
Preprocessing is never undefined
Replacing compile-time UB with IFNDR, and then diagnosing

Document #: P2843R1
Date: 2025-01-13
Project: Programming Language C++
Audience: Evolution Working Group

SG22 C Liaison
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 2

2 Revision history 2
R1: 2025 January (pre-Hagenberg mailing) . 2
R0: 2023 May (pre-Varna mailing) . 2

3 Introduction 3

4 Basic Proposal 4
4.1 Minimal wording . 4

5 Reviewing each ill-formed constructions 6
5.1 Towards a better specification . 6
5.2 Non-standard use of the defined operator . 7
5.3 Preprocessing directives in macro arguments . 11
5.4 Invalid syntax for #include . 14
5.5 The # operator . 16
5.6 The ## operator . 19
5.7 Predefined macros . 21
5.8 The #line directive . 24

6 Further Concerns 26
6.1 Defining keywords as macros . 26
6.2 Ill-formed comments . 28
6.3 Use of reserved identifiers . 28

7 Impact on Implementations 30
7.1 Nonfunctional changes . 30
7.2 Functional changes . 30
7.3 Analysis by compiler . 30

8 Proposed wording 33
8.1 Update Annex C . 35
8.2 Close issues as resolved . 35

9 Acknowledgements 36

10 References 36

1

mailto:ameredith1@bloomberg.net

1 Abstract
This paper revises all specification of the C++ preprocessor and lexer that uses the term undefined behavior to
use the more appropriate term — ill-formed, no diagnostic required. It then further analyzes each such ill-formed
program to determine whether diagnostics should be required, or the program should become well-formed.

2 Revision history
R1: 2025 January (pre-Hagenberg mailing)
This revision has been a long time coming, due to work on other papers claiming priority. It now has a long list
of updates, as preliminary revisions that were aimed at a number of previous meetings never reached publication.

— Updated introduction with rationale about UB during compilation
— Recorded the open Core issues in this area
— Added C liaison to the target audience
— Rebased after [P2621R2] was adopted at the Varna meeting

— Dropped all discussion related to the paper that landed
— Removed subsection on conflict resolution
— Proposed wording rebased onto [N5001]

— Updated compiler conformance on the defined tests
— note that all compilers now conform with the recommendations of this paper

— Completed initial analysis strengthening diagnostics on the remaining cases of UB to IFNDR
— Proposed bringing library prohibition on redefining keywords into the preprocessor specification
— Proposed completing the list of banned macro names with identifiers used in the preprocessor specification
— Proposed diagnosing ill-formed comments
— Added a section to wording on updating the open Core issues
— Added a summary by compiler for implementation changes if this paper is accepted

R0: 2023 May (pre-Varna mailing)
— Initial draft of this paper.

2

3 Introduction
Undefined behavior is a form of C++ specification that applies to the runtime behavior of a well-formed program
and its inputs. Logically, there is no potential for undefined behavior within the preprocessor, which simply
transforms source code before translation — although subsequent phases of translation might introduce undefined
behavior when processing the source code.

More literally, undefined behavior is recognised as one of the worst things that can happen to our program,
where we would much rather run into behavior that is implementation defined, unspecified, or even erroneous
— all of which indicate a more contained set of behaviors for the program. However, for undefined behavior to
occur, the program logic must take it down a path that ultimately leads to undefined behavior.

It is recognised that programs that are ill-formed, no diagnostic required are in an even worse state than programs
that contain undefined behavior as, if an executable is created for that program, then the whole program has
undefined behavior; simply running the program immediately invokes undefined behavior and the program can
do literally anything.

Yet this paper proposes replacing undefined behavior with the notionally worse ill-formed, no diagnostic required
program. This is still a good idea, as in all the cases where we propose such a change, the undefined behavior
occurs during the act of translating the program, i.e., it is the act of compiling the program itself that has full
freedom to trash your hard drive, emit nasal daemons, etc.

With the changes in this paper, it will formally be as safe to compile our programs as we always thought it was.
Further, the ill-formed, no diagnostic requires phrasing naturally leads to the question “why is that ill-formed
program not diagnosed?”, prompting a useful tightening of our specification.

3

4 Basic Proposal
A better formulation for all cases where the C++ Standard specifies undefined behavior in the preprocessor
would be that the program is ill-formed, no diagnostic required. Such a change would have no effect on any
implementations today, other than to remove an unexploited ability for the act of compiling code to have
unexpected consequences, and serves as the basis for the follow up work below, making most of those cases
either diagnosable, or well-defined.

4.1 Minimal wording
Make the following changes to the C++ Working Draft. All wording is relative to [N4986].

15.2 [cpp.cond] Conditional inclusion
10 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling

constant expression are replaced (except for those macro names modified by the defined unary operator), just
as in normal text. If the token defined is generated as a result of this replacement process or use of the
defined unary operator does not match one of the two specified forms prior to macro replacement, the behavior
is undefined program is ill-formed, no diagnostic required.

15.3 [cpp.include] Source file inclusion
4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after include in the
directive are processed just as in normal text (i.e., each identifier currently defined as a macro name is replaced
by its replacement list of preprocessing tokens). If the directive resulting after all replacements does not match
one of the two previous forms, the behavior is undefined program is ill-formed, no diagnostic required. The
method by which a sequence of preprocessing tokens between a < and a > preprocessing token pair or a pair of
" characters is combined into a single header name preprocessing token is implementation-defined.

15.6.1 [cpp.replace.general] General
13 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of

arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If there are sequences of preprocessing tokens within the list of arguments that would otherwise act
as preprocessing directives, the behavior is undefined program is ill-formed, no diagnostic required.

15.6.3 [cpp.stringize] The # operator
2 A character string literal is a string-literal with no prefix. If, in the replacement list, a parameter is immediately

preceded by a # preprocessing token, both are replaced by a single character string literal preprocessing token that
contains the spelling of the preprocessing token sequence for the corresponding argument (excluding placemarker
tokens). Let the stringizing argument be the preprocessing token sequence for the corresponding argument with
placemarker tokens removed. Each occurrence of whitespace between the stringizing argument’s preprocessing
tokens becomes a single space character in the character string literal. Whitespace before the first preprocessing
token and after the last preprocessing token comprising the stringizing argument is deleted. Otherwise, the
original spelling of each preprocessing token in the stringizing argument is retained in the character string literal,
except for special handling for producing the spelling of string-literals and character-literals: a \ character is
inserted before each " and \ character of a character-literal or string-literal (including the delimiting " characters).
If the replacement that results is not a valid character string literal, the behavior is undefined program is
ill-formed, no diagnostic required. The character string literal corresponding to an empty stringizing argument
is "". The order of evaluation of # and ## operators is unspecified.

4

https://wg21.link/cpp.cond
https://wg21.link/cpp.include
https://wg21.link/cpp.replace.general
https://wg21.link/cpp.stringize

15.6.4 [cpp.concat] The ## operator
3 For both object-like and function-like macro invocations, before the replacement list is reexamined for more

macro names to replace, each instance of a ## preprocessing token in the replacement list (not from an argu-
ment) is deleted and the preceding preprocessing token is concatenated with the following preprocessing token.
Placemarker preprocessing tokens are handled specially: concatenation of two placemarkers results in a single
placemarker preprocessing token, and concatenation of a placemarker with a non-placemarker preprocessing
token results in the non-placemarker preprocessing token.

[Note 1: Concatenation can form a universal-character-name. —end note]

If the result is not a valid preprocessing token, the behavior is undefined program is ill-formed, no diagnostic
required. The resulting token is available for further macro replacement. The order of evaluation of ## operators
is unspecified.

15.7 [cpp.line] Line control
3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line that
has a line number as specified by the digit sequence (interpreted as a decimal integer). If the digit sequence
specifies zero or a number greater than 2147483647, the behavior is undefined program is ill-formed, no diagnostic
required.

5 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after line on the
directive are processed just as in normal text (each identifier currently defined as a macro name is replaced by
its replacement list of preprocessing tokens). If the directive resulting after all replacements does not match one
of the two previous forms, the behavior is undefined program is ill-formed, no diagnostic required; otherwise,
the result is processed as appropriate.

15.11 [cpp.predefined] Predefined macro names
4 If any of the pre-defined macro names in this subclause, or the identifier defined, is the subject of a #define or

a #undef preprocessing directive, the behavior is undefined program is ill-formed, no diagnostic required. Any
other predefined macro names shall begin with a leading underscore followed by an uppercase letter or a second
underscore.

5

https://wg21.link/cpp.concat
https://wg21.link/cpp.line
https://wg21.link/cpp.predefined

5 Reviewing each ill-formed constructions
For the benefit of the proposed wording in the following examples, we are assuming the UB to IFNDR change
at the start of this paper has been applied, and so the context of this analysis is diagnosing or accepting as
well-defined behavior that is ill-formed, no diagnostic required.

Note that paper [P2621R2] has already performed the same task for 5 [lex] so most of the remaining concerns
are limited to subclauses of 15 [cpp]

5.1 Towards a better specification
When informally proposed as a paper for the Core Working Group, the chair expressed reservations about
a paper that did nothing but change UB to IFNDR, and suggested that a paper that also tackled the “no
diagnostic required” aspect would be most welcome. Hence, the rest of this paper will examine further changes
to require diagnosing and rejected many invalid programs, or in some cases, accepting some undefined programs
as well-defined.

There is a long history of trying to address the undefined nature of the preprocessor. The following review aims
to resolve all of the issues highlighted by previous work.

5.1.1 Past proposals

— [N3801] Removing Undefined Behavior from the Preprocessor, Gabriel Dos Reis
— [N4220] An update to the preprocessor specification, David Krauss
— [N4858] Disposition of Comments for CD Ballot, ISO/IEC CD 14882, Barry Hedquist
— [P1705R1] Enumerating Core Undefined Behavior, Shafik Yaghmour
— [P2234R1] Consider a UB and IF-NDR Audit Scott Schurr

5.1.2 Open core issues

— [CWG2575] Undefined behavior when macro-replacing defined operator
— [CWG2576] Undefined behavior with macro-expanded #include directives
— [CWG2577] Undefined behavior for preprocessing directives in macro arguments
— [CWG2578] Undefined behavior when creating an invalid string literal via stringizing
— [CWG2579] Undefined behavior when token pasting does not create a preprocessing token
— [CWG2580] Undefined behavior with #line
— [CWG2581] Undefined behavior for predefined macros

6

https://wg21.link/lex
https://wg21.link/cpp

5.2 Non-standard use of the defined operator
This is Core issue [CWG2575].

5.2.1 Using a macro defined as defined

Function-like operator Keyword-like operator

define MACRO defined
if MACRO(MACRO)
error accepted the macro definition
endif

define MACRO defined
if MACRO MACRO
error accepted the macro definition
endif

All four popular compiler front ends accept this undefined code and “correctly” apply the defined operator that
expands from the first use of MACRO(), and only Clang issues a warning that the behavior is undefined (since
Clang 3.9).

clang default
gcc Wextra
EDG (none)
MSVC (none)

This paper recommends defining the behavior to be exactly what all of our current front ends do, and simply
expand the macro for another iteration of phase 4. It is believed that this can be achieved simply by removing
the sentence conferring undefined behavior, as the intended defined behavior should then proceed without calling
further attention to it.

5.2.2 Ill-formed use of the defined operator

The next issue is the wording

or use of the defined unary operator does not match one of the two specified forms prior to macro replacement

In the case of

Well defined Undefined

if defined A + B
endif

if defined +B // + cannot start an identifier
endif

if defined 1 // 1 is not an identifier
endif

if defined // no argument to the operator
endif

the well-defined path sees tokenization where A is passed to the defined operator, and then combined into the
constant-expression (defined A) + B.

However, the “undefined” path is more interesting. All Godbolt compilers agree that the 1 case is an error. Both
gcc and Clang diagnose the other two cases that the known set of non-parenthetical cases are ill-formed.

7

+B 1 “
clang Error Error Error
gcc Error Error Error
EDG Error Error Error
MSVC Error Error Error
—– ——– ——– ——–
C++23 UB UB UB
P2843 Error Error Error

A further example demonstrates how current implementation interpret the grammar around parentheses.

Well defined Undefined

if defined A + B
endif

if defined (A + B)
endif

if defined (+B)
endif

if defined (1)
endif

if defined ()
endif

(A+B) (+B) (1) ()

clang Error Error Error Error
gcc Error Error Error Error
EDG Error Error Error Error
MSVC Error Error Error Error
—– ——– ——– ——– ——–
C++23 UB UB UB UB
P2843 Error Error Error Error

In this case, all compilers agree (according to their error messages) that a closing parenthesis is expected instead
of the + for the first case, and all the other cases report an error expecting an identifier. None of the compilers take
the path of undefined behavior that would consider all these cases as failing to lex as the operator, which would
treat defined as a user-supplied funcion-like macro. There would be no impact on existing implementations to
enforce this usage as a diagnosable error.

According to the current C++ Standard, C++23, the contents of the parentheses fail the grammar for an
identifier, so defined is interpreted as a user-provided function-like macro, which is undefined behavior, or as
violating both valid forms of the defined operator, which is also undefined behavior. It would be reasonable to
argue all of these cases should be an error as there is no user-defined macro named defined in scope, but that
is not the error any of these implementations are reporting, and as it would be UB to define such a macro, it is
not clear that would be a helpful error message.

Given that all implementations already report an error in case, we have no qualms recommedning this case
always be a diagnosable error.

Our final observation will be that, perhaps surprising some of us, the built-in comma operator cannot be used
in a constant-expression.

8

Comma operator Plus operator

if defined A, B
endif

if defined (A), B
endif

if (defined A), B
endif

if defined (A, B)
endif

if defined A + B
endif

if defined (A) + B
endif

if (defined A) + B
endif

if defined (A + B)
endif

defined A, B defined (A), B (defined A), B defined (A, B)

clang Error Error Error Error
gcc Pedantic Pedantic Pedantic Error
EDG Error Error Error Error
MSVC Error Error Error Error
—– ————– —————- —————- —————-
C++23 Error Error Error UB
P2843 Error Error Error Error

In this case, all uses of the comma operator are invalid constant-expressions or invalid uses of the defined
operator, although I believe that lexing should turn them all into invalid comma operators and not invoke the
UB of a token sequence supplied to deprecated. Conversely, the equivalent cases for operator plus are all
well-formed and clearly understood. Note that while most implementation already reject these programs, gcc
does accepts all but the last form, and does not diagnose a concern unless requesting pedantic warnings.

There is one remaining test case that still exposes bugs in modern preprocessors.
if (defined A, B)
endif

The unusual issue here is that the comma operator should not be eligible to be a constant-expression, compris-
ing two _assignment-expression_s. However, once we wrap that comma expression in parentheses, it becomes a
regular expression and is eligible to be a constant-expression. As the defined A tokens should lexically consume
the defined operator, I believe that there is no room for undefined behavior in this final test.
if 0, 1
endif

if (0, 1)
endif

if defined A, B
endif

if (defined A, B)
endif

9

0, 1 (0, 1) defined A, B (defined A, B)

clang Error Ped-warn Error Ped-warn
gcc Ped-warn Ped-warn Ped-warn Ped-warn
EDG Error Error Error Error
MSVC Error Error Warning Error
—– ——– ——– ————– —————-
C++23 Error OK Error OK
P2843 Error OK Error OK

This test, which entirely lacks undefined behavior, possibly shows the greatest variation among implementations
— a reminder of how rarely we tread the dusty pages of the preprocessor specification.

I will ultimately file bug reports with the appropriate vendors, but am waiting on a resolution to this paper
before churning the various compiler bug reporting systems.

5.2.3 Recommendation

The recommendation is that since all main compilers already support macro expansion into a defined operator,
that behavior should become well-defined. Conversely, misuses of the defined operator syntax are diagnosed,
so that should become normatively ill-formed.

Note that this paper is not recommending any changes where some compilers already disagree with the current
standard — if all compilers were to disagree we might recommend changes to support more behavior.

5.2.4 Proposed wording

15.2 [cpp.cond] Conditional inclusion
10 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling

constant expression are replaced (except for those macro names modified by the defined unary operator), just
as in normal text. If the token defined is generated as a result of this replacement process or use of the
defined unary operator does not match one of the two specified forms prior to macro replacement, the program
is ill-formed , no diagnostic required.

5.2.5 Resolve issue

Resolve [CWG2575] regarding undefined behavior when macro-replacing the defined operator.

5.2.6 Compatibility

The proposed changes to not make any currently valid programs ill-formed nor change their meaning. Hence, we
suggest no Annex C wording is necessary, although there may be an impact on some implementations rejecting
programs with specific undefined behaviors in C++23 as invalid in C++26.

10

https://wg21.link/cpp.cond

5.3 Preprocessing directives in macro arguments
This is Core issue [CWG2577], regarding what happens if macro arguments are themselves subject to conditional
compilation or other preprocessor directives. Consider the following example:

IFNDR Well-formed

#define DECLARE_CONSTRUCTOR(CLASS \
, TYPE \
, PARAM) \

CLASS (TYPE PARAM);

struct Any {

template <class T>
DECLARE_CONSTRUCTOR(Any

#if defined __cpp_rvalue_references
, T &&

#else
, T const &

#endif
, arg_name
);

};

#define DECLARE_CONSTRUCTOR(CLASS \
, TYPE \
, PARAM) \

CLASS (TYPE PARAM);

struct Any {

#if defined __cpp_rvalue_references
template <class T>
DECLARE_CONSTRUCTOR(Any

, T &&
, arg_name
);

#else
template <class T>
DECLARE_CONSTRUCTOR(Any

, T const &
, arg_name
);

#endif

};

This example shows the ill-formed, no diagnostic required behavior, and the corresponding well-formed
workaround. Currently, Microsoft rejects the IFNDR version, while Clang, EDG, and GCC accept that code
without a diagnostic, not even a warning.

It should not be difficult to diagnose the ill-formedness if we were to mandate a diagnostic, and the existing
compilers would be free to continue accepting such code as a conforming extension, as long as they issue a
diagnostic. However, me may prefer the alternative resolution of accepting this code as well-formed, with the
“obvious” meaning.

What about other preprocessing directives? The next example investigates #line.
#define DECLARE_CONSTRUCTOR(CLASS, TYPE, PARAM) \

CLASS (TYPE PARAM);

struct Any {

template <class T>
DECLARE_CONSTRUCTOR(Any

, T &&
, arg_name

#line 12345 "fooled_you.h"
);

};

Again, Clang, EDG, and GCC accept this ill-formed, no diagnostic required program, and even agree on how

11

the line number changes. However, Microsoft rejects this code with a diagnostic. Is this another behavior we
would prefer to make well-defined, rather than diagnosibly ill-formed? The positive use case is less clear.

How about the #include directive?
#define DECLARE_CONSTRUCTOR(CLASS, TYPE, PARAM) \

CLASS (TYPE PARAM);

struct Any {

template <class T>
DECLARE_CONSTRUCTOR(

#include “arguments.h"
);

};

Assuming the file arguments.h contains a well-formed list of three arguments, this program is still rejected and
diagnosed as ill-formed on all four popular front ends. Should we make sure this form is always diagnosed as an
error?

What about if we change the header file, arguments.h, to also include the closing bracket of the macro invocation?
#define DECLARE_CONSTRUCTOR(CLASS, TYPE, PARAM) \

CLASS (TYPE PARAM);

struct Any {

template <class T>
DECLARE_CONSTRUCTOR(

#include “arguments.h"

};

This program is similarly rejected by Clang. EDG, and MSVC, but is accepted by GCC! Mandating a diagnosable
error for all use of #include inside a macro argument list would require a change of this one compiler, but is
that a common enough case that it might break significant code? Is there a reason that this case is supported,
but the plain argument list in the header is not?

Too many additional directives to review each individually, but we note that we have not considered:

— # newline
— #define
— #error
— #pragma
— #undef
— #warning
— export
— import
— module

In practice we have no strong use case to support any preprocessor directives in this context other than conditional
inclusion:

— #if
— #ifdef
— #ifndef
— #elif
— #elifdef
— #elifndef

12

— #else
— #endif

However, once you allow for conditional inclusion, it is relatively easy to imagine use cases for #error, #warning,
and even #define and #undef within the conditionally included blocks.

Rather than open up this case to deeper analysis, and given the relatively simple workaround for conditional
inclusion given by the first example, the recommendation of this paper is to make all preprocessor directive
ill-formed in this context, implicitly requiring a diagnostic, and saving users from worrying about special cases.

We expect such a change to loudly break programs that previously had undefined behavior — although con-
forming compilers would still be allowed to accept such code as long as they issued a diagnostic about using a
non-standard extension.

5.3.1 Proposed wording

15.6.1 [cpp.replace.general] General
13 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of

arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If there are sequences of preprocessing tokens within the list of arguments that would otherwise act
as preprocessing directives, the program is ill-formed, no diagnostic required.

5.3.2 Resolve issue

Resolve [CWG2577] regarding undefined behavior for preprocessing directives in macro arguments.

5.3.3 Compatibility

The proposed changes to not make any currently valid programs ill-formed nor change their meaning. Hence, we
suggest no Annex C wording is necessary, although there may be an impact on some implementations rejecting
programs with specific undefined behaviors in C++23 as invalid in C++26.

13

https://wg21.link/cpp.replace.general

5.4 Invalid syntax for #include
This is [CWG2576]. The program is ill-formed, no diagnostic required, if after all recursive application of macros,
a #include directive does not match one of the two specific forms:

include <filename>
include "filename"

Testing the main four compiler front ends through Godbolt compiler explorer, we try the following program:
#define cstddef <cstddef>
#include cstddef // well-defined

#define anotherdef "cstddef"
#include anotherdef // well-defined

#include "cstdlib" "" // MSVC only warns
#include "cstd""io"

#include
#include vector
#include <vector
#include "vector
#endif

#define A vector
#define B <ios
#define C tream>

#include A
#include B
#include B C // only gcc accepts

5.4.1 Implementation experience

Almost all implementations diagnose the current undefined behavior as ill-formed. The two exceptions are
commented in the test program above.

Given the directive #include "cstdlib" "" Microsoft does not perform string concatenation, but does discard
the trailing string literal with a warning. All other compilers reject this directive, also (correctly) without
performing string concatenation that would occur in phase 6 after include directives are processed in phase 4.

The other surprising implementation of undefined behavior is that gcc accepts turning adjacent macro expansions
into a single token that can then be successfully interpreted as a header name and included. However, it might be
argued that accepting this form is implementation defined according to the last sentence of 15.3 [cpp.include]p4

The method by which a sequence of preprocessing tokens between a < and a > preprocessing token pair
or a pair of " characters is combined into a single header name preprocessing token is implementation-defined.

5.4.2 Implementation experience

To conform to this proposal, MSVC would have to reject its behavior of allowing a trailing string literal on a
#include directive. The implementation could continue to accept existing programs that rely on this feature as
a conforming extension, and already issues a diagnostic that meets the minimum requirements to do so.

14

https://wg21.link/cpp.include

5.4.3 Proposed wording

15.3 [cpp.include] Source file inclusion
4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after include
in the directive are processed just as in normal text (i.e., each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). If the directive resulting after all replacements does
not match one of the two previous forms, the program is ill-formed, no diagnostic required. The method by
which a sequence of preprocessing tokens between a < and a > preprocessing token pair or a pair of " characters
is combined into a single header name preprocessing token is implementation-defined.

5.4.4 Resolve issue

Resolve [CWG2575] regarding undefined behavior for invalid forms of #include

15

https://wg21.link/cpp.include

5.5 The # operator
This is Core issue [CWG2578].

The issue that leads undefined behavior is for the # operator to expand to text that produces a result that is
not a valid character string literal.

Consider the following simple example that uses a macro that will expand to a backslash character, which will
escape the quote character that should delimit the end of the character string literal, so that the literal becomes
invalid due to the lack a closing delimiter, the quote character in source.
// This code demonstrates compile-time UB
#define TO_TEXT(a) #a
#define TEXT(a) TO_TEXT(a)

#define BACKSLASH \\

int main() {
const char *x = TEXT(BACKSLASH);

}

After phase 4 of preprocessing, this program turns into
int main() {

const char *x = "\";
}

but there is no requirement to diagnose the error, as the macro expansion that occurs evaluating the TO_TEXT
macro is undefined behavior (or ill-formed, no diagnostic required if our simple proposal is adopted).

An attentive reviewer might try to fix this code by ensuring that the character string literal is still terminated
with code similar to
// This code is ill-formed and requires a diagnostic
#define TO_TEXT(a) #a
#define TEXT(a) TO_TEXT(a)

#define BACKSLASH \\

int main() {
const char *x = TEXT(BACKSLASH)";

}

By adding a quote character after the invocation of TEXT do we close the unterminated character string literal?
Unfortunately not, as even before we try to expand the TEXT macro there is an ill-formed attempt to create a
string literal with only one of its two delimiting quote characters, so the TEXT macro need not even be expanded
for further error reporting.

16

5.5.1 gcc 14.2

Gcc issues a diagnostic (warning) that it is ignoring the final \, so produces a well-formed empty string and
accepts the program.
<source>:8:35: warning: invalid string literal, ignoring final '\'

8 | const char *x = TEXT(BACKSLASH);
| ^

The preprocessed code:
int main() {

const char *x = "";
}

5.5.2 clang 19.1.0

Clang issues a diagnostic (warning) that it is ignoring the final \, so produces a well-formed empty string and
accepts the program.

Compiler warning:
<source>:8:26: warning: invalid string literal, ignoring final '\'

8 | const char *x = TEXT(BACKSLASH);
| ^

<source>:5:19: note: expanded from macro 'BACKSLASH'
5 | #define BACKSLASH \\

| ^
1 warning generated.

Preprocessed code:
int main() {

const char *x = "";
}

5.5.3 MSVC 19.40 VS17.10

No warning or error during preprocessing. However, this compiler gives an excellent example of undefined
behavior when examining the preprocessed output, with the line of the main function declaration somehow
incorporated into the string literal that follows it within the source file.

Preprocessed code:
const char *x = "\\nint main() {";

}

Subsequent experimentation showed that in the #define BACKSLASH, the \\ token is interpreted as a line
continuation, and the MSVC compiler seeks the next non-empty line to complete the #define preprocessor
directive.

5.5.4 EDG 6.6

No error or warning during macro expansion. However, a diagnostic for an ill-formed string literal is produced
as a result of that expansion.

Preprocessed code:
int main() {

const char *x = "\";
}

17

15.6.3 [cpp.stringize] The # operator
2 A character string literal is a string-literal with no prefix. If, in the replacement list, a parameter is immediately

preceded by a # preprocessing token, both are replaced by a single character string literal preprocessing token that
contains the spelling of the preprocessing token sequence for the corresponding argument (excluding placemarker
tokens). Let the stringizing argument be the preprocessing token sequence for the corresponding argument with
placemarker tokens removed. Each occurrence of whitespace between the stringizing argument’s preprocessing
tokens becomes a single space character in the character string literal. Whitespace before the first preprocessing
token and after the last preprocessing token comprising the stringizing argument is deleted. Otherwise, the
original spelling of each preprocessing token in the stringizing argument is retained in the character string literal,
except for special handling for producing the spelling of string-literals and character-literals: a \ character is
inserted before each " and \ character of a character-literal or string-literal (including the delimiting " characters).
If the replacement that results is not a valid character string literal, the program is ill-formed, no diagnostic
required. The character string literal corresponding to an empty stringizing argument is "". The order of
evaluation of # and ## operators is unspecified.

5.5.5 Compatibility

The proposed changes to not make any currently valid programs ill-formed nor change their meaning. Hence, we
suggest no Annex C wording is necessary, although there may be an impact on some implementations rejecting
programs with specific undefined behaviors in C++23 as invalid in C++26.

5.5.6 Implementation experience

EDG already diagnoses the production of ill-formed string literals.

Clang and gcc should promote their warning diagnostic to an error in strictly conforming compiler modes, and
can continue with their warning as an extension.

MSVC should produce a specific diagnostic in this case, rather than relying on the garbled output that might
or might not become a valid program.

5.5.7 Resolve issues

Resolve [CWG2578] Undefined behavior when token pasting does not create a preprocessing token

18

https://wg21.link/cpp.stringize

5.6 The ## operator
This is core issue [CWG2579]. Much of the original concern for this wording was resolved by paper [P2621R2]
adopted in Varna. However, one use of undefined behavior -> “ill-formed, no diagnostic required” remains, when
the final result of token pasting does not produce a valid preprocessing token.

Given that subsequent rescanning would expose an invalid preprocessing token, it is not clear what benefit
is achieved by declaring such a replacement ill-formed (or UB) before a subsequent rescanning could splice
appropriate content to produce a valid token. It would be particularly confusing for the program to survive
rescanning, yet still be ill-formed without a diagnostic informing the user of an intermediate state during macro
expansion that rendered the program ill-formed.

While we would like to strike the ill-formed, no diagnostic required condition entirely, deferring to subsequent
rescanning to report the error, we take the more conservative approach in the initial wording to merely diagnose
the error at the point the program becomes ill-formed.
#define DO_CONCAT(a,b) a##b
#define CONCAT(a,b) DO_CONCAT(a,b)

#define MINUS -

int main() {
int word = 0;
auto x = CONCAT(MINUS, word);

}

5.6.1 gcc 14.2

Gcc diagnoses a compilation error for the exact undefined behavior.
<source>:4:15: error: pasting "-" and "word" does not give a valid preprocessing token

4 | #define MINUS -
| ^

<source>:1:24: note: in definition of macro 'DO_CONCAT'
1 | #define DO_CONCAT(a,b) a##b
| ^

<source>:8:13: note: in expansion of macro 'CONCAT'
8 | int x = CONCAT(MINUS, word);

| ^~~~~~
<source>:8:20: note: in expansion of macro 'MINUS'

8 | int x = CONCAT(MINUS, word);
| ^~~~~

5.6.2 clang 19.1.0

Clang diagnoses a compilation error for the exact undefined behavior.
<source>:8:13: error: pasting formed '-word', an invalid preprocessing token

8 | int x = CONCAT(MINUS, word);
| ^

<source>:2:21: note: expanded from macro 'CONCAT'
2 | #define CONCAT(a,b) DO_CONCAT(a,b)
| ^

<source>:1:25: note: expanded from macro 'DO_CONCAT'
1 | #define DO_CONCAT(a,b) a##b

| ^
1 error generated.

19

5.6.3 MSVC 19.40 VS17.10

MSVC issues no warnings or errors during preprocessing, and accepts the program since the invalid preprocessing
token is never used in a preprocessing directive where a valid preprocessing token is required, thus allowing that
invalid preprocessing token to decompose into two regular tokens in phase 7.

Preprocessed code:
int main() {

int word = 0;
int x = -word;
return x;

}

5.6.4 EDG 6.6

EDG issues no warnings or errors during preprocessing, and accepts the program since the invalid preprocessing
token is never used in a preprocessing directive where a valid preprocessing token is required, thus allowing that
invalid preprocessing token to decompose into two regular tokens in phase 7.

Preprocessed code:
int main() {

int word = 0;
int x = -word;
return x;

}

5.6.5 Wording

15.6.4 [cpp.concat] The ## operator
3 For both object-like and function-like macro invocations, before the replacement list is reexamined for more

macro names to replace, each instance of a ## preprocessing token in the replacement list (not from an argu-
ment) is deleted and the preceding preprocessing token is concatenated with the following preprocessing token.
Placemarker preprocessing tokens are handled specially: concatenation of two placemarkers results in a single
placemarker preprocessing token, and concatenation of a placemarker with a non-placemarker preprocessing
token results in the non-placemarker preprocessing token.

[Note 1: Concatenation can form a universal-character-name. —end note]

If the result is not a valid preprocessing token, the program is ill-formed, no diagnostic required. The resulting
token is available for further macro replacement. The order of evaluation of ## operators is unspecified.

5.6.6 Compatibility

The proposed changes to not make any currently valid programs ill-formed nor change their meaning. Hence, we
suggest no Annex C wording is necessary, although there may be an impact on some implementations rejecting
programs with specific undefined behaviors in C++23 as invalid in C++26.

5.6.7 Implementation experience

Clang and gcc already diagnose the production of ill-formed preprocessing tokens.

EDG and MSVC would have diagnose the ill-formed tokens, even if they continued to allow the program to be
well-formed as a conforming compiler extension.

5.6.8 Resolve issues

Resolve [CWG2579] Undefined behavior when token pasting does not create a preprocessing token

20

https://wg21.link/cpp.concat

5.7 Predefined macros
This is Core issue [CWG2581].
#define __cplusplus 12345678L

#define define gibberish
#define SOMETHING 42

int main() {
int i = SOMETHING;
long c = __cplusplus;

}

5.7.1 gcc 14.2

Redefining the word define has no effect on the preprocessor #define. Compiler warning for predefined macro
redefined, but no warning for undefining the predefined macro:
<source>:1:9: warning: "__cplusplus" redefined

1 | #define __cplusplus 12345678L
| ^~~~~~~~~~~

<built-in>: note: this is the location of the previous definition

The preprocessed code:
int main() {

int i = 42;
long c = 12345678L;

long x = __cplusplus;
}

5.7.2 clang 19.1.0

Redefining the word define has no effect on the preprocessor #define. Essentially the same behavior as gcc:
<source>:1:9: warning: redefining builtin macro [-Wbuiltin-macro-redefined]

1 | #define __cplusplus 12345678L
| ^

1 warning generated.

Preprocessed code:
int main() {

int i = 42;
long c = 12345678L;

long x = __cplusplus;
}

5.7.3 MSVC 19.40 VS17.10

Microsoft seems to have the sanest behavior.

Redefining the word define has no effect on the preprocessor #define. Attempts of changing predefined macros
result in warnings and the attempts are ignored:

21

<source>(1): warning C4117: macro name '__cplusplus' is reserved, '#define' ignored
<source>(9): warning C4117: macro name '__cplusplus' is reserved, '#undef' ignored

Preprocessed code:
int main() {

int i = 42;
long c = 199711L;

long x = 199711L;
}

5.7.4 EDG 6.5

Redefining the word define has no effect on the preprocessor #define. Essentially the same as gcc and clang:
"<source>", line 1: warning: incompatible redefinition of macro "__cplusplus"
#define __cplusplus 12345678L

^

Preprocessed code:
int main() {

int i = 42;
long c = 12345678L;

long x = __cplusplus;
}

5.7.5 Implementation experience

5.7.5.1 #define macro

defined __cplusplus __DATE__ __FILE__ __LINE__ __TIME__

clang Error Warning Warning Warning Warning Warning
gcc Error Warning Warning Warning Warning Warning
EDG Error Warning Error Error Error Error
MSVC Warning Warning Warning Warning Warning Warning
—– ——— ————- ———- ———- ———- ———-
C++23 UB UB UB UB UB UB
P2843 Error Error Error Error Error Error

5.7.5.2 #undef macro

defined __cplusplus __DATE__ __FILE__ __LINE__ __TIME__

clang Error OK Warning Warning Warning Warning
gcc Error OK Warning Warning Warning Warning
EDG Error OK Error Error Error Error
MSVC Warning Warning Warning Warning Warning Warning
—– ——— ————- ———- ———- ———- ———-
C++23 UB UB UB UB UB UB
P2843 Error Error Error Error Error Error

22

5.7.6 Implementation Guidance

MSVC diagnoses misuse so is already a conforming extension. This paper proposes making each case ill-formed
in a strictly conforming mode.

Clang renders attempts to manipulate the defined token and the macros __DATE__, __FILE__, __LINE__, and
__TIME__, as ill-formed, exactly as this paper proposes. While the compiler will warn on attempts to redefine
any other predefined macro, it will accept attempts to undefine such macros, which according to this paper
should be diagnosed as ill-formed, or at least issue a warning as a compiler extension.

Clang renders attempts to manipulate the defined token as ill-formed, exactly as this paper proposes. For at-
tempts to manipulatethe two macros controlled by the#LINEdirective this compiler issues a warning diagnostic, which would be a conforming extension, although the warning should be promoted to an error in strictly conforming modes, and behaves similarly for theDATEandTIME‘
macros. While the compiler will warn on attempts to redefine any other predefined macro, it will accept
attempts to undefine such macros, which according to this paper should be diagnosed as ill-formed, or at least
issue a warning as a compiler extension.

Gcc behaves the same as Clang and renders attempts to manipulate the defined token as ill-formed, exactly as
this paper proposes. For attempts to manipulatethe two macros controlled by the#LINEdirective this compiler issues a warning diagnostic, which would be a conforming extension, although the warning should be promoted to an error in strictly conforming modes, and behaves similarly for theDATEandTIME‘
macros. While the compiler will warn on attempts to redefine any other predefined macro, it will accept
attempts to undefine such macros, which according to this paper should be diagnosed as ill-formed, or at least
issue a warning as a compiler extension.

5.7.7 Proposed wording

15.11 [cpp.predefined] Predefined macro names
4 If any of the pre-defined macro names in this subclause, or the identifier defined, is the subject of a #define or

a #undef preprocessing directive, the program is ill-formed, no diagnostic required. Any other predefined macro
names shall begin with a leading underscore followed by an uppercase letter or a second underscore.

5.7.8 Resolve issues

Resolve [CWG2580] Undefined behavior when redefining a macro

23

https://wg21.link/cpp.predefined

5.8 The #line directive
This is Core issue [CWG2580].

The first part of this issue is overflow behavior when a compiler tries to pass a number larger than the maximum
value for a 32 bit signed integer. Rather than try to analyse this behavior in detail, we will observe that in
addition to passing such large numbers to #line, we should also consider the overflow behavior that results from
setting a number just below this limit, and allowing the file to naturally grow beyond that number of lines. It
is observed that the existing compilers behave very differently in this regard today so the proposed change is
to simply make values greater than the current maximum conditionally supported with implementation defined
behavior. This will place a small documentation burden on all implementations, as the nature of conditionally
supported behavior means that they must also document if they reject such programs. This overflow behavior
should still be better specified in the case of natural file growth past that number, and such specification is left
to another paper.

To determine the undefined behavior for invalid invalid forms of the #line directive we tested the following
program.
#line
#line sdf
#line "xyz"
#line -32
#line 0x123
#line (123)

#line 09 // valid decimal integer
#line 10 2 3
#line 11 "2" 3
#line 12 "4" "5"
#line 13 "6" "7" "8"

5.8.1 Implementation experience

All compilers reject the first 6 lines, correctly accept 09 as a decimal number and not an ill-formed octal number,
and reject the following line with three integers. However, only EDG rejects the last three lines, which all the
other compilers accept with a warning, rejecting any trailing tokens after the filename. They do not perform
string concatenation, as observed in the reported error messages for the redundant final tests.

5.8.2 Proposed wording

15.7 [cpp.line] Line control
3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line that has
a line number as specified by the digit sequence (interpreted as a decimal integer). If the digit sequence specifies
zero or a number greater than 2147483647, the program is ill-formed, no diagnostic required Digit sequences
representing zero or a number greater than 2,147,483,647 are conditionally supported with implementation
defined semantics.

5 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after line on the
directive are processed just as in normal text (each identifier currently defined as a macro name is replaced by
its replacement list of preprocessing tokens). If the directive resulting after all replacements does not match one

24

https://wg21.link/cpp.line

of the two previous forms, the program is ill-formed, no diagnostic required; otherwise, the result is processed
as appropriate.

5.8.3 Resolve issues

Resolve [CWG2580] regarding undefined behavior for bad usage of the #line directive.

25

6 Further Concerns
6.1 Defining keywords as macros
The core language specifying the preprocessor appears to have no restriction against users defining macros with
names that match keywords, alternate tokens, contextual keywords, or standard attribute names. However,
there is such a restriction in the standard library requirements on conforming programs, and it is not predicated
on including (or importing) a standard header (or module).

Note that while such programs should be diagnosed as ill-formed today, our analysis will show a variety of non-
conforming behaviors in current implementations. For implementers concerned that they would break code for
existing customers by strictly enforcing the precise specification of the Standard, it is perfectly valid to accept
such programs as a conforming extension as long as such usage is diagnosed. Hence, where compilers issue a
warning today while accepting the program, they are conforming — although it might be helpful to update those
diagnostics to note that they are relying on a compiler extension. Compilers that do not diagnose such macros
with bad names should issue an extension diagnostic, but are otherwise unaffected.

6.1.1 Implementation experience

Although this paragraph is normative today, none of our current compilers appear to implement it in full —
likely because the paragraph is hidden away in the Standard Library introductory clause, where we would rarely
go looking for normative text.

Example program for testing:
#define defined 1 // 1
#define defined(...) // 2
#undef defined // 3
#undef _Pragma // 4
#define and // 5
#undef and // 6
#undef __LINE__ // 7
#undef __cplusplus // 8
#define public private // 9
#undef public // 10
#undef private // 11
#define final // 12
#undef override // 13
#define noreturn // 14
#undef noreturn // 15
#undef alignas // 16

Test Line Clang EDG GCC MSVC
1 Error Error Error Warning
2 Error Error Error Warning
3 Error Error Error Warning
4 Warning Error Warning
5 Error Error
6 Error Error
7 Warning Error Warning Warning
8 Warning Warning
9 Warning
10
11
12
13

26

14
15
16

The results are not encouraging. A conforming compiler should report an error for every row. A compiler with
conforming extensions could report a warning, but as it is not allowed to change the meaning of a conforming
program it is questionable whether that warning can do more than silently ignore the directive.

Note that lines 4 and 5, dealing with and, are not subject to the rule in the normative paragraph we propose mov-
ing because and is never an identifier, but is always an operator-or-punctuator in the grammar as a consequence
of the specification for alternate tokens.

No compiler even warns for violating lines 9 onwards, and those are entirely the subject of the normative
paragraph being moved. Given that theory and reality do not match we might consider removing this paragraph
entirely, but that does not feel very satisfactory.

Another approach would be to allow these redefinitions and undefinitions as conditionally supported behavior
with implementation defined semantics. That path would place a new documentation burden on vendors to say
what they do with such redefinitions and undefinitions, but all them to either accept the same code that they
do today, or to reject such code with a diagnosable error. By making the feature conditionally supported, we
remove any requirements to issue a diagnostic when supported.

A further tweak, if we want to move in the direction of bringing vendors into conformance with the standard of
today, would be to make this feature both conditionally supported, and deprecated. We might also specify that
the conditionally supported forms have no effect.

A further observation on the current specification is that, despite its inclusion in the table above, _Pragma is not
subject to the same rules against that defined is subject to. However, it is still an identifier that is reserved
to the implementation by 5.11 [lex.name] so is still not available to users to define and undefine for their own
purposes.

The following names are also not called out in 15.11 [cpp.predefined] but have their usage reserved in the
subclauses that specify them.

— __has_include
— __has_cpp_attribute
— __VA_ARGS__
— __VA_OPT__

6.1.2 Proposed wording

Move the normative paragraph from the library and place it between paragraph 8 and 9 of the core specification
for defining macros.

15.6.1 [cpp.replace.general] General
8 The identifier immediately following the define is called the macro name. There is one name space for macro

names. Any whitespace characters preceding or following the replacement list of preprocessing tokens are not
considered part of the replacement list for either form of macro.

X A translation unit shall not #define or #undef macro names lexically identical to keywords, to the identifiers
listed in Table 4, or to the attribute-tokens described in 9.12 [dcl.attr], except that the names likely and
unlikely may be defined as function-like macros (15.6 [cpp.replace]).

9 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing
directive can begin, the identifier is not subject to macro replacement.

27

https://wg21.link/lex.name
https://wg21.link/cpp.predefined
https://wg21.link/cpp.replace.general
https://wg21.link/dcl.attr
https://wg21.link/cpp.replace

16.4.5.3.3 [macro.names] Macro names
1 A translation unit that includes a standard library header shall not #define or #undef names declared in any

standard library header.
2 A translation unit shall not #define or #undef names lexically identical to keywords, to the identifiers listed in

Table 4, or to the attribute-tokens described in 9.12 [dcl.attr], except that the names likely and unlikely may
be defined as function-like macros (15.6 [cpp.replace]).

6.2 Ill-formed comments
The control character form-feed and vertical-tab are not allowed in a comment that is introduced by //, unless
all the following characters are whitespace. Any other character will render the program ill-formed, no diagnostic
required, meaning that the whole program is undefined. It is not clear why no diagnostic would be required here,
nor why such characters might not be conditionally supported if the IFNDR wording was to allow programs to
successfully compile on existing tool-chains that do not diagnose this error.

We believe that the preferred resolution would be remove the whole concern about characters following the specific
cases of form-feed and vertical-tab, but as a compromise to avoid forcing changes on existing implementations
that diagnose errors today, we choose conditionally supported behavior. Note that the onus is on implementations
that to not support conditionally supported behavior to document that they diagnose such programs as ill-formed,
where implementations that accept such comments have no impact at all.

If WG21 prefers to fully accept such comments, simply drop the additional text in the wording below that follows
the strike-out of existing text.

6.2.1 Proposed wording

5.4 [lex.comment] Comments
1 The characters /* start a comment, which terminates with the characters */. These comments do not nest. The

characters // start a comment, which terminates immediately before the next new-line character. If there is a
form-feed or a vertical-tab character in such a comment, only whitespace characters shall appear between it and
the new-line that terminates the comment; no diagnostic is required. Non-whitespace characters that appear
between a form-feed or a vertical-tab character and the new-line that terminates the comment are conditionally
supported.

6.3 Use of reserved identifiers
There is a small set of patters for identifiers that are reserved for use by the implementation and a program
trying to make its own use of these identifiers, as macros, variables, function names, type names, enumerators,
etc., are ill-formed, no diagnostic required.

If we were to enforce the rule that such programs are plain ill-formed and so requiring a diagnostic, an imple-
mentation remains free to continue accepting such programs as a conforming extension as long as such use of
reserved identifiers is diagnosed as such.

Hence, in the interests of advancing a well-specified standard, we propose that use of identifiers reserved to
the C++ Standard make a program plain ill-formed, which just adds a diagnostic requirement to the current
Standard. Note that we are making no such recommendation for names reserved by other standards, even those
incorporated by reference. In particular, POSIX reserves a larger set of names, some of which are actively used
by identifiers in the C++ Standard itself.

6.3.1 Proposed wording

5.11 [lex.name] Identifiers
3 In addition, some identifiers appearing as a token or preprocessing-token are reserved for use by C++ imple-

mentations and shall not be used otherwise; no diagnostic is required.

28

https://wg21.link/macro.names
https://wg21.link/dcl.attr
https://wg21.link/cpp.replace
https://wg21.link/lex.comment
https://wg21.link/lex.name

—(3.1) Each identifier that contains a double underscore __ or begins with an underscore followed by an uppercase
letter, other than those specified in this document (for example, __cplusplus (15.11)), is reserved to the
implementation for any use.

—(3.2) Each identifier that begins with an underscore is reserved to the implementation for use as a name in the
global namespace.

29

7 Impact on Implementations
We collect the following observations to summarize the known impact on current implementations to come into
conformance with this paper.

7.1 Nonfunctional changes
The change from undefined behavior to ill-formed, no diagnostic required makes no demands on implementations,
and is purely a tightening of our specification. There is no risk.

For other changes, we can lean heavily into conforming extension modes, where accepting an ill-formed program
where diagnostics are required is permitted, as long as a diagnostic is emitted — and in many of these cases
compilers do emit warnings. In some cases, those warnings might want to be recategorized as extensions warnings,
and compilers with strict conformance modes would promote those warnings to errors.

For the subset of changes where we want to endorse specific behavior, we can introduce that behavior as
conditionally supported, so that compilers diagnosing errors today remain conforming, but strictly speaking
should update their documentation to say that they do not implement the conditionally supported behavior.

7.2 Functional changes
In a variety of cases implementations already diagnose and reject programs, so no further work is needed.

In some cases we make a program ill-formed, even where implementations do not emit a diagnostic today.
As noted above, in order to preserve customer code and migrate at a pace that implementers are happy no
negotiate with their clients, each of these cases can be turned into a conforming extension by issuing a warning
while accepting the program. The meaning of such programs would naturally be for said implementations to
define, but the Standard places no documentation requirements on implementations to document the behavior
of their extensions, but merely to diagnose their use.

7.3 Analysis by compiler
Listing the main front ends alphabetically, we will list the changes that are not diagnosed today, and those cases
that are warned today but should be diagnosed as extensions, and rejected in a strictly conforming mode.

7.3.1 All

First, we will examine behaviors common to all compilers.

7.3.1.1 No change of behavior

Some parts of this proposal are cleaning up the existing specification and imply no change of behavior. Any
compilers that fail to meet these changes already have those same issues against the current standard.

— Turn undefined behavior into ill-formed, no diagnostic required
— Reject use of keywords as macro names

7.3.1.2 Conforming

Some parts of this paper are formalizing existing practice.

— Conditional support for comments with non-whitespace after form-feed or vertical-tab
— Accept macros defined as defined
— Reject all misuse of the defined operator

30

7.3.1.3 Must diagnose

— Use of keywords as macros

Note that these diagnostics are already required for a conforming implementation, unlike most of the rest of
this paper, and also listed under no change of behavior. However, this requirement is found in the library
specification which can be a surprise for compiler implementers, even though there are expected requirements
on compilers throughout Library clause 17 [support], and all implementers require some extra diagnostics for
conforming extensions here, so this feature is listed twice.

7.3.2 Clang

The Clang compiler should audit its behavior for preprocessor directive within macro argument lists. It has a
mix of cases that are ill-formed, warnings, or accepted (but ill-considered?) that should be updated so that all
are either ill-formed (conforming to this proposal) or continue to warn as conforming compiler extensions.

7.3.2.1 Must diagnose

— #undef predefined macro other than __DATE__, __FILE__, __LINE__, and __TIME__

7.3.2.2 Extensions

— Creating an invalid string literal via the # operator
— #define any predefined macro
— #undef __DATE__, __FILE__, __LINE__
— Diagnose trailing preprocessor tokens follow the filename of a #line directive

7.3.3 EDG

The EDG front end should audit its behavior for preprocessor directive within macro argument lists. It has a
mix of cases that are ill-formed, warnings, or accepted (but ill-considered?) that should be updated so that all
are either ill-formed (conforming to this proposal) or continue to warn as conforming compiler extensions.

7.3.3.1 Must diagnose

— Creating an invalid preprocessing token via the ## operator
— #undef predefined macro other than __DATE__, __FILE__, __LINE__, and __TIME__

7.3.3.2 Extensions

— #define predefined macro other than __DATE__, __FILE__, __LINE__, and __TIME__

7.3.4 Gcc

The gcc compiler should audit its behavior for preprocessor directive within macro argument lists. It has a mix
of cases that are ill-formed, warnings, or accepted (but ill-considered?) that should be updated so that all are
either ill-formed (conforming to this proposal) or continue to warn as conforming compiler extensions.

7.3.4.1 Must diagnose

— #undef predefined macro other than __DATE__, __FILE__, __LINE__, and __TIME__

7.3.4.2 Extensions

— Creating an invalid string literal via the # operator
— #define any predefined macro
— #undef __DATE__, __FILE__, __LINE__, and __TIME__
— Diagnose trailing preprocessor tokens follow the filename of a #line directive

31

https://wg21.link/support

7.3.5 Microsoft Visual C++

7.3.5.1 Must diagnose

— Creating an invalid string literal via the # operator
— Creating an invalid preprocessing token via the ## operator

7.3.5.2 Extensions

— Allowing a trailing string literal on #include "header"
— #define defined
— #undef defined
— #define any predefined macro
— #undef any predefined macro
— Diagnose trailing preprocessor tokens follow the filename of a #line directive

32

8 Proposed wording
Make the following changes to the C++ Working Draft. All wording is relative to [N5001], the latest draft at
the time of writing.

5.4 [lex.comment] Comments
1 The characters /* start a comment, which terminates with the characters */. These comments do not nest. The

characters // start a comment, which terminates immediately before the next new-line character. If there is a
form-feed or a vertical-tab character in such a comment, only whitespace characters shall appear between it and
the new-line that terminates the comment; no diagnostic is required. Non-whitespace characters that appear
between a form-feed or a vertical-tab character and the new-line that terminates the comment are conditionally
supported.

5.11 [lex.name] Identifiers
3 In addition, some identifiers appearing as a token or preprocessing-token are reserved for use by C++ imple-

mentations and shall not be used otherwise; no diagnostic is required.

—(3.1) Each identifier that contains a double underscore __ or begins with an underscore followed by an uppercase
letter, other than those specified in this document (for example, __cplusplus (15.11)), is reserved to the
implementation for any use.

—(3.2) Each identifier that begins with an underscore is reserved to the implementation for use as a name in the
global namespace.

15.2 [cpp.cond] Conditional inclusion
10 Prior to evaluation, macro invocations in the list of preprocessing tokens that will become the controlling

constant expression are replaced (except for those macro names modified by the defined unary operator), just
as in normal text. If the preprocessing token defined is generated as a result of this replacement process or use
of the defined unary operator does not match one of the two specified forms prior to macro replacement, the
behavior is undefinedprogram is ill-formed.

15.3 [cpp.include] Source file inclusion
4 A preprocessing directive of the form

include pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after include
in the directive are processed just as in normal text (i.e., each identifier currently defined as a macro name is
replaced by its replacement list of preprocessing tokens). If the directive resulting after all replacements does
not match one of the two previous forms, the behavior is undefinedprogram is ill-formed, no diagnostic required.
The method by which a sequence of preprocessing tokens between a < and a > preprocessing token pair or a pair
of " characters is combined into a single header name preprocessing token is implementation-defined.

15.6.1 [cpp.replace.general] General
8 The identifier immediately following the define is called the macro name. There is one name space for macro

names. Any whitespace characters preceding or following the replacement list of preprocessing tokens are not
considered part of the replacement list for either form of macro.

X A translation unit shall not #define or #undef macro names lexically identical to keywords, to the identifiers
listed in Table 4, or to the attribute-tokens described in 9.12 [dcl.attr], except that the names likely and
unlikely may be defined as function-like macros (15.6 [cpp.replace]).

9 If a # preprocessing token, followed by an identifier, occurs lexically at the point at which a preprocessing
directive can begin, the identifier is not subject to macro replacement.

33

https://wg21.link/lex.comment
https://wg21.link/lex.name
https://wg21.link/cpp.cond
https://wg21.link/cpp.include
https://wg21.link/cpp.replace.general
https://wg21.link/dcl.attr
https://wg21.link/cpp.replace

13 The sequence of preprocessing tokens bounded by the outside-most matching parentheses forms the list of
arguments for the function-like macro. The individual arguments within the list are separated by comma
preprocessing tokens, but comma preprocessing tokens between matching inner parentheses do not separate
arguments. If there are sequences of preprocessing tokens within the list of arguments that would otherwise act
as preprocessing directives, the behavior is undefinedprogram is ill-formed.

15.6.3 [cpp.stringize] The # operator
2 A character string literal is a string-literal with no prefix. If, in the replacement list, a parameter is immediately

preceded by a # preprocessing token, both are replaced by a single character string literal preprocessing token that
contains the spelling of the preprocessing token sequence for the corresponding argument (excluding placemarker
tokens). Let the stringizing argument be the preprocessing token sequence for the corresponding argument with
placemarker tokens removed. Each occurrence of whitespace between the stringizing argument’s preprocessing
tokens becomes a single space character in the character string literal. Whitespace before the first preprocessing
token and after the last preprocessing token comprising the stringizing argument is deleted. Otherwise, the
original spelling of each preprocessing token in the stringizing argument is retained in the character string literal,
except for special handling for producing the spelling of string-literals and character-literals: a \ character is
inserted before each " and \ character of a character-literal or string-literal (including the delimiting " characters).
If the replacement that results is not a valid character string literal, the behavior is undefinedprogram is ill-formed,
no diagnostic required. The character string literal corresponding to an empty stringizing argument is "". The
order of evaluation of # and ## operators is unspecified.

15.6.4 [cpp.concat] The ## operator
3 For both object-like and function-like macro invocations, before the replacement list is reexamined for more

macro names to replace, each instance of a ## preprocessing token in the replacement list (not from an argu-
ment) is deleted and the preceding preprocessing token is concatenated with the following preprocessing token.
Placemarker preprocessing tokens are handled specially: concatenation of two placemarkers results in a single
placemarker preprocessing token, and concatenation of a placemarker with a non-placemarker preprocessing
token results in the non-placemarker preprocessing token.

[Note 1: Concatenation can form a universal-character-name (5.3.1 [lex.charset]). —end note]

If the result is not a valid preprocessing token, the behavior is undefinedprogram is ill-formed, no diagnostic
required. The resulting preprocessing token is available for further macro replacement. The order of evaluation
of ## operators is unspecified.

15.7 [cpp.line] Line control
3 A preprocessing directive of the form

line digit-sequence new-line

causes the implementation to behave as if the following sequence of source lines begins with a source line that has
a line number as specified by the digit sequence (interpreted as a decimal integer). If the digit sequence specifies
zero or a number greater than 2147483647, the program is ill-formed, no diagnostic required Digit sequences
representing zero or a number greater than 2,147,483,647 are conditionally supported with implementation
defined semantics.

5 A preprocessing directive of the form

line pp-tokens new-line

(that does not match one of the two previous forms) is permitted. The preprocessing tokens after line on the
directive are processed just as in normal text (each identifier currently defined as a macro name is replaced by
its replacement list of preprocessing tokens). If the directive resulting after all replacements does not match one
of the two previous forms, the behavior is undefinedprogram is ill-formed, no diagnostic required; otherwise, the
result is processed as appropriate.

34

https://wg21.link/cpp.stringize
https://wg21.link/cpp.concat
https://wg21.link/lex.charset
https://wg21.link/cpp.line

15.11 [cpp.predefined] Predefined macro names
4 If any of the pre-defined macro names in this subclause, or the identifier defined, is the subject of a #define or

a #undef preprocessing directive, the behavior is undefinedprogram is ill-formed. Any other predefined macro
names shall begin with a leading underscore followed by an uppercase letter or a second underscore.

16.4.5.3.3 [macro.names] Macro names
1 A translation unit that includes a standard library header shall not #define or #undef names declared in any

standard library header.
2 A translation unit shall not #define or #undef names lexically identical to keywords, to the identifiers listed in

Table 4, or to the attribute-tokens described in 9.12 [dcl.attr], except that the names likely and unlikely may
be defined as function-like macros (15.6 [cpp.replace]).

8.1 Update Annex C
No changes expected, as no valid program is changed.

8.2 Close issues as resolved
Close the following Core issues resolved as ill-formed by this paper:

— [CWG2575] Undefined behavior when macro-replacing defined operator
— [CWG2576] Undefined behavior with macro-expanded #include directives
— [CWG2577] Undefined behavior for preprocessing directives in macro arguments
— [CWG2578] Undefined behavior when creating an invalid string literal via stringizing
— [CWG2579] Undefined behavior when token pasting does not create a preprocessing token
— [CWG2581] Undefined behavior for predefined macros

Close the following Core issue resolved as conditionally supported by this paper, and further specification would
require a new paper:

— [CWG2580] Undefined behavior with #line

35

https://wg21.link/cpp.predefined
https://wg21.link/macro.names
https://wg21.link/dcl.attr
https://wg21.link/cpp.replace

9 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from Mark-
down.

Thanks to Joshua Berne for making the painstaking effort to be sure I understand the subtle differences between
undefined behavior, unspecified behavior, implementation-defined behavior, and programs that are ill-formed,
no diagnostic required. I am not the easiest of students!

Thanks to Attila Fehér for providing many of the examples used to analyse the existing preprocessor behavior
for troublesome code.

10 References
[CWG2575] US. 2019-10-23. Undefined behavior when macro-replacing “defined” operator.

https://wg21.link/cwg2575

[CWG2576] US. 2019-10-23. Undefined behavior with macro-expanded #include directives.
https://wg21.link/cwg2576

[CWG2577] US. 2019-10-23. Undefined behavior for preprocessing directives in macro arguments.
https://wg21.link/cwg2577

[CWG2578] US. 2019-10-23. Undefined behavior when creating an invalid string literal via stringizing.
https://wg21.link/cwg2578

[CWG2579] US. 2019-10-23. Undefined behavior when token pasting does not create a preprocessing token.
https://wg21.link/cwg2579

[CWG2580] US. 2019-10-23. Undefined behavior with #line.
https://wg21.link/cwg2580

[CWG2581] US. 2019-10-23. Undefined behavior for predefined macros.
https://wg21.link/cwg2581

[N3801] Gabriel Dos Reis. 2013-10-14. Removing Undefined Behavior from the Preprocessor.
https://wg21.link/n3801

[N4220] David Krauss. 2014-10-10. An update to the preprocessor specification (rev. 2).
https://wg21.link/n4220

[N4858] Barry Hedquist. 2020-02-15. Disposition of Comments: SC22 5415, ISO/IEC CD 14882.
https://wg21.link/n4858

[N4986] Thomas Köppe. 2024-07-16. Working Draft, Programming Languages — C++.
https://wg21.link/n4986

[N5001] Thomas Köppe. 2024-12-17. Working Draft, Programming Languages — C++.
https://wg21.link/n5001

[P1705R1] Shafik Yaghmour. 2019-10-07. Enumerating Core Undefined Behavior.
https://wg21.link/p1705r1

[P2234R1] Scott Schurr. 2021-02-13. Consider a UB and IF-NDR Audit.
https://wg21.link/p2234r1

36

https://wg21.link/cwg2575
https://wg21.link/cwg2576
https://wg21.link/cwg2577
https://wg21.link/cwg2578
https://wg21.link/cwg2579
https://wg21.link/cwg2580
https://wg21.link/cwg2581
https://wg21.link/n3801
https://wg21.link/n4220
https://wg21.link/n4858
https://wg21.link/n4986
https://wg21.link/n5001
https://wg21.link/p1705r1
https://wg21.link/p2234r1
https://wg21.link/p2234r1

[P2621R2] Corentin Jabot. 2023-02-08. UB? In my Lexer?
https://wg21.link/p2621r2

37

https://wg21.link/p2621r2

	Abstract
	Revision history
	R1: 2025 January (pre-Hagenberg mailing)r1-2025-january-pre-hagenberg-mailing
	R0: 2023 May (pre-Varna mailing)r0-2023-may-pre-varna-mailing

	Introduction
	Basic Proposal
	Minimal wording

	Reviewing each ill-formed constructions
	Towards a better specification
	Non-standard use of the defined operator
	Preprocessing directives in macro arguments
	Invalid syntax for #include
	The # operator
	The ## operator
	Predefined macros
	The #line directive

	Further Concerns
	Defining keywords as macros
	Ill-formed comments
	Use of reserved identifiers

	Impact on Implementations
	Nonfunctional changes
	Functional changes
	Analysis by compiler

	Proposed wording
	Update Annex C
	Close issues as resolved

	Acknowledgements
	References

