
Document Number: P3275R0

Date: 2024-05-22

Reply-to: Matthias Kretz <m.kretz@gsi.de>

Audience: LEWG

Target: C++26

Replace simd operator[] with getter and
setter functions — or not

ABSTRACT

There was discussion in LEWG in Kona ’23 whether operator[] is the right interface for read-

ing and writing individual elements of a basic_simd or basic_simd_mask. This paper discusses the
underlying issue and explores alternatives.

CONTENTS

1 Changelog 1
2 Straw Polls 1
3 Motivation 1

3.1 proxy references in C++ make me :’(. 1
3.2 Why, though? lvalue ref is fine, no? . 2
3.3 simd<UDT> . 2

4 Replacement exploration 3
4.1 Making the case for: a read-only subscript is sufficient 3
4.2 Is simd as a read-only range a sufficient replacement? 4
4.3 Allowing for writable subscript after C++26 4
4.4 Discussion . 6
4.5 Recommendation . 6

5 Proposed polls 7
6 Wording 8
A Acknowledgments 8

P3275R0 1 Changelog

1 CHANGELOG

(placeholder)

2 STRAW POLLS

(placeholder)

3 MOTIVATION

3.1 proxy references in C++ make me :’(

[simd.general]
A data-parallel type consists of one or more elements of an underlying vectorizable type, called the element

type. […] The elements in a data-parallel type are indexed from 0 to width − 1.

Since that’s a given, we sure want to be able to access individual elements. basic_simd and

basic_simd_mask implement operator[] for element access:

std::simd <int > x = 0;
x[0] = 1; // OK
int y = x[0]; // OK
x[0] = y; // OK
auto z = x[0]; // OK , but: #1
z = 2; // ill - formed #2

The basic_simd and basic_simd_mask types hold values of their value_type, but they typi-

cally don’t hold objects of value_type. Consequently, both operator[] overloads cannot return

an lvalue-reference. The const overload therefore returns a prvalue and the non-const overload

returns a proxy reference. The proxy reference implements assignment and compound-assignment

operators for assigning through to the selected element of the basic_simd/basic_simd_mask. Thus,
line #1 above deduces the type of z to be that proxy reference type. The declaration of z does not

look like a reference at all. Therefore, assignment in line #2 is ill-formed, in order to avoid the sur-

prising behavior of modifying x.
In any case, the fact that a proxy reference is used instead of an lvalue-reference, makes sub-

scripting into a simd error-prone.Whenever the subscript expression is used in a function argument

with deduced type, bad things are likely to happen.1 If we had a language feature to decay the proxy

reference type to value_type on deduction, then a lot of problems could be avoided. But we don’t

have that feature and there’s no reasonable chance to get it for C++26.

1 Just recall vector<bool>::reference.

1

P3275R0 3 Motivation

3.2 why, though? lvalue ref is fine, no?

With GCC today you can write

using simd [[gnu :: vector_size (16)]] = int;

simd x = {};
int& ref = x[0];
x += 1;
ref = 2;

If that’s possible, then std::simd<int>’s subscript operator can simply return an lvalue reference,

no?While that’s true for this example, it’s not true in general. For one, Clang is fairly strict about not

handing out lvalue references. I.e. the above code does not compile. But more importantly, for some

targets or implementations an intrinsic type might need to be used, which doesn’t allow forming

lvalue references to its elements either. Also basic_simd does not prohibit an implementation to

use a different element type internally for its SIMD registers. E.g. an efficient implementation of

8-bit and 16-bit integers on the (outdated) Intel Knights architecture required the use of 32-bit

integer SIMD registers and instructions. It is also conceivable that implementations will implement

simd<std::float16_t> using 32-bit float SIMD registers for targets without hardware support.

The situation for basic_simd_mask is much clearer. There are three typical storage formats for

masks in current hardware:

1. Full SIMD registers where either all bits are 0 or all bits are 1 for the complete number of

value bits.

2. Bitmasks use one bit per mask element. This is analogue to vector<bool> and bitset not

being able to return lvalue references to bool.

3. Mask registers that use one bit per value type byte. This is similar to the above, where we

would need to return a reference to a single bit (just at a different position).

Therefore, even if Clang would implement GCC’s behavior with regard to forming lvalue references

to vector elements, that doesn’t help for basic_simd_mask.

3.3 simd<udt>

If we want to extend basic_simd’s vectorizable types to user-defined types, we need to consider

a consistency issue: simd<T> applies every operator and operation element-wise (unless the name

clearly hints at a horizontal operation).

While I don’t think e.g. simd<array<short, 4>, 2> is a useful thing, it’s also not completely

crazy. However, its only interesting semantics in a basic_simd is data-parallel subscripting (apply

operator[] element-wise):

2

P3275R0 4 Replacement exploration

using xyzw = std::array <short , 4>;
std::simd <xyzw , 2> a = {};
std::simd <short , 2> w = a[3]; // yes , simd not array : element -wise subscript !
a[3] = w + std:: integral_constant <short , 1 >();

(This is neither going to be great for performance, nor is it clear whether we should implement

such a “data-parallel subscript”, which requires a proxy reference again.)

This example is not meant to motivate an element-wise operator[] for simd. It’s meant to show

that the current simd::operator[] is inconsistent with the “apply operators element-wise” rule.

Applying operator[] element-wise on a simd<int> is obviously ill-formed since int doesn’t have

a subscript operator. Consequently, maybe the current P1928 basic_simd and basic_simd_mask
shouldn’t overload operator[]?

4 REPLACEMENT EXPLORATION

If we only want to get rid of the proxy reference but are not concerned about the consistency

argument in Section 3.3, then we could consider a read-only subscript operator. We still have two

choices:

read-only forever keep design space open

class simd {
value_type operator [](simd-size-type i) const ;

};

std::simd <int > v;
int x = v[0];

class simd {
value_type operator [](simd-size-type i) const ;
void operator [](simd-size-type) = delete ;

};

std::simd <int > v;
int x = std:: as_const (v)[0];

4.1 making the case for: a read-only subscript is sufficient

A common use case for the subscript operator arises through the generator constructors of ba-
sic_simd and basic_simd_mask. With P1928 you would write a permutation like this:

simd <int > v;
simd <int > reversed ([&](int i) { return v[v.size - i - 1]; };

The generator constructor often reads from another basic_simd and since it needs to compute a

scalar, it typically only reads one element at a time. And it never updates a value via subscripting;

the update happens by constructing a whole new basic_simd (with a good chance of the compiler

producing vector instructions). Making such code any harder to write is not necessarily helping

users. The above example is intuitively understandable (well, the subscripting part, the generator

constructor maybe less so).

3

P3275R0 4 Replacement exploration

Therefore, it seems like the simplest and still fairly usable “fix” is to remove the non-const sub-

script overload.

There is some curious existing practice in GCC supporting this approach:

using simd [[gnu :: vector_size (16)]] = int;

constexpr simd f(simd x) {
x[0] = 1;
return x;

}

constexpr simd test0 = f(simd {}); // ill - formed : x[0] = 1 is not a constant expression

constexpr simd g(simd x) {
x = simd {1, x[1] , x[2] , x [3]};
return x;

}

constexpr simd test1 = f(simd {}); // OK

I.e. assignment through vector subscripts cannot be used in constant expressions. Instead a com-

plete new vector must be constructed. If the non-const subscript operator is removed from ba-
sic_simd and basic_simd_mask, then GCC’s restriction for constant expressions becomes std::
basic_simd’s behavior.

4.2 is simd as a read-only range a sufficient replacement?

If basic_simd and basic_simd_mask have a begin() and end() iterator, making them read-only

random-access ranges, then accessing an element is equivalent to accessing a scalar from an ini-
tilizer_list:

std::simd <int , 4> v;
auto v0 = v. begin ()[0];
auto v3 = v. begin ()[3];

In a very similar approach, making basic_simd convertible to array allows subscripting through

the array:

std::simd <int , 4> v;
std:: array a = v;
a[1] += 1;
v = a;

4.3 allowing for writable subscript after C++26

If we want to keep the design space open while still overloading basic_simd ::operator[], then
subscripting would become even more awkward to use. Consequently, basic_simd and basic_-

4

P3275R0 4 Replacement exploration

simd_mask should rather have no subscript operator at all for C++26. In the following exploratory

examples, I will use the function names get and set as placeholder names. I also added a line

to every example, considering the same syntax for the degenerate case of an int instead of a

simd<int>.

1. P1928 status quo:

std::simd <int > v;
v[0] += 1;

int x;
x[0] += 1; // nope

2. set(index, value) member function:

std::simd <int > v;
v.set (0, 1 + v.get (0));

int x;
x.set (0, 1 + x.get (0)); // nope

3. set(object, index, value) non-member function:

std::simd <int > v;
set(v, 0, 1 + get(v, 0));

int x;
set(x, 0, 1 + get(x, 0)); // not impossible

4. explicit proxy reference without assignment and conversion operators:

std::simd <int > v;
element_reference (v, 0). set (1 + element_reference (v, 0). get ());

int x;
element_reference (x, 0). set (1 + element_reference (x, 0). get ()); // not impossible

5. explicit proxy reference with operators:

std::simd <int > v;
element_reference (v, 0) += 1;

int x;
element_reference (x, 0) += 1; // not impossible

5

P3275R0 4 Replacement exploration

6. make degenerate size 1 basic_simd<T> convertible to/from T (and basic_simd_mask to/from
bool)2

std::simd <int > v;
int v0 = permute <1 >(v, [](int) { return 0; });
v0 += 1;
v = permute <v.size >(simd_cat (v, v0), [](int i) { return i == 0 ? v.size : i; });

// not impossible :
int x;
int x0 = permute <1 >(x, [](int) { return 0; });
x0 += 1;
x = permute <1 >(simd_cat (x, x0), [](int i) { return i == 0 ? 1 : i; });

4.4 discussion

In the example above I chose the problem of updating the value of a single element of a basic_simd,
to showcase how much compound assignment can aid in readability. In my opinion, the missing

compound read-modify-write syntax in examples 2, 3, and 4 is a huge downside.

Further observations on the above examples:

• Making simd<T, 1> convertible to T seems interesting, but not like a solution to this problem.

• set(x, y, z) is not intuitive whereas x[y] = z cleary states the intended operation.

• x.set(y, z) is better than set(x, y, z) in terms of “what is set where?”, but ideally a “set”

function would only take a single argument: the new value.

• This is achieved by example 4, which creates an object that identifies a single element, thus

allowing set to only take the new value as function argument.

• We can pass lvalue-references around, (e.g. int& x = data[0];). Examples 2 and 3 don’t al-

low an equivalent for basic_simd elements. 4 and 5 howeverwould act as a drop-in for lvalue

references and thus would allow modifying a single basic_simd element “from a distance”.3

The ability to write simd-generic element access is not super important, but certainly aids against

code duplication in some situations.

4.5 recommendation

I still believe the use of the subscript operator for basic_simd and basic_simd_mask is fairly intuitive
and natural. From experience I would guess that read-only subscript is 90% if not 99% of the typical

2 permute<1> returns a simd<int, 1>, which could be implicitly convertible to int.
3 Typically not a good idea, though.

6

P3275R0 5 Proposed polls

current use of subscripting. I may be biased from writing many unit tests, and nobody actually uses

assignment through subscripts (or if they do, a generator constructor would have been the better

solution anyway). Therefore, I recommend to simply remove the non-const subscript operator from

basic_simd and basic_simd_mask.
If that’s not an acceptable outcome, my next recommendation would be the addition of an

element_reference type that implements all (compound) assignment operators (but without re-

stricting them to rvalue, like the current implicit proxy reference type does). Basically make example

5 work.

5 PROPOSED POLLS

All of these polls are phrased against the status-quo (P1928). Thus no concensus on all polls implies

we keep the basic_simd and basic_simd_mask subscript operators with proxy-reference on non-

const subscripts.

Poll: Remove non-const operator[] from basic_simd and basic_simd_mask. (⇒ Subscripting will

stay read-only forever.)

SF F N A SA

Poll: Remove all subscript operators if we make basic_simd and basic_simd_mask random-access

ranges (TBD). (⇒ status-quo until paper making basic_simd and basic_simd_mask a range lands.)

SF F N A SA

Poll: Replace subscript operators by member get and set functions (names TBD).

SF F N A SA

Poll: Replace subscript operators by non-member get and set functions (names TBD).

SF F N A SA

Poll: Replace subscript operators by element_reference and set functions (names TBD).

SF F N A SA

7

P3275R0 6 Wording

6 WORDING

TBD after deciding on the preferred solution.

A ACKNOWLEDGMENTS

Daniel Towner and Ruslan Arutyunyan contributed to this paper via discussions / reviews. Thanks

also to Jeff Garland for reviewing.

8

	1 Changelog
	2 Straw Polls
	3 Motivation
	3.1 proxy references in C++ make me :'(
	3.2 Why, though? lvalue ref is fine, no?
	3.3 simd<UDT>

	4 Replacement exploration
	4.1 Making the case for: a read-only subscript is sufficient
	4.2 Is simd as a read-only range a sufficient replacement?
	4.3 Allowing for writable subscript after C++26
	4.4 Discussion
	4.5 Recommendation

	5 Proposed polls
	6 Wording
	A Acknowledgments

