: each relies on operator<=, which
requires both its operands be evaluated before checking them and producing its result.

We have another reason to disqualify lines #1 and #2, one that applies to part of line #3 as
well: Their operands are not converted to bool values before they are used.14

The importance of contextual conversion to bool, for each of implication’s arguments, seems
to be oft overlooked. Line #3 is particularly egregious in this regard, because it implicitly converts
only the p operand. Without likewise converting the q operand, when needed, implementation #3
can produce a non-bool result, i.e., one of q’s type and value! Such an outcome is clearly
unacceptable in the general case.

An explicit bool(q) cast in place of naked (q) would of course make #3 into a correct im-
plementation. However, we consider #4 to be the most faithful implementation, as it is a direct
restatement of implication’s semantics in terms of operator||.

However, any macro implementation of course brings with it all the usual well-known issues15

associated with any macro’s definition and use. In addition to potential comma-confusion in non-
trivial expressions, a macro does not easily afford operator overloading, participation in a fold
expression, etc. Perhaps most importantly, no macro solution can be completely type-safe.

In C++, we’ve been taught that “The first rule about macros is: Don’t use them unless you
have to.”16 Alas, when it comes to implication, it seems we have to, as current C++ seems to

14Implication is, after all, just as much a boolean connective as the && and || operators are.
15See, for example, Mats Petersson’s answer to “Why are preprocessor macros evil...?” at https://stackoverflow.

com/questions/14041453/why-are-preprocessor-macros-evil-and-what-are-the-alternatives and Bjarne Stroustrup’s
answer to “So, what’s wrong with using macros?” at https://www.stroustrup.com/bs_faq2.html#macro.

16Bjarne Stroustrup: The C++ Programming Language, Special Edition. Addison-Wesley, 2000. ISBN: 0201700735.

https://stackoverflow.com/questions/14041453/why-are-preprocessor-macros-evil-and-what-are-the-alternatives
https://stackoverflow.com/questions/14041453/why-are-preprocessor-macros-evil-and-what-are-the-alternatives
https://www.stroustrup.com/bs_faq2.html#macro

P2971R3: Implication for C++ 7

afford us no viable alternative. Treating implication as a first-class core language operator would
remedy all such drawbacks and lacks.

6.2 Rejected: Make Consequents Callable
Its been suggested to provide implication’s semantics via a function template along the fol-

lowing lines:

1 template< class F >
2 requires requires(F f) { {f()} -> convertible_to<bool>; }
3 constexpr bool
4 implies(bool antecedent, F consequent)
5 {
6 return not antecedent or (bool)consequent();
7 }

While such an implementation does mimic the short-circuiting we seek, it does so in a very
clumsy manner: It requires that the implication’s consequent be encoded via a bool-returning
callable rather than as a simple bool value. Although this approach theoretically allows the con-
sequent’s evaluation only when needed, we consider this an unacceptably awkward workaround
for a conceptually simple feature.

Moreover, a call to such a function template would conceivably involve, for example, a niladic
lambda with a bool-valued capture that it could return; however, such capture would itself
evaluate the very expression whose evaluation we seek to postpone until needed. Few (if any)
programmers would consider doing this to obtain a user-provided operator&& or operator||,
and we shouldn’t do so for an operator=> either.

6.3 Rejected: Solve a Broader C++ Lack
It’s also been suggested that C++’s inability to support delayed or conditional evaluation of

function arguments is the fundamental underlying issue to be addressed. Once remediated, it
would be possible to provide implication (and all other short-circuiting functions) via user code.

Dennett and Romer [P0927R2] have already explored such an approach (which they termed
lazy parameters). Among other benefits of their approach, they argue:

C++ has long allowed overloading for most operators, but guidance has been to avoid
overloading the short-circuiting operators . . . because user-defined operator overloads
obey function call semantics, which do not . . . permit control of short-circuiting or of
order of evaluation. Lazy parameters would remove this special case, making operator
overloading more regular and allowing user-defined types to behave more closely to
built-in types.

However, minutes of the paper’s discussion at WG21’s 2018 San Diego meeting show that the
paper was received with mixed interest. For example, a poll asking “Do we like the broad di-
rection of this paper?” received no consensus (SF/F/N/A/SA: 6/4/8/3/4) to pursue this lazy
parameters proposal. The paper was subsequently abandoned.

Although we are sympathetic to finding a more general solution that enables delayed eval-
uation of function arguments, we know of no such proposal that is in flight or even in sight.
Therefore, given implication’s immediate utility as demonstrated in §5 above, we recommend
that operator=> be pursued forthwith as a core language feature on a par with existing opera-
tors && and ||.

8 P2971R3: Implication for C++

7 Design Decisions

7.1 Low precedence
We propose that the implication operator have precedence just below that of operator||,

leading to the interpretations illustrated by the following table.

Table 7: Selected examples of operator=>’s proposed precedence

Unparenthesized Interpreted as

w or x => y or z (w or x)=>(y or z)
w and x => y and z (w and x)=>(y and z)

While we prefer (and recommend) that expressions involving implication along with other
boolean operators be explicitly parenthesized, it’s necessary to specify parenthesis-free behavior,
as we have been made aware of C++ style guides that forbid unnecessary parentheses.

We have learned that relatively low precedence is a common choice for implication.17 While
not a universally adopted choice, we find that giving implication a low precedence does permit
straightforward interpretation of unparenthesized expressions. This choice also provides consis-
tency with other operators, such as addition, should they occur in the context of an implication
expression.

7.2 Right-associativity
We propose that the implication operator be right-associative. For this decision’s rationale,

please see the discussion following the table in §4 above.

7.3 Short-circuit evaluation
Short-circuit evaluation18 for logical operators has considerable precedent in C++, where it

has always been the norm for operators && and ||. It is also commonly found in other pro-
gramming languages, where it is sometimes known as minimal evaluation, semistrict evaluation,
or McCarthy evaluation of conditional connectives. It’s been argued that short-circuit evalua-
tion ought be avoided because, for example, they “complicate the formal reasoning about pro-
grams”;19 however, this seems to have been (and to remain) a minority opinion.

Accordingly, we propose that the implication operator be evaluated in a short-circuit manner,
i.e., that it not evaluate its consequent (right operand) whenever its antecedent’s (left operand’s)
value suffices to determine the operator’s result, i.e., is false.

7.4 Vacuity
For fold expressions, we propose that the value of an empty/vacuous/zero-length implication

pack be false.

Why? Because (a) as shown in the table in §4, any sequence of implications can be reformu-
lated as a like-sized sequence of disjunctions, and (b) false has ab initio been the specified value
of an empty disjunction pack. Therefore a vacuous implication pack ought to share the same
value as a vacuous disjunction pack.

17For example, see the table in section “Order of Precedence” at https://en.wikipedia.org/wiki/Logical_connective,
which credits p. 120 of Discrete Mathematics Using a Computer by John O’Donnell, et al..

18That is, “evaluation stops once the result is known.” See “A comprehensive guide to Eiffel syntax” at https://eiffel-
guide.com/.

19Dijkstra, Edsger W.: “On a somewhat disappointing correspondence.” 1987-05-25. Transcribed at https://www.cs.
utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1009.html

https://en.wikipedia.org/wiki/Logical_connective
https://eiffel-guide.com/
https://eiffel-guide.com/
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1009.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1009.html

P2971R3: Implication for C++ 9

7.5 Choice of Token
As previously noted, we have opted to propose => as the token to denote the implication

operator. We made this choice due to its evident visual similarity to the double arrow notation
observed in §1.20

In making this decision, we considered prior art from several other programming languages.
The Eiffel programming language, for example, uses the infix token implies for its implication
operator, Prolog uses a right arrow ->, and VBA uses Imp for bitwise implication. Ada 2012
permits if expressions such as (if P1 > 0 then P2 > 0) which “has the same effect as an
implies operation”21 We judged that none of these notations and syntaxes seemed suitable for
our purpose in this paper, and therefore have opted for the => token.

Some of our colleagues have expressed a concern over this decision due to a perceived colli-
sion with the same token used in Michael Park’s pattern-matching papers. However, in recent
editions of his paper (e.g., [P2688R4] §5.11), Park has since written:

I don’t consider it to be a showstopper either way.
If EWG desires to adopt [the implication proposal], my proposed resolution for pattern
matching is to interpret => as a pattern matching token in pattern matching context.
This is consistent with the treatment of other rare expressions that conflict with pat-
terns in this proposal.

Further, Park goes on to discuss additional options to resolve the perceived conflict. We therefore
consider this apparent interaction of the => token to be no longer an obstacle to the present
paper’s adoption.

8 Standard Library Impact

Bound by the Oath against lying, Aes Sedai had carried ... the implication
to arts.

— ROBERT JORDAN, né JAMES O. RIGNEY, JR.

8.1 Necessary Changes
The introduction into the core language of an implication operator seems to require no manda-

tory adjustments to any specification in the C++23 standard library. On its face, then, an impli-
cation operator is a pure extension to the existing language.

8.2 Recommended Changes
The following adjustments to the standard library were discussed by LEWG during its 2023-

11 Kona review of R1 of this proposal. Each achieved consensus to proceed, so §11 provides
corresponding wording to specify the desired behavior.22

1. The exposition-only boolean-testable concept in [concept.booleantestable] (18.5.2) today
considers only the boolean && and || operators. We propose to augment the concept with
requirements for operator=>’s correct behavior as well.
While updating a standard library concept is usually considered a breaking change, this is
not the case here:

20First use of a double arrow for implication has been credited to the mathematicians who used the pseudonym Nicolas
Bourbaki.

21See John Barnes: http://www.ada-auth.org/standards/12rat/html/Rat12-3-2.html.
22It is unclear whether any of these adjustments ought also be accompanied by a corresponding Annex C entry; we

will be guided by LWG on this matter.

http://www.ada-auth.org/standards/12rat/html/Rat12-3-2.html

10 P2971R3: Implication for C++

• the boolean-testable concept appears in no user code as it is marked “exposition
only” and has an unutterable (hyphenated) name, and

• even if boolean-testable were applied in standard library code, no user code can
today overload operator=>, as it is a new operator and so no user code can fail the
proposed additional check.

Therefore, it was considered entirely safe to adopt this proposed change in the standard
library.

2. For completeness, we propose to augment <functional> with a class template logical_
implication akin in intent and design to <functional>’s existing logical_and [logi-
cal.operations.and] and logical_or [logical.operations.or] templates. Such addition will
put the new operator=> on parity with these current function objects for boolean connec-
tives.

3. As noted by LEWG, it would be beneficial for std::valarray to accommodate this new
operator. We have provided wording accordingly.

8.3 Discretionary (Editorial) Changes
There are further opportunities23 to apply the new operator=> in the standard library’s cur-

rent specification. For the time being, we have opted not to do so until our colleagues have
gained more experience with this new core language feature.

We note here for future reference that any predicate of the form !p||q can without loss of
expressiveness be immediately mechanically rewritten in the new equivalent form (p)=>(q).24

Such rewriting seems strictly editorial, and therefore leave it to the discretion of the WG21 Project
Editor and/or LWG participants whether to make such changes now, later, or ever.

In contrast, each occurrence of a predicate in the similar-yet-different form a||!b must be
individually inspected to decide whether the operands’ order of evaluation matters to the expres-
sion’s intended semantics. Only when it is determined that the initial expression is equivalent to
!b||a (i.e., the or’s operands may be swapped without compromising the intent) may a||!b be
rewritten as b=>a.

9 Implementation Experience

9.1 Progress
The basic functionality of the proposed operator=> feature is being implemented in a private

fork of Herb Sutter’s cppfront/cpp2 project.25 It has been to date an entirely straightforward
effort to do so, with the bulk of the invested time devoted to testing.

Neither operator=> overloading nor fold-expressions have yet been implemented. However,
no significant implementation concerns about these (or about any other parts of this proposal)
have to date been voiced during private discussions26 with C++ compiler providers about this
proposed feature.

Finally, we’ve privately been made aware that another compiler is planning to implement
this proposal in the near future. Concurring with the other compiler experts we’d previously
consulted, this compiler’s maintainer has characterized implication as “looks extremely straight-
forward” to implement. No specific time frame has been announced, however.

23The examples provided in §5 demonstrate some of these opportunities.
24The additional parentheses may be omitted for sufficiently simple operands.
25See the project source code at https://github.com/hsutter/cppfront and its associated wiki at https://github.com/

hsutter/cppfront/wiki
26As of this writing, such discussions are ongoing and further feedback is actively solicited.

https://github.com/hsutter/cppfront
https://github.com/hsutter/cppfront/wiki
https://github.com/hsutter/cppfront/wiki

P2971R3: Implication for C++ 11

9.2 Observations
As seems always to be the case, more test cases are needed, but there has until recently been

no observed impact on any pre-existing code we have compiled.

However, we have now been made aware of a specially-constructed example of C++ code that
would be broken simply by introducing the new implication token. A broader search27 for in-the-
wild occurrences of the two-character sequence constituting this token has additionally located
the following single C++ instance:28

1 struct sfinae { };
2 template<class U>
3 typename sfinae<&U::operator=>::type test(int);

Common to these two cases is a mention of an assignment operator in the context of a template’s
angle brackets. The = token of the assignment operator immediately precedes the template’s
closing angle bracket, thus mimicking the appearance of an implication token. We note that this
is essentially the same issue that was encountered when the spaceship operator was introduced
to C++20.

We have incorporated one such example in our proposed wording, below, for a new Annex C
entry pointing out this unlikely, but possible code breakage. If needed, remediation of such
breaks is near-trivial: just insert a space immediately before the closing angle bracket.29

10 Proposed Core Wording30

10.1 Insert a new entry into [tab:cpp.predefined.ft] (Table 22) with __cpp_implication as the
Macro name and a Value of the form yyyymmL denoting this proposal’s year and month of
adoption.

10.2 Insert => into the list of tokens defining the grammar term operator-or-punctuator in
[lex.operators] (5.12). (We recommend the new operator be inserted so as to follow immediately after the existing

|| operator in that list.) Also make the identical change in [gram.lex].

10.3 Amend bullet [intro.races] (6.9.2.2)/7.1.2 as shown below.

(7.1.2) — A is the left operand of a built-in logical AND (&&, see 7.6.14), or logical OR (||, see
7.6.15), or IMPLICATION (=>, see [expr.log.impl]) operator, or

10.4 Insert => into the list of tokens defining the grammar term fold-operator in [expr.prim.fold]
(7.5.6)/1. (We recommend the new operator be inserted so as to follow immediately after the existing || operator in

that list.) Also make the identical change in [gram.lex].

27The search for the implication token was conducted via Andrew Tomazos’ https://codesearch.isocpp.org/, which
reported “2489599 source files searched.”

28Excerpted from https://bugs.llvm.org/show_bug.cgi?id=6239, a compiler bug report originating from code in https:
//www.boost.org/doc/libs/1_47_0/boost/unordered/detail/move.hpp.

29Alternatively, the bracketed expression may be parenthesized inside the angle brackets.
30All proposed additions and deletions are based on [N4993]. Editorial instructions and drafting notes look like this .

https://codesearch.isocpp.org/
https://bugs.llvm.org/show_bug.cgi?id=6239
https://www.boost.org/doc/libs/1_47_0/boost/unordered/detail/move.hpp
https://www.boost.org/doc/libs/1_47_0/boost/unordered/detail/move.hpp

12 P2971R3: Implication for C++

10.5 Insert the following new subclause immediately following existing subclause [expr.log.or]
(7.6.15) and renumber the subsequent subclauses. (This wording has been adapted from the corresponding

wording in [expr.log.or].) Also insert the new grammar rule into [gram.expr] (A.5).

7.6.16 IMPLICATION operator [expr.log.impl]

implication-expression :
logical-or-expression
logical-or-expression => implication-expression

1 The => operator groups right–to-left. Each operand is contextually converted to bool (7.3).
The result is false if the left operand (the antecedent) is true and the right operand (the
consequent) is false; otherwise the result is true. Like the && and || operators, the =>
operator guarantees left-to-right evaluation; moreover, the consequent is not evaluated if the
antecedent evaluates to false.

2 The result is a prvalue of type bool. If the consequent is evaluated, evaluation of the
antecedent is sequenced before (6.9.1) the consequent’s evaluation.

3 [Note 1: The semantics of an expression of the form p=>q are precisely those of an expression of the form (!p)||q.

— end note]

4 Recommended practice: Implementations should issue a warning upon encountering a paren-
thesis-free expression that combines an && (and/or an ||) operator along with an => operator.

10.6 Edit the grammar rule above [expr.cond] (7.6.16)/1 as shown. Also make the identical
change in [gram.expr] (A.5).

conditional-expression :
logical-or-expressionimplication-expression
logical-or-expressionimplication-expression ? expression : assignment-expression

10.7 Edit the grammar rule following [expr.ass] (7.6.19)/1 as shown. Also make the identical
change in [gram.expr] (A.5).

assignment-expression :
conditional-expression
yield-expression
throw-expression
logical-or-expressionimplication-expression assignment-operator initializer-clause

assignment-operator : . . .

10.8 Edit the grammar rule following in [temp.constr.decl] (13.5.3)/1 as shown. Also make the
identical change in [gram.temp] (A.11).

constraint-expression :
logical-or-expressionimplication-expression

10.9 Edit the grammar rules following [temp.pre] (13.1)/1 as shown. Also make the identical
changes in [gram.temp].

template-declaration : . . .

template-head : . . .

P2971R3: Implication for C++ 13

template-parameter-list : . . .

requires-clause :
requires constraint-logical-or-expressionconstraint-implication-expression

constraint-implication-expression :
constraint-logical-or-expression
constraint-logical-or-expression => constraint-implication-expression

constraint-logical-or-expression : . . .

constraint-logical-and-expression : . . .

10.10 In [dcl.decl.general] (9.3.1)/4, replace the indicated grammar term as shown below.

4 . . . The trailing requires-clause introduces the constraint-expression that results from in-
terpreting its constraint-logical-or-expressionconstraint-implication-expression as a constraint-
expression.

10.11 In [temp.pre] (13.1)/9, replace the indicated grammar term as shown below.

9 . . . The constraint-logical-or-expressionconstraint-implication-expression of a requires-clause is
an unevaluated operand (7.2.3).

10.12 Insert => into the list of tokens defining the grammar term operator in [over.oper.general]
(12.4.1)/1. (We recommend the new operator be inserted so as to follow immediately after the existing || operator in

that list.) Also make the identical change in [gram.over].

10.13 Extend [over.built] (12.5)/23 with a new row as shown below.

23 — There also exist candidate operator functions of the form
bool operator!(bool);
bool operator&&(bool, bool);
bool operator||(bool, bool);
bool operator=>(bool, bool);

10.14 Insert a new bullet immediately following [temp.constr.normal] (13.5.4)/1.2 as shown
below, then renumber the subsequent bullets.

(1.3) — The normal form of an expression E1=>E2 is the disjunction (13.5.2.2) of the negated
([expr.unary.op]) normal form of E1 and the normal form of E2.

(1.31.4) — . . .

10.15 Extend [tab:temp.fold.empty] (Table 20) by one row as shown below.

Operator Value when pack is empty
&& true
|| false
=> false
, void()

14 P2971R3: Implication for C++

10.16 Add the following text as a new subclause of [diff.cpp23] (C.1). (This text is adapted from the

analogous wording in [diff.cpp17.lex] (C.3.2)/4.)

C.1.x [lex]: lexical conventions [diff.cpp23.lex]

Affected subclause: [lex.operators]
Change: New operator =>.
Rationale: Necessary for new functionality.
Effect on original feature: Valid C++ 2023 code that contains an = token immediately followed
by a > token may be ill-formed or have different semantics in this revision of C++. For example:

struct C { };
template< C& (C::*)(const C&) > struct A { };
A<& C::operator=> a; // ill-formed; previously well-formed

11 Proposed Library Wording

11.1 Edit the subbullets of [concept.booleantestable] (18.5.2)/2 as shown below.

(2.1) — either remove_cvref_t<T> is not a class type, or a search for the names operator&&,
and operator||, and operator=> in the scope of remove_cvref_t<T> finds nothing; and

(2.2) — argument-dependent lookup (6.5.4) for the names operator&&, and operator||, and
operator=> with T as the only argument type finds no disqualifying declaration (defined
below).

11.2 Edit [concept.booleantestable] (18.5.2)/6 as shown below.

6 [Note 1: The intention is to ensure that, given two types T1 and T2 that each model termboolean-testable-impl, the &&,

and ||, and => operators within the expressions declval<T1>() && declval<T2>(), and declval<T1>()||declval<T2>(),

and declval<T1>()=>declval<T2>() resolve to the corresponding built-in operators. — end note]

11.3 Append the following new declaration to those above [valarray.binary] (28.6.3.1)/1.

template<class T> valarray<T> operator=>(const valarray<T>&, const valarray<T>&);

11.4 Append the following new declarations to those above [valarray.binary] (28.6.3.1)/4.

template<class T> valarray<T> operator=>(const valarray<T>&,
const typename valarray<T>::value_type&);
template<class T> valarray<T> operator=>(const typename valarray<T>::value_type&,
const valarray<T>&);

12 Acknowledgments

Many thanks to the readers of pre-publication drafts of this proposal for their thoughtful
comments. The paper was substantively improved due to your much-appreciated feedback.

P2971R3: Implication for C++ 15

We also acknowledge, with grateful thanks, multiple iterations of private correspondence
with Ben Deane, Jo Devriendt, Christof Meerwald, and Alisdair Meredith. They individually and
collectively not only supported and encouraged this proposal but also provided much food for
thought regarding the implication connective and the perceived strengths and weaknesses of
this paper’s initial (R0) publication. Many of the details in the R1 revision were revisited and
updated due to their persuasive arguments, examples, and other contributions.

Finally, we note that this paper’s central theme was first presented publicly during the au-
thor’s opening keynote address31 at the Core C++ 2022 conference. We extend special thanks to
that conference’s organizers for inviting that talk and to all its attendees for their enthusiastic
reception. It was truly a never-to-be-forgotten experience.

13 Bibliography

[N4908] Thomas Köppe: “Working Draft, C++ Extensions for Library Fundamentals, Version 3.” ISO/
IEC JTC1/SC22/WG21 document N4908 (2022–03 mailing), 2022–02–20. https://wg21.link/
n4908.

[N4958] Thomas Köppe: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4958 (2023–08 mailing), 2023–08–14. https://wg21.link/n4958.

[N4981] Thomas Köppe: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4981 (2024–04 mailing), 2024–04–16. https://wg21.link/n4981.

[N4993] Thomas Köppe: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4993 (2024–10 mailing), 2024–10–16. https://wg21.link/n4993.

[P0927R2] James Dennett and Geoff Romer: “Towards a (Lazy) Forwarding Mechanism for C++.” ISO/IEC
JTC1/SC22/WG21 document P0927R2 (2018-10 mailing), 2018–10–05. https://wg21.link/
p0927r2.

[P2688R4] Michael Park: “Pattern Matching: match Expression.” ISO/IEC JTC1/SC22/WG21 document
P2688R4 (2025-01 mailing), 2024–12–17. https://wg21.link/p2688r4.

14 Document Chronology

Rev. Date Changes

0 2023–09–14 • Published as P2971R0, 2023–09 mailing.

1 2023–10–14 • §3 (Intuition): expanded; additional example. • §4 (Properties): new. • §6 (Why Core?):
restructured; expanded with more alternatives. • §7 (Design): restructured; greater depth
and updated decisions. • §9 (Implementation): restructured; new parsing issue discus-
sion. • §10 (Core Wording): reflect updated design decisions; new Annex C entry. • §12
(Ack’s): more people to thank. • §13 (Bib): expanded. • Throughout: numerous minor
editorial adjustments. • Published as P2971R1, 2023–10 mailing.

2 2024–05–21 • §1 (What Is Implication?): added brief Ada syntax discussion and exposition of “neces-
sary” and “sufficient”. • §8 (Library Impact): updated per 2023-11 Kona LEWG review and
polls. • §11 (Library Wording): added wording to specify the LEWG-approved additions dis-
cussed in §8. • Rebased wording onto [N4981]. • Published as P2971R2, 2024–05 mailing.

3 2025–01–13 • Throughout: minor editorial adjustments. • §7 (Design): New subsection “Choice of To-
ken”. • Rebased wording onto [N4993]. • Published as P2971R3, 2025–01 mailing.

31Walter E. Brown: “What I Think When I Think about C++,” 2022–09–06. https://youtu.be/bgyY3x8y4PE.

https://wg21.link/n4908
https://wg21.link/n4908
https://wg21.link/n4958
https://wg21.link/n4981
https://wg21.link/n4993
https://wg21.link/p0927r2
https://wg21.link/p0927r2
https://wg21.link/p2688r4
https://youtu.be/bgyY3x8y4PE

	Title
	Contents
	Abstract
	1 What Is Implication?
	2 What Isn't Implication?
	3 Implication Intuition
	4 Implication Properties
	5 Is Implication Useful?
	6 Why a Core Language Feature?
	7 Design Decisions
	8 Standard Library Impact
	9 Implementation Experience
	10 Proposed Core Wording
	11 Proposed Library Wording
	12 Acknowledgments
	13 Bibliography
	14 Document Chronology

