
Document number: P3331R0
Project: Programming Language C++
Audience: Library Evolution Working Group, Library Working Group

Nikita Sakharin, PJSC Sberbank <nikitasa1997@gmail.com>

Date: 2024-06-18

Accessing The First and Last Elements in
Associative Containers
Contents

1. Abstract
2. Motivation

1. Intuitive name for cumbersome expression
2. Member function contains added in C++20
3. Java and Rust

3. Design considerations
1. Member functions front() and back() for unordered associative containers
2. Naming scheme

1. first/last
2. min/max
3. front/back

4. Questions for Committee
5. Wording

1. Associative container requirements
2. Associative containers
3. Container adaptors

6. Implementation Experience
7. Acknowledgements
8. Reference

StackOverflow
Proposal
Java
Rust

1. Abstract

This paper proposes to add two member functions to associative containers (and adaptors that conform to
these requirements):

front(): get the first element in container
back(): get the last element in container

The effect of calling front() or back() for an empty container is undefined.

2. Motivation

2.1. Intuitive name for cumbersome expression

There are two popular questions about C++ on StackOverflow:

mailto:nikitasa1997@gmail.com

“Getting first value from map in C++”[1]

“Last key in a std::map”[2]

The following table provides answers to the questions and compares them to the code that uses the
proposed member functions. We assume that the variable m used in the table has type std::map<K, T>:

Expression
Semantic

before after
*m.begin() m.front()

first
element

(*m.begin())->first m.front().first key
(*m.begin())->second m.front().second mapped

*m.rbegin()
*prev(m.end())
*--m.end()

m.back()

last

element

(*m.rbegin())->first
*prev(m.end())->first
(*--m.end())->first

m.back().first key

(*m.rbegin())->second
*prev(m.end())->second
(*--m.end())->second

m.back().second mapped

Although the expressions in the leftmost column have already become idiomatic, they can be difficult to
read and cumbersome.

2.2. Member function contains added in C++20

Exactly the same reason was behind adding contains member function to (unordered) associative
containers in C++20.

There was popular question (with duplicate) on StackOverflow before C++20:

“How to find if a given key exists in a std::map”[3]

“Determine if map contains a value for a key?”[4]

Prior to C++20, the following code was often used to check for the presence of a given key in the
(unordered) associative container m:

if (m.find(key) != m.end()) {
 // m contains pair with key equal to given
}

There is a more elegant way, but the name of the member function is confusing:

if (m.count(key)) {
 // m contains pair with key equal to given
}

The Proposal “Checking for Existence of an Element in Associative Containers”[5] was written by
Mikhail Maltsev to address this issue. This Proposal was merged to C++20 and the contains member

https://stackoverflow.com/questions/4826404/getting-first-value-from-map-in-c
https://stackoverflow.com/questions/289715/last-key-in-a-stdmap
https://stackoverflow.com/questions/1939953/how-to-find-if-a-given-key-exists-in-a-stdmap
https://stackoverflow.com/questions/3136520/determine-if-map-contains-a-value-for-a-key
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0458r2.html

function was added to (unordered) associative containers in order to give an intuitive name and shorten
the cumbersome expression:

Prior C++20 Since C++20

if (m.find(key) != m.end()) {
 // m contains pair with key equal to given
}

if (m.contains(key)) {
 // m contains pair with key equal to given
}

if (m.count(key)) {
 // m contains pair with key equal to given
}

2.3. Java and Rust

The SortedSet interface in Java (implemented by the TreeSet class) has the first() and last()
methods to get the first[6] and last[7] elements, respectively.
Similarly to Java, the BTreeSet structure in Rust also has first() and last() methods to get the
first[8] and last[9] element, respectively.

3. Design considerations

3.1 Member functions front() and back() for unordered associative containers

There is no use for front() and back() member functions for unordered associative containers
(std::unordered_map, std::unordered_multimap, std::unordered_set, std::unordered_multiset). They
organize their elements according to hash values rather than keys order used by associative containers
(std::map, std::multimap, std::set, std::multiset).

3.2 Naming scheme

Especial attention should be paid to naming. There are 3 possible schemes described below.

3.2.1 first/last

In the <algorithm> header file, the words first and last are often used as part of function (not class
member) names:

std::ranges::find_last
std::ranges::find_last_if
std::ranges::find_last_if_not
std::find_first_of
std::ranges::find_first_of
std::ranges::fold_left_first
std::ranges::fold_right_last
std::ranges::fold_left_first_with_iter

Also, in the <string> class, the words first and last are often used as part of member function names:

std::basic_string::find_first_of
std::basic_string::find_first_not_of
std::basic_string::find_last_of
std::basic_string::find_last_not_of

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/SortedSet.html#first()
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/SortedSet.html#last()
https://doc.rust-lang.org/std/collections/struct.BTreeSet.html#method.first
https://doc.rust-lang.org/std/collections/struct.BTreeSet.html#method.last

Even more often, first and last occur as function parameter names in the <algorithm> header, defining
the beginning and end of the range to be iterated over.

As already noted, in Java[6,7] and Rust[8,9], the corresponding methods are named exactly this way.

3.2.2 min/max

According to the given comparator, the first element is the smallest and the last element is the largest.

3.2.3 front/back

There are 5 sequence containers in C++ STL:

std::array
std::deque
std::forward_list
std::list
std::vector

Each of these containers, with the only exception of forward_list, has two member functions: front() and
back().

Classes std::basic_string, std::basic_string_view, std::span also have these member functions.

There are 12 functions (not class members) declared in section § 25.7 [iterator.range] of the Standard:

std::begin
std::end
std::cbegin
std::cend
std::rbegin
std::rend
std::crbegin
std::crend
std::size
std::ssize
std::empty
std::data

These functions unify the handling of arrays in the C style and the containers from the STL. Therefore, if
the Committee is considering expanding this section by adding the functions std::front and std::back, it
would makes sense to name the proposed member functions in accordance with this scheme.

4. Questions for Committee

1. Which naming scheme should be used?

5. Wording

Based on N4981, assuming the third naming scheme (front/back) is used.

5.1 Associative container requirements

Add to section § 24.2.7.1 [associative.reqmts.general] the following:

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/SortedSet.html#first()
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/SortedSet.html#last()
https://doc.rust-lang.org/std/collections/struct.BTreeSet.html#method.first
https://doc.rust-lang.org/std/collections/struct.BTreeSet.html#method.last
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2024/n4981.pdf

b.front()
 Result: reference; const_reference for constant b.
 Effects: Equivalent to: return *b.begin();

b.back()
 Result: reference; const_reference for constant b.
 Effects: Equivalent to: return *--b.end();

5.2 Associative containers

To each section from the list:

§ 24.4.4.1 [map.overview]
§ 24.4.5.1 [multimap.overview]
§ 24.4.6.1 [set.overview]
§ 24.4.7.1 [multiset.overview]

Add the following:

reference front();
const_reference front() const;

reference back();
const_reference back() const;

5.3 Container adaptors

To each section from the list:

§ 24.6.9.2 [flat.map.defn]
§ 24.6.10.2 [flat.multimap.defn]
§ 24.6.11.2 [flat.set.defn]
§ 24.6.12.2 [flat.multiset.defn]

Add the following:

reference front();
const_reference front() const;

reference back();
const_reference back() const;

6. Implementation Experience
The implementation of these functions is exactly the code that they are supposed to replace. To each class
from the list:

std::map
std::multimap
std::set
std::multiset
std::flat_map
std::flat_multimap
std::flat_set
std::flat_multiset

Add the following:

reference front() {
 return *this->begin();
}

const_reference front() const {
 return *this->cbegin();
}

reference back() {
 return *--this->end();
}

const_reference back() const {
 return *--this->cend();
}

7. Acknowledgements

Many thanks to Antony Polukhin for assistance in preparation of this paper.

8. Reference

StackOverflow:

1. Getting first value from map in C++
2. Last key in a std::map
3. How to find if a given key exists in a std::map
4. Determine if map contains a value for a key?

Proposal:

5. Checking for Existence of an Element in Associative Containers

Java:

6. SortedSet.first
7. SortedSet.last

Rust:

8. BTreeSet.first
9. BTreeSet.last

https://stackoverflow.com/questions/4826404/getting-first-value-from-map-in-c
https://stackoverflow.com/questions/289715/last-key-in-a-stdmap
https://stackoverflow.com/questions/1939953/how-to-find-if-a-given-key-exists-in-a-stdmap
https://stackoverflow.com/questions/3136520/determine-if-map-contains-a-value-for-a-key
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0458r2.html
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/SortedSet.html#first()
https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/util/SortedSet.html#last()
https://doc.rust-lang.org/std/collections/struct.BTreeSet.html#method.first
https://doc.rust-lang.org/std/collections/struct.BTreeSet.html#method.last

