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Abstract

The C++ standard currently specifies that all pointers to an object become invalid at the end of its lifetime [basic.life].
Although this permits additional diagnostics and optimizations which might be of some value, it is not consistent with
long-standing usage, especially for a range of concurrent and sequential algorithms that rely on loads, stores, equality
comparisons, and even dereferencing of such pointers. Similar issues result from object-lifetime aspects of C pointer
provenance.

We propose (1) the addition to the C++ standard library of the function make_ptr_prospective() that takes a
pointer argument and returns a prospective pointer value corresponding to its argument; (2) the addition to the
C++ standard library of the class template std::usable_ptr<T> that is a pointer-like type that is still usable after
the pointed-to object’s lifetime has ended; (3) that atomic operations be redefined to yield and to store
prospective pointers values; and (4) that operations on volatile pointers be defined to yield and to store
prospective pointer values.

Please note that this paper does not propose adding bag-of-bits pointer semantics to the standard. However, in the
service of legacy code, it is hoped that implementers provide such semantics, perhaps via some facility such as a
command-line option that causes all pointers to be exempt from lifetime-end pointer invalidity.

Introduction
The C language has been used to implement low-level concurrent algorithms since at least the early 1980s, and C++
has been put to this use since its inception. However, low-level concurrency capabilities did not officially enter either
language until 2011. Given decades of independent evolution of C and C++ on the one hand and concurrency on the
other, it should be no surprise that some corner cases were missed in the efforts to add concurrency to C11 and C++11.

A number of long-standing and heavily used concurrent algorithms, one of which is presented in a later section, involve
loading, storing, casting, and comparing pointers to objects which might have reached their lifetime end between the
pointer being loaded and when it is stored, reloaded, cast, and compared, due to concurrent removal and freeing of the
pointed-to object. In fact, some long-standing algorithms even rely on dereferencing such pointers, but in C++, only in
cases where another object of similar type has since been allocated at the same address. This is problematic given that
the current standards and working drafts for both C and C++ do not permit reliable loading, storing, casting, or
comparison of such pointers. To quote Section 6.2.4p2 (“Storage durations of objects”) of the ISO C standard:

The value of a pointer becomes indeterminate when the object it points to (or just past) reaches the end of its
lifetime.

(See WG14 N2369 and N2443 for more details on the C language’s handling of pointers to lifetime-ended objects and
WG21 P1726R5 for the corresponding C++ language details.)

However, (1) concurrent algorithms that rely on loading, storing, casting, and comparing such pointer values have been
used in production in large bodies of code for decades, (2) automatic recognition of these sorts of algorithms is still very
much a research topic (even for small bodies of code), and (3) failures due to non-support of the loading, storing,

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2443.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf


comparison, and (in certain special cases) dereferencing of such pointers can lead to catastrophic and hard-to-debug
failures in systems on which we all depend. We therefore need a solution that not only preserves valuable
optimizations and debugging tools, but that also works for existing source code. After all, any solution relying on
changes to existing software systems would require that we have a way of locating the vulnerable algorithms, and we
currently have no such thing.

This is not a new issue: the above semantics have been in the C standard since 1989, and the algorithm called out
below was put forward in 1973. But this issue’s practical consequences will become more severe as compilers do more
optimisation, especially link-time optimisation, and especially given the ubiquity of multi-core hardware.

This paper proposes straightforward specific solutions.

Terminology
● Bag of bits: A simple model of a pointer consisting only of its associated address and type, excluding any

additional information that might be gleaned from lifetime-end pointer zap and pointer provenance. A simple
compiler might well model its pointers as bags of bits. For the purposes of this paper, a non-simple compiler can
be induced to treat pointers as bags of bits by marking all pointer accesses and indirections as volatile,
albeit with possible performance degradation.

● Invalid pointer: A pointer referencing an object whose storage duration has ended. For more detail, please see
the “What Does the C++ Standard Say?” section of P1726R5, particularly the reference to section 6.7.5.1p4
[basic.stc.general] of the standard (“When the end of the duration of a region of storage is reached, the values of
all pointers representing the address of any part of that region of storage become invalid pointer values”). In the
C standard, such a pointer is termed an indeterminate pointer.

● Invalid pointer use: Any use of an invalid pointer (including reading, writing, comparison, casting, passing to a
non-deallocation function), and indirection through it. [Intended to correspond to [basic.stc.general] p4 "Any
other use of an invalid pointer value has implementation-defined behavior."]

● Lifetime-end pointer zap: An event causing a pointer to become invalid, or, in WG14 parlance, indeterminate.
Because this is a WG21 document, the term becomes invalid is used in preference to “lifetime-end pointer zap”,
however, text that needs to cover both C++ and C will use the term “lifetime-end pointer zap”, “pointer zap”, or
just “zap”.

● Pointer provenance: Implementations are permitted to model pointers as more than just a bag of bits.
● Prospective pointer value: A pointer value corresponding to an object whose lifetime might not have started,

including a pointer to an object whose region of storage has not yet been created. A correct algorithm will not
compare or dereference a prospective pointer until after an appropriately typed object’s lifetime starts at the
address indicated by the pointer’s value. Note that comparison of a prospective pointer’s value representation is
permitted, for example, as carried out by the .compare_exchange member function. One way to produce a
prospective pointer is to cast a valid pointer to uintptr_t and then cast it back to the same pointer type.
Support of prospective pointers is optional for implementations that do not provide uintptr_t. For more
information, please see P2434R2.

● Simple compiler: A compiler that does no optimization. For the purposes of this paper, results similar to those
of a simple compiler can be obtained by treating all pointers as bags of bits.

● Zap-susceptible algorithm: An algorithm that relies on invalid pointer use and/or zombie pointer dereference.
● Zombie pointer: An invalid pointer whose value representation happens to correspond to the same memory

address as a currently valid pointer to an object of compatible type.

https://docs.google.com/document/d/1l1d1f6rtZVOTroUuK5WXuxubZ2sYT6XJwkUoYPIcg2A/edit#heading=h.d9ga4z5sru3
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2434r2.html


● Zombie pointer dereference: Indirection through a zombie pointer. [The relevant part of the standard being
[basic.stc.general] p4: "Indirection through an invalid pointer value and passing an invalid pointer value to a
deallocation function have undefined behavior."]

What We Are Asking For
In order to support a number of critically important algorithms, this paper proposes a make_ptr_prospective()

function and a usable_ptr<T> template class to provide a convenience mechanism for encapsulating the pair of
reinterpret_cast<> operations used to create a prospective pointer value as described in the “Consequences for
pointer zap” section of P2434R2.

Note that this paper does not propose blanket bag-of-bits pointer semantics, despite a great many users being strongly
in favor of such semantics (P2188R1). It is therefore hoped that implementers will provide some facility to cause
pointers to be treated as bags of bits from a pointer-invalidity viewpoint, perhaps by implicitly treating all pointer types as
if they were usable_ptr<T>. This would be helpful for legacy code.

This paper additionally proposes a convenience mechanism in which std::atomic<T*> and volatile have special
behavior so that the associated pointer values become prospective, in the former case, as alluded to in the
“Consequences for pointer zap” section of P2434R2.

Furthermore, this paper also proposes that volatile accesses forgive invalidity in order to support passing of virtual
addresses to and from I/O devices, which has long been supported in hardware, either by virtue of that hardware
lacking any sort of memory-management unit (MMU) or that hardware being equipped with an I/O MMU that maps
addresses provided by hardware devices. For example, consider a device whose firmware and driver are both written in
C++.

Finally, this paper notes that the implementation must prove that a given pointer is invalid before taking action based on
invalidity.

The following sections provide more detail on this proposal and also of the options considered since P1726R4. Those
interested in seeing a wider array of historical options are invited to review P1726R5 and P2188R1.

Possible polls:

1. Do we want a make_ptr_prospective() function that provides a convenience mechanism for encapsulating
the pair of reinterpret_cast<> operations used to create a prospective pointer value as described in the
“Consequences for pointer zap” section of P2434R2?

2. Do we want a usable_ptr<T> convenience mechanism for encapsulating the pair of reinterpret_cast<>
operations used to create a prospective pointer value as described in the “Consequences for pointer zap”
section of P2434R2?

3. Do we want a convenience mechanism in which std::atomic<T*> has special behavior so that the associated
pointer values become prospective, as alluded to in the “Consequences for pointer zap” section of P2434R2?

4. Do we want a convenience mechanism in which volatile has special behavior so that the associated pointer
values become prospective?

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2188r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1726r4.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2188r1.html


Detailed Proposal
As noted earlier, this paper proposes: (1), make_ptr_prospective() function (2) A usable_ptr<T> template class,
and (3) That atomic operations have the side effect of forgiving pointer invalidity, and (4) that volatile accesses have
the side effect of forgiving pointer invalidity.

A make_ptr_prospective() Function
This section describes a convenience mechanism for encapsulating the pair of reinterpret_cast<> operations used
to create a prospective pointer value as described in the “Consequences for pointer zap” section of P2434R2.

A make_ptr_prospective() function takes a pointer as its argument and returns the corresponding prospective
pointer value. This function can be based on a reinterpret_cast pair as suggested in P2434R2 (see the
“Consequences for pointer zap” section), for example, by using an uintptr_t data member private to
usable_ptr<T>. As suggested by the “Proposal” section of that same paper, the memcpy() function could instead be
used.

A usable_ptr<T> Template Class
This section describes a convenience mechanism for encapsulating the pair of reinterpret_cast<> operations used
to create a prospective pointer value as described in the “Consequences for pointer zap” section of P2434R2.

A usable_ptr<T> template class may be used to mark pointers in order to forgive pointer invalidity. The provenance
discussion gives a solid basis for this, but there is a need to treat normal user-supplied pointers as if they were of the
usable_ptr<T> template class. This template class can be based on a reinterpret_cast pair as suggested in
P2434R2 (see the “Consequences for pointer zap” section), for example, by using an uintptr_t data member private
to usable_ptr<T>. As suggested by the “Proposal” section of that same paper, the memcpy() function could instead be
used.

The name usable_ptr<T> has been criticized as not being particularly illuminating. Perhaps something like
prospective_provenance_ptr<T>, reevaluate_provenance_ptr<T>, regenerate_provenance_ptr<T>,
recompute_provenance_ptr<T>, update_provenance_ptr<T>, ptr_immune_to_zap<T>, or similar would
better seed further bikeshedding. But what is in a name?

Atomic Operations Forgive Pointer Invalidity
This section describes a convenience mechanism in which std::atomic<T*> has special behavior so that the pointer
values become prospective, as alluded to in the “Consequences for pointer zap” section of P2434R2.

Atomic operations have the side effect of producing prospective pointer values, thus forgiving pointer invalidity. One
way to think of this (due to Davis Herring) is that values stored in atomic pointers are treated as if the member of the
atomic<T*> type holding the pointer value is of integral type, with each access to that pointer value involving an
appropriate cast. This means that provenance is re-evaluated whenever a pointer is loaded from an atomic<T*>
object. It also means that whenever a pointer is stored to an atomic<T*> object, the implementation treats that



pointer as having been exposed. Note that this means that an implementation could choose to define usable_ptr<T>

in terms of atomic<T*>.

Although this is an attractive approach, it conflicts with a desire to treat all atomic operations as constexpr. We
therefore ask that atomic operations have the side effect of producing prospective pointer values without specifying the
mechanism, thus avoiding this conflict.

Although concerns were raised at the 2022 Kona meeting about possible optimization limitations from this approach, the
fact is that any thread might update a given atomic pointer at any time, making tracking of provenance through atomic
pointers of dubious utility at best.

Previous discussions have put forward the notion of “flattening” optimizations that combine all threads into a single
thread, with the notion that the implementation might perform exact analysis of this single thread. However, such
optimizations can generate infinite loops and deadlocks that would not be present in the original multithreaded code.
Given the oracular analysis required to make flattening work for locking and polled atomic operations, the additional
analysis required to forgive invalidity for atomic pointers should not be at all difficult by comparison.

Whenever a reference to a pointer value is used as the old value by a CAS operation (even a successful one that might
not be considered to modify the old value), that pointer value becomes a prospective pointer value.

As soon as a value is loaded from an atomic pointer, the resulting non-atomic pointer is immediately subject to any
future lifetime-end pointer invalidity. However, as noted earlier, implementations are not permitted to allow this invalidity
to affect the values of the value representation.

Volatile Accesses Forgive Pointer Invalidity
This section describes a convenience mechanism in which volatile operations have special behavior so that any
associated pointer values become prospective.

This means that volatile operations on pointers have the side effect of producing prospective pointer values, thus
forgiving pointer invalidity. One way to think of this is that the operations accessing such objects use
reinterpret_cast<> operations, as described in the “Consequences for pointer zap” section of P2434R2.

We believe this to be de facto status quo given the current semantics required of volatile by real-world device drivers.

Note that volatile accesses must necessarily forgive invalidity in order to support passing of virtual addresses to and
from I/O devices. To see this, keep firmly in mind that the OS kernel (written in C or C++) is communicating via memory
with device firmware (also written in C or C++). In other words, the value loaded from a volatile pointer might have
no relation to the value most recently stored to that same pointer, and all loads and stores are by C or C++ code.



Examples

LIFO Push
A simple (but according to the standard, buggy) atomic LIFO Push algorithm is as follows:

template <typename Node> class LIFOList { // Node must support set_next()

std::atomic<Node*> top_{nullptr};

public:

void push(Node* newnode) {

while (true) {

Node* oldtop = top_.load(); // step 1

newnode->set_next(oldtop); // step 2

if (top_.compare_exchange_weak(oldtop, newnode) return; // step 3

}

}

Node* pop_all() { return top_.exchange(nullptr); }

};

Again, note the use of the set_next() member function as opposed to direct access to the pointer linking the nodes in
the stack. This idiom is used in the wild, for example, in cases where instrumenting this member function assists with
debugging and performance-analysis tasks.

This code is buggy because it is subject to lifetime-end pointer zap:

Use Case 1: Invalid Pointer Use
The following sequence of events illustrates an invalid-pointer vulnerability given the current C++ standard:

● top_ holds pointer to node X1 at location A.
top_ --> A (address of X1)

● Thread T1 executes steps 1 and 2 of push(&X2).
X2.next_ --> A (address of X1)

● Thread T2 executes pop_all, deletes X1.
X1 deleted
top_ --> null

X2.next_ --> A (address of X1)
● Thread T1 executes step 3 of push(&X2) and uses invalid pointer A in .compare_exchange_weak.

Use Case 2: Zombie Pointer Dereference
The following sequence of events illustrates a zombie-pointer vulnerability given the current C++ standard:



● top_ holds pointer to node X1 at location A.
top_ --> A (address of X1)

● Thread T1 executes steps 1 and 2 of push(&X2).
X2.next_ --> A (address of X1)

● Thread T2 executes pop_all, deletes X1.
X1 deleted
top_ --> null

X2.next_ --> A (address of X1)
● Thread T2 allocates node X3 that happens to be at location A, and executes push(&X3)

top_ --> A (address of X3)
X2.next_ --> A (address of X1 and X3) <<<<< zombie pointer!!!

● Thread T1 executes step 3 of push(&X2) and .compare_exchange_weak succeeds
top_ --> &X2

X2.next_ --> A (address of X1 and X3)
● Thread T1 executes pop_all, dereferences X2.next_, which holds value A (address of X1 and X3), i.e., a

zombie pointer.

Fixing LIFO Push Using This Proposal
The required source-code changes are highlighted in yellow:

template <typename Node> class LIFOList { // Node must support set_next()

std::atomic<Node*> top_{nullptr};

public:

void push(Node* newnode) {

while (true) {

Node* oldtop = top_.load(); // step 1

newnode->set_next(oldtop); // step 2

if (top_.compare_exchange_weak(oldtop, newnode) return; // step 3

}

}

Node* pop_all() { return top_.exchange(nullptr); }

};

Alert readers will notice that there is no yellow code, that is, there are no code changes required.

The first use case is fixed in part by the convenience behaviors of std::atomic<T*>, which cause pointers loaded
from atomics to become provisional. Also required are the additional changes in P3347R0 (“Invalid/Prospective Pointer
Operations”), which proposes that pointer invalidity not modify value representation and also due to the advent of
prospective pointer values:

● top_ holds pointer to node X1 at location A.
top_ --> A (address of X1)

● Thread T1 executes steps 1 and 2 of push(&X2).
X2.next_ --> A (address of X1)



● Thread T2 executes pop_all, deletes X1.
X1 deleted
top_ --> null

X2.next_ --> A (address of X1)
● Thread T1 executes step 3 of push(&X2) and uses prospective pointer A in .compare_exchange_weak.

However, this atomic operation looks only at value representation, which must not be unaffected by the fact that
the pointer value is prospective, which fixes this example. If the .compare_exchange_weak operation fails, this
prospective pointer will remain unused, so no harm is done. Execution will proceed with the new value provided
by that failing .compare_exchange_weak operation.

The second use case is fixed in the same way:

● top_ holds pointer to node X1 at location A.
top_ --> A (address of X1)

● Thread T1 executes steps 1 and 2 of push(&X2).
X2.next_ --> A (address of X1, which is a prospective pointer value due to the make_ptr_provisional()

● Thread T2 executes pop_all, deletes X1.
X1 deleted
top_ --> null

X2.next_ --> A (address of X1)
● Thread T2 allocates node X3 that happens to be at location A, and executes push(&X3)

top_ --> A (address of X3)
X2.next_ --> A (address of X1 and X3) <<<<< still a prospective pointer value

● Thread T1 executes step 3 of push(&X2) and .compare_exchange_weak succeeds
top_ --> &X2

X2.next_ --> A (address of X1 and X3)
● Thread T1 executes pop_all, dereferences X2.next_, which holds value A (address of X1 and X3), i.e., a

prospective pointer value. However, the referenced object has now been fully constructed, so that this
prospective pointer value is now a valid pointer to the new object. Note that X3 has been exposed by virtue of
being pushed onto the stack, and having been stored in the atomic object top_. Had X3 not been exposed, the
implementation would have been under no obligation to use its provenance.

These two examples demonstrate use of the changes proposed in this paper.

User Tracking of Pointers and realloc()

Hans’s realloc() example compares the return value of realloc() with its argument to determine whether other
pointers to the pointed-to object need to be updated. Here is Hans’s original code:

q = realloc(p, newsize);

if (q != p)

update_my_pointers(p, q);

This code can be simplified as follows:



T* p;

q = realloc(p, newsize);

if (q != p)

p = q;

And then this simplified code can be fixed using usable_ptr<T> as follows:

usable_ptr<T> p;

q = realloc(p, newsize);
if (q != p)

p = q;

This will re-evaluate provenance on p according to its value representation any time that p would otherwise be an
invalid pointer.



Wording
The following sections describe adding a usable_ptr<T> class and a make_ptr_prospective() function to the
<memory> header, referring to N4993: C++ Working Draft.

Add usable_ptr<T> and make_ptr_prospective()
n.m Class usable_ptr [usable.ptr]

n.m.1 General [usable.ptr.general]

namespace std {
template <typename T>
class usable_ptr {

uintptr_t iptr; // exposition only
public:

// n.m.2, member functions
usable_ptr(T* ptr) noexcept;
T& operator*() const;
operator T*() const noexcept;

};

// n.m.3, non-member functions
template<class T> T* make_ptr_prospective(T* ptr) noexcept;

}

n.m.2 Member functions [usable.ptr.members]

usable_ptr(T* ptr = nullptr) noexcept;

Effects: Initializes iptr with reinterpret_cast<uintptr_t>(ptr).

T& operator*() const;

Returns: *get().

operator T*() const noexcept;

Returns: get().

T* operator->() const noexcept;

Returns: get().

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/n4993.pdf


T* get() const noexcept;

Returns: reinterpret_cast<T*>(iptr).

T* operator=(T* ptr) noexcept;

Effects: Assigns reinterpret_cast<uintptr_t>(ptr) to iptr.

[ Note: The result can differ from the original pointer value ([expr.reinterpret.cast]). -- end note ]

Returns: get() using the new value of iptr.

n.m.3 Non-member functions [usable.ptr.func]

template<class T> T* make_ptr_prospective(T* ptr) noexcept;

Returns: If ptr is a null pointer, nullptr. Otherwise,
reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(ptr)).

[ Note: The result can differ from ptr ([expr.reinterpret.cast]). -- end note ]

[ Note: Uses of uintptr_t define the behavior, which implementations lacking uintptr_t must also adhere to. ]

Atomic Operations And Prospective Pointers

# [atomics.types.pointer]
Add after paragraph 1:

When an operation on an atomic pointer would otherwise result in an invalid pointer, that result instead acquires a value
representation that has the same reference value as that of the invalid pointer as if make_ptr_prospective() had
been invoked.

Is it necessary to explicitly call out successful compare-exchange operations converting pointers referenced by the
expected argument from invalid to prospective? I believe that “result in” above covers this case, but figured that I
should check.

atomic_ref and Prospective Pointers

# [atomics.ref.pointer]

Add after paragraph 1:



When an operation on an atomic pointer would otherwise result in an invalid pointer, that result instead acquires a value
representation that has the same reference value as that of the invalid pointer as if make_ptr_prospective() had
been invoked.

Volatile Operations And Prospective Pointers

# [conv.lval]
Add after 7.3.2p3.2:

- Otherwise, if the glvalue is the result of a volatile access and the object to which the glvalue refers contains an
invalid pointer value p (6.7.5.5.3) of type T*, the conversion results in
reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(p)).

# [expr.ass]
Modify 7.6.19p2 as follows:

In simple assignment (=), the object referred to by the left operand is modified (3.1) by replacing its value
with the result of the right operand. If the left operand is a volatile access to an object of pointer type and the right
operand is an invalid pointer p (6.7.5.5.3) of type T*, the replacement value will be
reinterpret_cast<T*>(reinterpret_cast<uintptr_t>(p)).



History
P2414R5:

● Update references to P2434 to the latest version.
● Move Martin Uecker from author list to contributor list at his request.
● Apply SG1 feedback:

○ Add more alternative names for usable_ptr<T>.
○ Fix declaration of * operator for usable_ptr<T>.
○ Fix code for casting to volatile atomic<T>.
○ Reviewed P2434R1 for “words of power” for prospective provenance, but found none.

● Apply EWG feedback:
○ Rework atomics wording to avoid the need to otherwise duplicate all atomic operations in

[atomics.types.pointer].
○ Add similar wording to [atomics.ref.pointer].
○ Rework volatile wording (also in response to private communications with Davis Herring).

● Updated from “representation bytes” to “value representation” to track N4993: C++ Working Draft.
● Updated the definition of “prospective pointer value” to cover the possibility that multiple instances of an object

might be created and deleted before that pointer’s provenance is established.

P2414R4:
● Updated based on the June 24, 2024 St. Louis SG1 review:

○ Fix numerous typos.
○ Drop discussion of defining load, store, and arithmetic operations on invalid and prospective pointers to

allow them to be in their own paper.
○ Add function as well as class.

● Added draft wording and updated per Daniel Krügler feedback.
● Move the history section to the end of the paper.

D2414R4:
● Updated based on the June 24, 2024 St. Louis EWG review and forwarding of P2434R1: Nondeterministic

pointer provenance from Davis Herring and subsequent discussions:
○ The prospective-pointer semantics remove the need for a provenance fence, but add the need for a

definition of “prospective pointer”.
○ Leverage prospective pointer values.
○ Adjust example code accordingly.

P2414R3:
● Includes feedback from the March 20, 2024 Tokyo SG1 and EWG meetings, and also from post-meeting email

reflector discussions.
● Change from reachability to fence semantic, resulting in provenance_fence().
● Add reference to C++ Working Draft [basic.life].

P2414R2:
● Includes feedback from the September 1, 2021 EWG meeting.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/n4993.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2434r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2434r1.html


● Includes feedback from the November 2022 Kona meeting and subsequent electronic discussions, especially
those with Davis Herring on pointer provenance.

● Includes updates based on inspection of LIFO Push algorithms in the wild, particularly the fact that a LIFO Push
library might not have direct access to the stack node’s pointer to the next node.

● Drops the options not selected to focus on a specific solution, so that P2414R1 serves as an informational
reference for roads not taken.

● Focuses solely on approaches that allow the implementation to reconsider pointer invalidity only at specific
well-marked points in the source code.

P2414R1 captures email-reflector discussions:
● Adds a summary of the requested changes to the abstract.
● Adds a forward reference to detailed expositions for atomics and volatiles to the “What We Are Asking For”

section.
● Add a function atomic_usable_ref and change usable_ptr::ref to usable_ref. Change A2, A3, and

Appendix A accordingly.
● Rewrite of section B5 for clarity.

P2414R0 extracts and builds upon the solutions sections from P1726R5 and P2188R1. Please see P1726R5 for
discussion of the relevant portions of the standard, rationales for current pointer-zap semantics, expositions of
prominent susceptible algorithms, the relationship between pointer zap and both happens-before and
value-representation access, and historical discussions of options to handle pointer zap.

The WG14 C-Language counterparts to this paper, N2369 and N2443, have been presented at the 2019 London
and Ithaca meetings, respectively.

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2188r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1726r5.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2369.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2443.pdf


Appendix: Relationship toWG14 N2676
WG14’s N2676 “A Provenance-aware Memory Object Model for C” is a draft technical specification that aims to clarify
pointer provenance, which is related to lifetime-end pointer zap. This technical specification puts forward a number of
potential models of pointer provenance, most notably PNVI-ae-udi. This model allows pointer provenance to be
restored to pointers whose provenance has previously been stripped (for example, due to the pointer being passed out
of the current translation unit as a function parameter and then being passed back in as a return value), but the restored
provenance must correspond to a pointer that has been exposed, for example, via a conversion to integer, an output
operation, or direct access to that pointer’s value representation.

Note that compare_exchange operations access a pointer’s value representation, and thus expose that pointer. We
recommend that other atomic operations also expose pointers passed to them. We also note that given modern I/O
devices that operate on virtual-address pointers (using I/O MMUs), volatile stores of pointers must necessarily be
considered to be I/O, and thus must expose the pointers that were stored. In addition, either placing a pointer in an
object of type usable_ptr<T> or accessing a pointer as an object of type usable_ptr<T> exposes that pointer.
Finally, note that the changes recommended by N2676 would make casting of pointers through integers a good basis
for the usable_ptr<T> class template.

We therefore see N2676 as complementary to and compatible with pointer lifetime-end zap. We do not see either as
depending on the other.}

Appendix: Relation toWG21 P2434R2
WG21’s “P2434R2: Nondeterministic pointer provenance” proposes refinements to the definition of pointer zap. This
current paper does not conflict with that paper, but rather builds on top of that paper in order to provide more ergonomic
and less user-error-prone ways for the user to avoid pointer zap.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2676.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/p2434r2.html

