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Abstract

In this paper, we propose to specify undefined behaviour that manifests at runtime to be a
contract violation. Core language constructs that can exhibit undefined behaviour are respecified
as having implicit contract assertions that can be evaluated with the same evaluation semantics
as the explicit contract assertions proposed in the Contracts MVP ([P2900R7]). We further
propose to add the assume semantic to the four evaluation semantics in [P2900R7]. Violating an
assertion with the assume semantic is undefined behaviour and is, for operations with implicit
contract assertions, equivalent to the behaviour of those operations in C++23, thus providing
backwards-compatibility without performance regressions. The other four evaluation semantics
map to different strategies to reduce the probability of undefined behaviour at runtime, such
as hardened builds and sanitisers. Our proposed framework replaces the concept of erroneous
behaviour introduced in [P2795R5] and paves the way for a safer and more secure C++ Standard.

1 Introduction

1.1 Safety and security in C++

Improving safety and security is one of the main challenges for the future evolution of the C++
language ([Bastien2023]). According to the definition in [Carruth2023], safety is characterised by
invariants or limits on program behaviour in the face of bugs; safety bugs are bugs where some aspect
of program behaviour has no invariants or limits. According to the definition of [Abrahams2023], a
safe operation is one that cannot cause undefined behaviour; a safe language has only safe operations.
According to these definitions, C++ is not a safe language1: both the core language and the C++
standard library allow for a multitude of ways in which a well-formed C++ can exhibit unbounded
undefined behaviour, that is, situations in which the C++ standard places no restrictions on the
behaviour of the program. Bugs that trigger undefined behaviour cause stability issues and can be
exploited by threat actors, thereby causing security vulnerabilities.

1Note that our usage of the terms “safe language” and “safe operation” meaning “no unbounded undefined
behaviour in the face of bugs” contrasts with the concept of functional safety, which is closer to the colloquial usage of
the term “safe” and can be defined as the property of a system — rather than a computing operation or a programming
language — to not cause real harm in the face of bugs. Under the latter definition, there is no “safe language”, only
some languages that are easier to use safely than others.
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Of particular concern is undefined behaviour due to invalid memory accesses, which was found by
large companies such as Google and Microsoft to be responsible for ~70% of security vulnerabilities
([NSA2022], [CR2023]). This led various government agencies to start advocating for an industry-
wide shift away from C and C++ and towards memory-safe languages such as Rust ([CISA2023],
[ONCD2024]), triggering a debate about the future of C++.

1.2 Current approaches

Various approaches exist to reduce the probability of undefined behaviour occurring in a C++
program during runtime. Some of them are good engineering practices that are not specific to C++,
such as code reviews, enforcing coding guidelines such as MISRA or the C++ Core Guidelines, and
automated testing targeting different aspects of the code (unit tests, fuzz tests, etc). When applied
correctly, these techniques can significantly reduce the amount of undefined behaviour that can
occur during runtime. In addition, it can be effective to use static analysis tools (such as Coverity,
Sonar, PVS-Studio, etc.) in order to statically detect reachable code-paths which exhibit undefined
behaviour if executed, or at runtime, by using a sanitiser (such as ASan and UBSan) to stop the
program in case it detects such a violation of the rules of the abstract machine.
In addition, the ISO C++ committee, as the body owning the specification of the C++ programming
language, is in the unique position to be able to evolve this specification to eliminate sources of
undefined behaviour normatively for all conforming implementations of C++. Given that undefined
behaviour in C++ is fundamentally a runtime property, two approaches are possible. First, by
making the program ill-formed if we can statically detect a code path that would exhibit undefined
behaviour if taken. Second, by specifying the range of behaviours that such a code path can have
once it breaches the defined behaviour of the abstract machine, therefore mitigating it at runtime.
These two approaches complement each other.

1.3 Runtime handling of undefined behaviour

In principle, it would be possible to evolve C++ such that by default, undefined behaviour can no
longer occur, because any potentially unsafe construct would be rejected at compile time. The Rust
programming language is a successful proof of concept for this approach. However, doing so would
break practically every useful program that exists in C++ today, and therefore does not seem to be
a realistic prospect [Doumler2023].
For example, in order to reject all invalid memory accesses at compile time, we would need to make
any code ill-formed that allows multiple pointers or references to the same object to exist, unless it
can be statically proven that all such pointers or references are const. This effectively requires an
approach like Rust’s borrow checker or Hylo’s mutable value semantics, thereby disqualifying any
C++ code that returns a non-const reference from a function, uses random access, doubly-linked
lists, etc. This might be viable for some new code (where potentially unsafe constructs could be
contained in unsafe blocks and kept to a minimum like in Rust, and the rest of the code written
using the safe approach), but not for existing code.
Therefore, to address safety in C++, we should follow a two-pronged approach. On the one hand, we
should aim to make more undefined behaviour diagnosable at compile time, wherever the tradeoffs
for doing so are favourable. On the other hand, we also need to accept that some undefined
behaviour will remain undiagnosable at compile time for the foreseeable future, and will have to be
handled at runtime instead. The aim of this paper is to focus entirely on such runtime handling,
while leaving compile-time detection to other ongoing efforts such as the safety profiles proposed in
[P2687R0].
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1.4 The role of Contracts

[P2900R7] proposes to add a Contracts facility to C++. While this proposal is currently only a
minimum viable product (MVP) with a limited number of features, it has been explicitly designed
with extensibility in mind. This paper proposes one such extension.
It has been stated that such an extensible Contracts facility is a panacea that has the potential
to solve the undefined behaviour problem in C++. This is a misconception. Contracts are the
wrong tool for making all undefined behaviour diagnosable at compile time. However, for all the
undefined behaviour not diagnosed at compile time, Contracts provides a comprehensive framework
for handling such undefined behaviour at runtime. The key idea is to respecify specific kinds of
undefined behaviour to be a contract violation. This allows us to formally speak of incorrect code
and to define its behaviour in the C++ Standard, rather than leaving the behaviour undefined.
This behaviour can be configured by the user (issue a diagnostic message, terminate the program,
ignore the contract violation, etc.) by choosing one of several standard evaluation semantics.
Recently, the committee has adopted the proposal ([P2795R5]) into the C++26 working draft, which
follows essentially the same motivation. The proposal makes reading the value of an uninitialised
variable well-defined by respecifying such reads as erroneous behaviour, another term for behaviour
that is incorrect, but not undefined. When encountering erroneous behaviour, an implementation is
allowed and encouraged to diagnose the defect, but is also allowed to ignore it and treat the read as
valid — a variation of having different contract evaluation semantics. The paper goes on to say
that other undefined behaviour can be respecified to be erroneous behaviour instead.
As we will show in this paper, the semantics provided by erroneous behaviour are essentially a
subset of the semantics that the Contracts framework provides. We can therefore entirely subsume
erroneous behaviour into contract violation handling. As a result, we get a unified framework for
reasoning about and handling runtime undefined behaviour that is more generic and flexible than
erroneous behaviour and has several other advantages over the approach proposed in [P2795R5]
that is currently in the C++26 Working Draft. Our proposed framework also addresses the last
use case wg21.otherfeatures listed in [P1995R1], the “Contracts — Use Cases” paper that laid the
foundation for SG21’s work.

2 The Contracts MVP

2.1 Explicit contract assertions

The current Contracts MVP [P2900R7] proposes to add contract assertions, i.e. syntactic constructs
such as pre(x), post(x), and contract_assert(x), where x is a boolean expression, to express
conditions that are expected to be true in a correct program. For example, we can annotate the
subscript operator in a vector class with a precondition assertion to catch out-of-bounds access,
one of the most commonly exploited sources of security vulnerabilities due to runtime undefined
behaviour:

T& vector::operator[](size_t index)
pre (index < size()) { // explicit contract assertion

return data[index];
}

In the remainder of this paper, we will call the contract assertions proposed by [P2900R7] explicit
contract assertions as they are code explicitly added by the user.

2.2 Evaluation semantics

Contract assertions can be either ignored or checked. When checked, the predicate x is evaluated; if
it evaluates to false, a contract violation has been detected. In general, a contract violation means
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that the program is incorrect (i.e. has a bug), but the behaviour of the program is nevertheless
well-defined at this point.
What exactly happens when a contract assertion is evaluated is determined by the chosen contract
evaluation semantic. [P2900R7] proposes four such semantics. These are, from strictest to least
strict:

— quick_enforce: evaluate the contract predicate; if a contract violation occurs, immediately
terminate the program.

— enforce: evaluate the contract predicate; if a contract violation occurs, call the contract-
violation handler. When the contract-violation handler returns, terminate the program.

— observe: evaluate the contract predicate; if a contract violation occurs, call the contract-
violation handler. When the contract-violation handler returns, continue execution.

— ignore: do not evaluate the contract predicate.

We call ignore a non-checking semantic and the other three checking semantics. Additionally, we
say that quick_enforce and enforce are enforcing semantics, i.e. semantics that will not allow
the code to continue execution past a contract violation. This prevents the program from continuing
into code that might have undefined behaviour. Consider, for example, a program that causes an
out-of-bounds access with our implementation of vector::operator[] from above:

int main() {
vector<int> v;
std::cout << v[666]; // no UB here if using an enforcing semantic!

}

Note that the above is different from using a function without preconditions such as vector::at
because C++ does not force us to use an enforcing semantic; if we choose a non-enforcing semantic
such as ignore or observe, the behaviour of the above program is undefined. Whether the
implementation of vector::operator[] is safe therefore depends on the chosen evaluation semantic.
In a safety-critical context, we could require that an enforcing semantic must be chosen to compile
the program. However, using contract assertions in this way does not preclude compiling the code
with different semantics in different contexts, and does not require macros to achieve such flexibility.

3 The proposal

3.1 Implicit contract assertions

The core idea of this proposal is that we can apply the Contracts framework not only to explicit
contract assertions, but also to core language constructs that may have undefined behaviour when
evaluated, by treating such undefined behaviour as a contract violation.
Consider, for example, signed integer addition. When adding two ints a and b, instead of saying
that the behaviour is undefined if the result of the addition is not representable by int, we can
say that signed integer addition has an implicit precondition assertion that the addition will not
overflow. In other words, if we consider signed integer addition to be performed by notionally calling
a built-in operator+(int, int), this built-in operator will behave as if it was declared with the
following precondition assertion:

int operator+(int a, int b)
pre ((b >= 0 && a <= INT_MAX - b) // implicit precondition assertion

|| (b < 0 && a >= INT_MIN - b));
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We call this precondition assertion implicit because it has not been added to the program in the
form of an explicit, [P2900R7] style precondition assertion, but is instead implicitly generated by
the compiler.
Similarly to signed integer overflow, we can replace any other occurrence of “for operation X, if
Y is false, the behaviour is undefined” in the C++ Standard with “operation X has the implicit
precondition that Y is true”, and treat a violation of such an implicit precondition assertion as a
contract violation, in the same way as for explicit precondition assertions.

3.2 Safe fallback behaviour

We can classify all kinds of undefined behaviour in C++ into two types: those for which we can
define a useful safe fallback behaviour for the error case, and those for which we cannot.
For example, for signed integer addition, a safe fallback behaviour is that the result of the addition
will be some valid number. We could additionally specify the value of this number, for example, by
specifying that signed integer overflow wraps or saturates, but to remove the undefined behaviour
it is entirely sufficient to say that it will be an unspecified but valid value. Using this number
in a calculation will most likely be incorrect (i.e. a bug), but it will no longer be undefined. If
we consider integer addition as a built-in operator as above, we can specify that the safe fallback
behaviour is, notionally, what the function body of this built-in operator will execute.
As another example, when reading an indeterminate value, a safe fallback behaviour is to instead
read some unspecified but valid value. Again, we could be more specific (for example, we could
instead read zero) but there is no need to do so.
Note that all cases of undefined behaviour that according to [P2795R5] could be treated as erroneous
behaviour could instead be specified as operations with an implicit contract assertion and a safe
fallback behaviour which serves as the notional implementation of this operation.

3.3 Adding the assume semantic

In many cases, safe fallback behaviours will have significant runtime overhead compared to the
status quo. The user might therefore choose to enable them in certain contexts such as debug builds
or “hardened” builds for safety-critical applications, but prefer the current C++23 behaviour in
other contexts. For example, in many performance-sensitive applications, not optimising on the
assumption of no integer overflow is likely to cause an unacceptable performance penalty.
In order for C++ to remain successful for high-performance applications, we therefore need to
provide the choice between the safe fallback behaviour and the existing, unsafe behaviour today.
We further need to provide this choice separately for different kinds of undefined behaviour. In the
Contracts framework, such a choice can be provided by offering different evaluation semantics.
If we want to offer the current C++23 behaviour as an option to avoid unacceptable performance
regressions, we need to add a fifth evaluation semantic to the four possible evaluation semantics in
[P2900R7]:

— assume: do not evaluate the contract predicate; if it would not evaluate to true, the behaviour
is undefined.

The assume semantic is a non-checking semantic. Unlike the other non-checking semantic, ignore,
the assume semantic allows the compiler to optimise the program based on the assumption that
the predicate of the given contract assertion is always true. When applied to implicit contract
assertions, the assume semantic is therefore equivalent to the current specification for core language
undefined behaviour in C++23 and earlier, thereby offering the required backwards-compatibility as
an option when selecting the evaluation semantic for a particular kind of implicit contract assertions.
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3.4 Mapping evaluation semantics to implementation strategies

We follow the model in [P2900R7] that the selection of evaluation semantics is entirely implementation-
defined, i.e. any implementation could choose any of these semantics for any operation and still
be conforming. That is, no implementation is required to check any implicit contract assertions;
however, if it chooses to do so, and any such check fails, we can now reason about the behaviour of
the program within the scope of the C++ Standard, and no longer have to treat it as undefined
and therefore unsafe.
Using again the signed integer overflow example, we can establish a mapping between the five
possible evaluation semantics and different possible implementation strategies for mitigating this
particular kind of undefined behaviour:

— The GCC compiler option -ftrapv, which aborts the program on signed integer overflow, is a
conforming implementation of the quick_enforce evaluation semantic;

— A sanitiser which detects signed integer overflow and prints a diagnostic is a conforming
implementation of the enforce or observe evaluation semantic (depending on whether the
process is terminated or execution continues after printing the diagnostic);

— The GCC compiler option -fwrapv, which implements signed integer addition using wrap
around using twos-complement representation, is a conforming implementation of the ignore
evaluation semantic, which silently executes the safe fallback behaviour;

— The default behaviour in C++23 and earlier, which is to assume that signed integer addition
can never overflow, and optimise based on this assumption when the appropriate optimisation
flags are selected by the user, is a conforming implementation of the assume evaluation
semantic.

We can construct the same mapping for any kind of undefined behaviour for which we can define a
safe fallback behaviour. For example, undefined behaviour due to reading an indeterminate value
can be respecified such that reading a value has an implicit precondition assertion that the value
is not indeterminate; if the value is indeterminate, the result will be some unspecified value (but
no longer undefined behaviour). A conforming C++ implementation can apply any of the five
evaluation semantics to this implicit precondition assertion. For example, enforce gives a diagnostic
followed by termination (a sanitiser detecting this case is a conforming implementation of this
semantic), ignore silently executes the safe fallback behaviour, i.e. simply reads an unspecified but
valid value (setting all uninitialised values to 0 is a conforming implementation of this semantic),
while assume matches the default in C++23 and before, where reading such a value is undefined
behaviour (and the compiler can therefore optimise on the assumption that it never happens).

3.5 Non-ignorable implicit contract assertions

For some undefined behaviour in C++, there is no safe fallback behaviour that makes sense.
Examples are dereferencing an invalid pointer and out-of-bounds access into a plain array. We can
respecify such undefined behaviour in terms of implicit contract assertions, in the same way as we
did before. For example, we can notionally interpret subscripting into an array as the following
built-in function:

template <typename T, size_t N>
T& subscript(T(&array)[N], size_t index)
pre(index < N) { // implicit precondition assertion

return array[index];
}
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If we are subscripting into a pointer ptr to an array a, but sizeof(a) is not statically known, then
the implicit precondition assertion cannot be expressed as above, and instead must be checked with
some “magic” function that requires additional instrumentation. Nevertheless, we can reason about
such an implicit precondition in the same way:

template <typename T>
T& subscript(T* ptr, size_t index)
pre(__magic_bounds_check(ptr, index)) { // implicit precondition assertion

return ptr[index];
}

In such cases, unlike in our previous integer addition example, if the implicit precondition is checked,
and a contract violation is detected, there is no possible safe fallback behaviour that would not have
undefined behaviour and that we could use to replace the notional function body which dereferences
ptr + index. In our proposed framework, we call such implicit contract assertions non-ignorable
implicit contract assertions. Operations that violate memory safety and/or type safety typically fall
into this category.
Non-ignorable implicit contract assertions cannot be evaluated with the ignore or observe semantic;
the only options permitted are quick_enforce, enforce, and assume.
We can again construct a mapping of the possible evaluation semantics map to different implemen-
tation strategies:

— Clang’s proposed2 -fbounds-safety extension, which turns out-of-bounds access into a
runtime trap, is a conforming implementation of the quick_enforce semantic;

— ASan’s behaviour of printing a diagnostic and terminating the process when an out-of-bounds
access occurs is a conforming implementation of the enforce semantic;

— The default, unsafe behaviour in C++23 and below is a conforming implementation of the
assume semantic.

The same mapping exists for every other kind of undefined behaviour in C++ without a safe fallback
behaviour, when respecified as an operation with a non-ignorable implicit contract assertion.

3.6 Contract-violation handling API

Treating undefined behaviour as a contract violation means that undefined behaviour diagnosed at
runtime causes a call to the contract-violation handler when the evaluation semantic is enforce
or observe. On an implementation where these evaluation semantics are supported for implicit
contract assertions, and the contract-violation handler is replaceable, we need to specify what
happens when the user provides a user-defined contract-violation handler and that handler will be
called from the (notional) evaluation of an implicit contract assertion. In particular, we need to
define the state of the contract_violation object for this case. We can do so with only minor
modifications to the library API proposed in [P2900R7].
In [P2900R7], the contract_violation class has the following five member functions:

class contract_violation {
public:

const char* comment() const noexcept;
detection_mode detection_mode() const noexcept;
contract_kind kind() const noexcept;
std::source_location location() const noexcept;
contract_semantic semantic() const noexcept;

};

2See https://discourse.llvm.org/t/rfc-enforcing-bounds-safety-in-c-fbounds-safety
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Below, we discuss the impact of adding implicit contract assertions on each member function.

3.6.1 comment() and location()

We do not propose any changes to the specification of comment() and location(). The recom-
mended practice in [P2900R7] is that they return a textual representation of the expression that
triggered the contract violation and the source location of the contract violation, respectively. The
same is possible for violations of implicit contract assertions.
Generating a textual representation for every possible expression that could lead to diagnosable
undefined behaviour is likely to cause an unacceptable amount of code bloat. It is however equally
conforming to instead generate some other string that may help the user identify the problem, such
as the diagnostic message already printed by existing sanitisers. It is further conforming to simply
return an empty string and a default-constructed source location if no information is available, or if
the information is not programmatically accessible in the contract-violation handler (for example,
because it located in a separate debug information file).

3.6.2 detection_mode()

We propose that the value returned by detection_mode() for violations of implicit contract
assertions be unspecified.
Until revision [P2900R4], the Contracts MVP contained a preparatory feature in the form of the
enum value detection_mode::evaluation_undefined_behavior (added via approving [P2811R7])
for the purpose of handling core language undefined behaviour as a contract violation. In revision
[P2900R5], this enum value was removed from the Contracts MVP (via approving [P3073R0]).
We do not propose to add this enum value back in, or to modify the current specification of the
detection_mode enum in any other way.
The name evaluation_undefined_behavior is a misnomer in multiple ways. First, after respeci-
fying undefined behaviour as a the violation of an implicit contract assertion, it will no longer be
undefined behaviour. Second, checking an implicit contract assertion — unlike for explicit contract
assertions — does not necessarily involve a contract predicate that can be evaluated (and some
implicit contract assertions cannot be specified in such terms).
Regardless of the name, it does not seem useful to describe all violations of an implicit contract
assertion via the same enum value for detection_mode. There is a wide range of possible im-
plementations for certain implicit contract assertions: compilers offering a “hardening” mode,
sanitisers, architectures implementing pointer protection in hardware such as CHERI, etc. These
implementations should be allowed to report different modes of detecting the contract violation via
different implementation-defined values for detection_mode as this may be useful information for
the implementer of the user-defined contract-violation handler.

3.6.3 kind()

We propose to add a new enum value implicit to the enum assertion_kind. This value will be
returned from the kind() function when the contract violation resulted from an implicit rather
than an explicit contract assertion:

enum class assertion_kind {
implicit = 0,
pre = 1,
post = 2,
assert = 3

};
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We chose the numeric value 0 for the new enum value to emphasise that it does not correspond to
any kind of explicit contract assertion (i.e. an assertion that the user wrote).

3.6.4 semantic()

We do not propose any changes to the specification of semantic(). The same options exist
for evaluating implicit contract assertions as for explicit contract assertions: the two evaluation
semantics that can result in a call to the contract-violation handler are enforce and observe.
Note however that non-ignorable implicit contract assertions such as a pointer pointing to a valid ob-
ject when dereferencing it cannot be evaluated with the observe semantic, and therefore semantic()
will always return evaluation_semantic::enforce when violations of implicit contract assertions
result in a call to a user-defined contract-violation handler.

4 Discussion

4.1 Making C++ a safer language

The primary aim of this paper is to replace undefined behaviour that is not diagnosable at compile
time and instead manifests at runtime with safe well-defined behaviour, thereby reducing the overall
amount of undefined behaviour in C++ and making it a safer language. We can gradually and
iteratively apply the proposed framework for more and more kinds of undefined behaviour in the
C++ language, starting with the most obvious candidates.
Candidates for respecification as implicit contract assertions with a safe fallback behaviour include
reading an indeterminate value (thus replacing [P2795R5]), signed integer overflow, bad bitshifts,
and other arithmetic operations and conversions that result in unrepresentable values. In general,
all kinds of undefined behaviour that are listed in [P2795R5] as candidates for erroneous behaviour
can be respecified in these terms instead.
Candidates for respecification as non-ignorable contract assertions (i.e., without a safe fallback
behaviour) include all kinds of accessing invalid memory (dereferencing a pointer to an invalid
object, out-of-bounds access into an array, etc.), flowing off the end of a non-void function, and
calling a pure virtual function in an abstract base constructor or destructor.
Note that the choice of evaluation semantic remains implementation-defined and therefore within
the purview of the implementation vendor. Compilers that choose to harden certain safety holes
such as uninitialised values can document that they use the ignore semantic for this particular
implicit contract assertion; sanitisers and other tools that add instrumentation to detect memory
issues can document that they use the enforce semantic for the implicit contract assertions they
are designed to diagnose; etc. An implementation that chooses to do nothing at all about undefined
behaviour in order to avoid performance regressions (discussed in more detail in Section 4.2) can
document that is uses the assume semantic for all implicit contract assertions.
The framework proposed here establishes standard vocabulary for all these choices and places their
behaviour within the scope of the C++ Standard. This standard vocabulary is useful to reason
about the safety of a particular configuration in standard terms. For example, in a safety-critical
context, one can now choose to restrict configurations to not use the assume the semantic for any
implicit or explicit contract assertions, or just for certain kinds of implicit contract assertions that
correspond to the largest safety and security risks, and enforce such restrictions on the tooling level.

4.2 A better alternative to erroneous behaviour

This proposal entirely replaces the changes added to the C++26 Working Draft via [P2795R5] and
the concept of erroneous behaviour introduced by those changes.
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Note that when [P2795R5] talks about an operation that erroneously does X, this is exactly
equivalent to saying that X is the safe fallback behaviour of an operation in case its implicit
precondition assertion was violated (regardless of whether this assertion was checked). In both cases,
we are talking about the behaviour of a program that is known to be in an incorrect state and that
behaviour nevertheless being well-defined. The two terms “erroneous behaviour” and “violation of
an implicit contract assertion” to describe such behaviour are therefore essentially interchangeable.
According to [P2795R5], the implementation is permitted to do any of the following when erroneous
behaviour occurs:

— Issue a diagnostic;

— Terminate the application;

— Do nothing.

This list of permitted behaviours is a strict subset of the five permitted contract evaluation semantics
quick_enforce, enforce, observe, ignore, and assume. Issuing a diagnostic maps to observe;
terminating the application with or without such a diagnostic maps to the two enforcing semantics
(enforce or quick_enforce, respectively), and doing nothing maps to ignore (silently execute the
safe fallback behaviour).
The erroneous behaviour framework contains a subtle difference in its specification of the enforcing
semantics. The wording adopted from [P2795R5] specifies that on erroneous behaviour, the
implementation is permitted to terminate the execution at an unspecified time after that operation,
whereas the enforcing semantics in [P2900R7] do not give permission for the termination to be
delayed until an unspecified time. One of the reasons why it is desirable to unify both frameworks,
rather than having two separate mechanisms for achieving essentially the same thing, is that we
can avoid such subtle divergences in behaviour.
Note that the erroneous behaviour framework lacks several features of the Contracts framework
that can be very useful for handling defects. First, Contracts allow the user to handle the defect
programmatically via installing a user-defined violation handler; second, our proposal allows handling
of many more kinds of undefined behaviour by also handling cases without a safe fallback behaviour
(which we call non-ignorable contract violations); and third, our proposal offers the option of full
backwards-compatibility with C++23 and earlier via the assume semantic.
This last point is particularly significant. Many kinds of undefined behaviour require significant
runtime overhead for diagnosis at runtime or even just for changing to a safe fallback behaviour. At
the same time, C++ is used in many applications where runtime performance is the absolute highest
priority: low-latency trading, video games, real-time signal processing, high-performance computing,
etc. Introducing any measurable runtime regressions in a new C++ standard will likely lead to such
a new standard being rejected by such applications. Continuing to support applications that require
maximum performance and cannot afford runtime regressions is as critical for the survival of C++
as improving safety. Any respecification of undefined behaviour to well-defined behaviour that may
introduce such runtime regressions therefore requires an escape hatch to revert to the legacy unsafe
behaviour of C++23 and earlier, even if the new, safe behaviour is the new default.
The erroneous behaviour [P2795R5] introduces such an escape hatch in the form of a new attribute
[[indeterminate]] that needs to be added to a variable declaration to get the C++23 behaviour.
Since [P2795R5] dooes not offer the assume semantic as an option, applying the erroneous behaviour
framework to any other kind of undefined behaviour will also require such explicit opt-out syntax.
This approach does not scale. If we continue to introduce erroneous behaviour to the Standard, we
will end up with a whole zoo of various opt-out attributes and other syntactic markers, which will
drive up the already high complexity of the language. In addition, the functionality of some of these
new syntactic markers, an in particular the fact that they are unsafe, might not be obvious to users,
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inviting new sources of safety bugs. For other cases such as overflowing arithmetic operations, it is
not clear what an opt-out syntax could even look like and whether it is possible. Finally, the cost of
correctly applying new opt-out syntax to legacy codebases may be too high for some companies,
which means that in order to avoid performance regressions, they will have to permanently remain
on older compilers.
By contrast, the assume semantic offers a unified mechanism to opt into the unsafe behaviour of
C++23 and earlier if needed, without having to change any existing code. This approach avoids
unnecessary complexity, is easier to teach, and easier to enforce with tooling, as the unsafe opt-in
is entirely contained inside the choice of contract evaluation semantic. Note that the choice of
evaluation semantic is implementation-defined, and the granularity of this choice is arbitrary: it
can be global, per TU, per kind of undefined behaviour, or even per assertion; compilers are free
to offer configuration options for all these cases. If strict safety requirements need to be followed,
the usage of the assume semantic can be outright banned for both implicit and explicit contract
assertions. In addition, a conforming implementation can choose to never use the assume semantic
by default, and even to not offer this semantic as an option at all.

4.3 Providing a standard C++ API for sanitisers

Several kinds of undefined behaviour that can be respecified in terms of contract violations as
proposed here require additional instrumentation to diagnose at runtime. This is particularly true for
assertions related to memory safety such as whether a pointer points to a valid object. Diagnosing
such issues is the mainstay of sanitisers such as ASan and UBSan. Our proposal provides a standard
API that such sanitisers can use to interact with user code.
There is limited existing practice for such APIs. All clang sanitisers have a callback __sanitizer_-
set_death_callback, taking no arguments. This callback can be used to inform the user that the
process is about to terminate, but it does not provide an API to programmatically query what
happened or where. ASan has a slightly more sophisticated callback __asan_set_error_report_-
callback which takes a single argument of type const char*. This argument provides a string
that contains the generated error report.
Compared to these callbacks, the library API of the Contracts MVP (with the slight modifications
proposed in this paper) provides not only a user callback in the form of a replaceable contract-
violation handler, but also programmatically accessible information about the defect via the
contract_violation object passed into the contract-violation handler. This more comprehensive
API can serve as a uniform standard callback mechanism for sanitisers, thus placing them much
more firmly within the scope of the C++ standard.
Note that supporting this API is entirely optional for existing sanitisers. [P2900R7] specifies that the
behaviour of the default contract-violation handler is implementation-defined and an implementation
does not have to offer the option of installing a user-defined contract-violation handler, therefore
existing sanitisers are already conforming. Any given sanitiser can be said to apply the enforce
evaluation semantic (without a replaceable contract-violation handler) to those kinds of undefined
behaviour that it diagnoses, and the assume evaluation semantic to the remaining kinds.

4.4 Preconditions in the C++ standard library

The C++ standard library currently specifies that the violation of any precondition of a standard
library function results in undefined behaviour. It follows that many common functions such as
std::vector::operator[] are inherently unsafe according to the C++ standard.
Vendors that wish to offer safer implementations are already free to strengthen this specification
and provide implementations where violations of certain preconditions result in termination or some
other well-defined behaviour (e.g. triggering a breakpoint in debug mode). Contracts do not impose
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any additional restrictions on library vendors: they can use the new explicit contract assertions as
specified in [P2900R7] for this purpose, but are not required to do so.
The concept of implicit contract assertions proposed in this paper extends the concepts of contract
violations and evaluation semantics to not only [P2900R7]-style explicit contract assertions, but
also preconditions asserted through other means, including compiler built-ins. A standard library
implementation can document which of the preconditions in the standard library it implements
via explicit contract assertions, which it considers to be implicit contract assertions, and which
evaluation semantics it provides for these implicit contract assertions. The framework proposed
here would therefore allow vendors to communicate which safety guarantees their standard library
implementation provides or does not provide using standard-conforming vocabulary, and place the
mitigation strategies employed by these vendors within the scope of the C++ standard, rather
than into the realm of vendor-specific extensions. This is relevant for ongoing efforts such as the
currently proposed3 hardening modes for the libc++ standard library implementation.

4.5 Errors leading to std::terminate being called

In addition to respecifying undefined and erroneous behaviour to be a contract violation, we can
consider respecifying errors that lead to std::terminate being called to be a contract violation as
well. Such errors are typically unrecoverable situations that arise during exception handling and
require abandoning stack unwinding and exception handling in favour of program termination. This
approach is explored in more detail in another paper, [P3205R0]; below, we provide a sketch how
this approach fits into our proposed framework.
The most common error that leads to std::terminate being called is the attempt to throw an
exception from a function marked noexcept. Handling this error can be integrated into the Contracts
framework by specifying that a noexcept function has an implicit contract assertion that it will
not exit via an exception; thus, an attempt to do so is a contract violation, and the usual contract
evaluation semantics apply.
To preserve backwards-compatibility with the behaviour in C++23 and earlier, we can define the
call to std::terminate to be the safe fallback behaviour4 for this contract violation (i..e. the
behaviour that occurs if the ignore semantic is used for this particular contract assertion). In
addition, we can opt in to other useful behaviours via the other four semantics. For example, the
enforce or observe semantics offer the options to report the error or even to unwind the stack
anyway by using a throwing contract-violation handler, and the assume semantic offers the option
of more aggressive code optimisations than is possible today5.

5 Proposed wording
Proposed wording will be added once there is agreement on which specific C++ operations that
have the potential of runtime undefined behaviour should be respecified in the fashion proposed
here (see Section 4.1 for discussion) and once the Contracts MVP is approved (wording for the
respecification proposed here will heavily rely on the wording of the Contracts MVP).

3See https://discourse.llvm.org/t/rfc-hardening-in-libc/
4Note that we cannot guarantee the backwards-compatible call to std::terminate by simply using the enforcing

evaluation semantics, because they are not guaranteed to call std::terminate specifically, only to terminate the
program in some implementation-defined way. Note further that for undefined behaviour, the evaluation semantic that
is equivalent to the current C++23 behaviour is the assume semantic, while for errors that lead to std::terminate
being called, the evaluation semantic that is equivalent to the current C++23 behaviour is the ignore semantic.

5Today, the compiler is only allowed to optimise based on the assumption that an exception will never escape a
noexcept function because std::terminate will be called; with the assume semantic, the compiler would additionally
be allowed to time-travel-optimise-out all code paths that would lead to such a call to std::terminate.
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