
P2946R0: A Flexible Solution to the Problems of noexcept

Pablo Halpern <phalpern@halpernwightsoftware.com>

2023-07-19 18:21 EDT

Target audience: EWGI

1 Abstract
The noexcept function specifier and companion noexcept operator were invented to allow
containers such as vector to provide the strong exception-safety guarantee when performing
operations that require relocating existing elements. The noexcept specifier has since been utilized
regularly to improve code generation and sometimes as a form of documentation. The problems
with these off-label uses have been known for a long time; the Lakos Rule, which predated the release
of C++11, was intended to prevent such use (or misuse) within the C++ Standard Library. This
paper proposes an attribute, [[throws_nothing]], as an alternative to noexcept for annotating
nonthrowing functions. Being invisble to the noexcept operator and having implementation-
defined semantics, [[throws_nothing]] is a less powerful annotation than noexcept that avoids
the issues the Lakos Rule was created to address. Thus, [[throws_nothing]] eliminates the
temptation to abuse noexcept by providing a tool better suited for improving code generation
and documenting programmer intent.

2 Brief Sketch of the Proposed Feature
This minimal description of the [[throws_nothing]] feature is sufficient for understanding the “Motivation”
section below. A full description of this proposal is found in the “Proposed Feature” section.

A new fuction attribute, [[throws_nothing]], is proposed for annotating a function that does not throw
when called within a correct program. The attribute is not detectable using the noexcept operator:

[[throws_nothing]] void f(int);
static_assert(noexcept(f(0)) == false);

Whether the program will terminate if an exception attempts to escape from f, above, is implementation
defined (and thus potentially user configurable).

3 Motivation
3.1 Purpose of noexcept

The noexcept specifier was introduced at the end of the C++11 cycle for one purpose: to enable the safe use
of move constructors in vector-like containers that offer the strong exception-safety guarantee for certain
operations, such as inserting elements at the end. The problem was first described, with noexcept as the
proposed solution, in N2855. This proposal was later refined, eventually resulting in the final wording of
N3050.

Below is one possible implementation of a vector-reallocation function, which must leave the original vector
unchanged if an exception is thrown while trying to move elements from the old buffer to the new one.

1

mailto:phalpern@halpernwightsoftware.com
http://wg21.link/n2855
http://wg21.link/n3050

This implementation uses if constexpr instead of the std::move_if_noexcept function to make the two
different code paths easier to distinguish.

template <class T, class A>
void vector<T,A>::reallocate(size_type new_capacity)
{

using alloc_traits = allocator_traits<A>;

pointer new_data = alloc_traits::allocate(new_capacity);

size_type i = 0;
if constexpr (noexcept(T(std::move(m_data[i])))) {

for (i = 0; i < size(); ++i)
alloc_traits::construct(&new_data[i], std::move(m_data[i])); // efficient

}
else try {

for (i = 0; i < size(); ++i)
alloc_traits::construct(&new_data[i], m_data[i]); // copy (less efficient)

}
catch (...) {

while (i)
alloc_traits::destroy(new_data[--i]);

alloc_traits::deallocate(new_data, new_capacity);
throw;

}

// got here only if no exception was thrown
for (i = 0; i < size(); ++i)

alloc_traits::destroy(m_data[i]);
alloc_traits::deallocate(m_data, m_capacity);

m_data = new_data;
m_capacity = new_capacity;

}

The use of T’s move constructor can often yield algorithmic performance advantages over using its copy
constructor, sometimes reducing the cost from O(N) or worse per copy to O(1). Such a move constructor,
however, typically modifies the original object; if the move constructor might throw, vector must degenerate
to using the copy constructor, and thus give up the performance gain to ensure that it can leave the original
object in its initial state. Because vector<T, A>::reallocate is a generic function, using std::move and
retaining the strong guarantee in the code above would be impossible if we did not have the noexcept
operator.

3.2 The Lakos Rule
Since the noexcept annotation was added late in the C++11 cycle and was thus brand new and not fully
understood, applying it appropriately in the Standard Library was a challenge. John Lakos and Alisdair
Meredith proposed what has become known as the Lakos Rule (described in N3279 and extended in P0884).
Summarized below, the Lakos Rule provided a conservative framework for deciding whether a specific function
may safely be declared noexcept.

• If a function has no preconditions (a wide contract) and is guaranteed not to throw (via an explicit
“Throws: nothing” clause), it may be declared noexcept.

• If a function has preconditions (a narrow contract) or if it might throw when called correctly (in
contract), it must not be declared noexcept.

2

http://wg21.link/N3279
http://wg21.link/P0884

The example below shows a subset of the std::vector interface. Note that only size(), which promises not
to throw and has no preconditions, is declared noexcept, whereas the others each fail one or both of the
Lakos Rule tests and are thus not noexcept.

template <class T, class A>
class vector {

// ...
constexpr size_type size() const noexcept; // wide contract, doesn't throw
constexpr reference at(size_type); // wide contract, might throw
constexpr reference operator[](size_type); // narrow contract, doesn't throw
constexpr reference front(); // narrow contract, doesn't throw

};

3.3 Resistance to the Lakos Rule
Although the Lakos Rule is effective and has strong theoretical and practical underpinnings (e.g., enabling
certain backward-compatible extensions and conforming wider interfaces, see P2861), two reasons have
emerged for violating it.

1. Under many (but by no means all) circumstances, calling a noexcept function generates less code. Thus,
programmers — both within and outside WG21 — want to use noexcept to improve code generation,
yet the author has seen no compelling evidence that noexcept produces measurably faster code on any
modern platforms.

2. Within WG21, concern has been voiced that the distinction between “Throws: nothing” and noexcept
is unclear (see P1656).

As tempting as it might be, violating the Lakos rule is ill advised unless a compelling case can be made that
querying the function with the noexcept operator is necessary for optimizing or ensuring correctness of a
generic algorithm at compile time. As described in P2861, if noexcept is added to a function in one version
of the Standard, it cannot be removed in a future version without potentially breaking code. Specifically,
widening the contract of a function to add new functionality is safe, provided that every program written for
the old version has the same observable behavior when compiled with the new version, but if the old version
is annotated with noexcept, the new version cannot be widened to accept new values that would result in an
exception being thrown.

Moreover immediate forced termination is not option in some environments. In such an environment,
a defensive programming library (or language contract facility) might want to throw an exception on a
precondition violation — even within a function that would not otherwise throw — so that the program
can shut down gracefully or even soldier on. This ability to continue after a logic error has been detected is
especially useful when testing the precondition checks themselves. The noexcept specifier interferes with
such a throwing defensive-programming facility (see P2831R0).

3.4 Serving the C++ Multiverse
The goal of this proposal is to address the constituencies within the different C++ universes (the C++
multiverse) that have been ill served by noexcept alone, such as embedded-software developers who want
smaller code and those who need to avoid immediate termination of their programs (e.g., upon detecting
contract violations). What is needed is a way to provide the desired code-generation and documentation
benefits of noexcept without violating either the spirit or the letter of the Lakos Rule.

3.4.1 The embedded-software development universe

The reduction in generated-code size that usually results from annotating a called function with noexcept
or [[throws_nothing]] has the most impact in memory-constrained environments. WG21 members often
assert that embedded-software developers turn off exceptions in their builds because the code-size cost of
leaving them enabled is too large. Unfortunately, this assumption has led to a self-fulfilling prophecy: WG21

3

http://wg21.link/P2861
http://wg21.link/P1656
http://wg21.link/P2861
http://wg21.link/P2831R0

does nothing to make exceptions friendlier for embedded programmers, so embedded programmers, in turn,
eschew exceptions.

Since even an embedded microprocessor may have several megabytes of RAM available to it, completely
turning off exceptions is not always necessary. Given an appropriate C++ implementation, judicious use of
the [[throws_nothing]] attribute can help an executable stay within its memory budget while following
the best design practices, including the Lakos Rule.

3.4.2 The graceful-termination universe

In high-data-integrity environments, it is often unacceptable to terminate suddenly when encountering an
error. To avoid data corruption, resources must be released, transactions rolled back, and user data saved,
before aborting. If any of these actions would normally occur in a destructor of an RAII object, then such a
graceful shutdown could not be accomplished readily in a terminate handler.

Imagine a defensive-programming library comprising an assert-like macro and a custom function to handle
assertion failures:

void assert_failure_handler(const char* file, unsigned line, const char* func,
const char* expression)

{
std::cerr << file << ':' << line << ": in function " << func

<< ": assertion failure " << expression << std::endl;

throw assert_failure_exception(file, line, func, expression);
}

#ifdef CHECKED_MODE
define ASSERT(cond) cond ? (void) 0 : \

assert_failure_handler(__FILE__, __LINE__, __FUNCTION__, #cond)
#else
define ASSERT(cond) (void) 0
#endif

Now, imagine an integer absolute-value function, intAbs, having the precondition that the input is not
INT_MIN, because the absolute value of INT_MIN is not representable in an int. When called in contract,
intAbs does not throw an exception, so it is declared with [[throws_nothing]]. Within the function body,
intAbs checks its precondition using the above ASSERT:

// Return absolute value of x. Precondition: x is not `INT_MIN`.
[[throws_nothing]] int intAbs(int x)
{

ASSERT(x != INT_MIN); // precondition check
return x < 0 ? -x : x;

}

Code using this function might have a subtle bug that is detected only during beta testing (when real user
data is at stake):

int thing = read_thing();
// Oops! Forgot to sanitize our input!
thing = intAbs(thing); // Precondition check might fail.

To trigger the precondition check without suddenly terminating the program, [[throws_nothing]] must
allow the assert-failure exception to escape. The organization would thus choose a C++ implementation
that ignores [[throws_nothing]], thus allowing exceptions to propagate. By disabling the enforcement of
[[throws_nothing]], only the behavior of erroneous code is changed; the essential behavior is unaffected,
although larger code size might be observed.

4

3.4.3 The must-not-terminate universe

Some programs must not terminate at all, ever. For example, a game engine might continue running its main
event loop after an error is detected, even if continuing would result in a momentary glitch on the screen.
The universe of such programs has similar requirements to the graceful-termination universe; unexpected
exceptions thrown from presumably nonthrowing functions should not terminate the program but release
resources in an orderly way, then continue.

Test drivers are an important subset of the must-not-terminate universe. A precondition check, like any other
aspect of a function, should be tested — i.e., by providing inputs at the boundaries of the precondition —
including deliberately violating it. When every precondition violation causes program termination, writing a
portable and efficient test driver is not possible, as described in P2831R0.

Given the defensive-programming library and intAbs function from the “The graceful-termination universe”
section above, a white-box unit test for intAbs could test that the ASSERT correctly encodes the documented
precondition. Using a throwing failure handler (as shown in assert_failure_handler), the test engineer
would write a negative test that deliberately violates the precondition:

bool testPreconditionViolation()
{

try {
intAbs(INT_MIN);
return false; // failed to catch the precondition violation

}
catch (const assert_failure_exception&) {

return true; // successfully caught the precondition violation
}

}

The test engineer would, as in the previous section, choose a C++ implementation that ignores
[[throws_nothing]], thus allowing the precondition check to detect the deliberate error without terminating
the test program. Because [[throws_nothing]], unlike noexcept, cannot be used to change the program
logic within the caller, test engineers can have reasonable confidence that they are fully testing the
function, even if the final program is eventually deployed using an implementation that terminates on a
[[throws_nothing]] violation.

3.4.4 The library-specification universe

A number of features in C++ that are intended to reduce errors or improve code generation have the side
effect of making code more self-documenting. For example, const indicates — to both the compiler and
human reader — that a variable’s value will not change, and the assert macro documents an invariant of an
algorithm in a way that is enforceable at run time. Similarly, [[throws_nothing]] indicates, at a glance,
that a function will not throw when called in contract; both the implementation and the human reader
benefit.

Within the C++ Standard Library, functions having “Throws: nothing” as part of their description could be
annotated with [[throws_nothing]]. Whether such a practice would add clarity is a matter for LWG to
decide.

4 Proposed Feature
A Standard attribute, tentatively named [[throws_nothing]] and appertaining to function declarations, is
proposed to indicate that a function is specified not to throw when all its preconditions are met (i.e., it is
called in contract):

[[throws_nothing]] void f(int);

5

http://wg21.link/P2831R0

The presence of the [[throws_nothing]] attribute cannot be queried by the program itself at compile time;
the result of the noexcept operator and the function type are unchanged:

[[throws_nothing]] void g1(int);
static_assert(noexcept(g1(0)) == false);

[[throws_nothing]] void g2(int) noexcept;
static_assert(noexcept(g2(0)) == true);

[[throws_nothing]] void g3(int) noexcept(false);
static_assert(noexcept(g3(0)) == false);

void g4(int);
static_assert(std::is_same_v<decltype(g1), decltype(g4)>);

Intentionally making [[throws_nothing]] invisible to the noexcept operator prevents using
[[throws_nothing]] to select an algorithm at compile time; the attribute does not change the es-
sential behavior1 of a correct program and can be removed from a subsequent version of a function, provided
the behavior of the function does not change for any previously valid inputs.

If a [[throws_nothing]] function attempts to exit via an exception, then whether std::terminate is
called or the annotation is ignored (and the exception propagates normally) is implementation defined.
The recommended best practice is to make both semantics available to the user. If, however, the function
is also annotated with noexcept or noexcept(true), std::terminate is always called, regardless of the
implementation’s semantic for [[throws_nothing]].

By making the behavior of an incorrect program — one that attempts to throw from a [[throws_nothing]]
function — implementation defined, rather than always terminating, the behavior can vary to serve the
multiple constituencies of the C++ multiverse. On an implementation that calls std::terminate, a call to
a function annotated with [[throws_nothing]] is likely to result in smaller generated code compared to
one with no annotation at all. Conversely, an implementation that ignores the attribute allows for graceful
shutdown, log-and-continue semantics, and effective testing of contract checks in functions that would not
otherwise throw.

As with noexcept currently, implementations of the Standard Library would be permitted to use
[[throws_nothing]] for any nonthrowing function, even though the Standard itself would never mandate
its use. In fact, for discretionary use by implementations, [[throws_nothing]] is much better than the
noexcept specifier because [[throws_nothing]] cannot inadvertently change the meaning of a correct
program and is responsive to the settings used to build the program.

4.1 Feature comparison
For functions that promise not to throw, the table below compares [[throws_nothing]] to noexcept and
to using no annotation at all (unmarked). If terminate means yes for implementations that terminate on
unexpected exceptions and no otherwise. If ignore means yes for implementations that ignore the annotation
and no otherwise.

The purpose of the table is not to show that one annotation is better than the other, but that, despite some
overlap, they serve different purposes and therefore support different use cases, none of which violate the
Lakos Rule.

1Essential behavior comprises the promised behavior of a function when called in contract. The return value, guaranteed side
effects, and complexity guaranties are part of essential behavior. The layout of objects, number of instructions executed, and
logging are rarely part of a function’s essential behavior. The effects of calling the function out of contract are never part of
essential behavior.

6

unmarked noexcept [[throws_nothing]]

Makes function self-documenting no yes yes
Provides codegen hint to compiler no yes if terminate
Terminates on unexpected exception no yes if terminate
Suitable for wide contracts yes yes yes
Suitable for narrow contracts yes no yes
Compatible with graceful shutdown yes no if ignore
Compatible with log-and-continue yes no if ignore
Compatible with throwing defensive checks yes no if ignore
Supports compile-time algorithm selection no yes no

4.2 Syntax and spelling
The [[throws_nothing]] annotation fits well with the conventional notion of an attribute: Removing the
attribute has no essential effect on a correct program (see P2552R3). Rendering this functionality as a
keyword or contextual keyword seems unnecessary.

Putting the [[throws_nothing]] attribute in the same location as noexcept would seem logical, but for
an attribute to appertain to a function, the attribute must occur either before the function declaration or
immediately after the function identifier:

[[throws_nothing]] void f(int); // OK
void g [[throws_nothing]] (int); // OK
void h(int) [[throws_nothing]]; // ERROR: improper attribute placement

The original spelling for the attribute was [[does_not_throw]], which happens to have the same number of
characters as [[throws_nothing]]. The name was changed to [[throws_nothing]] to match the “Throws:
nothing” phrasing that LWG uses when documenting functions that do not throw.

This paper does not propose the ability to make [[throws_nothing]] conditional on a compile-time constant
Boolean property, like the noexcept clause is. Such functionality seems counterintuitive; this proposal
deliberately omits any method for querying the [[throws_nothing]] attribute, and thus the common idiom
of wrapping a function and propagating its noexcept property has no equivalent for the [[throws_nothing]]
attribute. Nevertheless, if conditional functionality is found to be useful (now or in the future), the syntax
can be extended with a parameter, i.e., [[throws_nothing(constant-bool-expression)]].

5 Alternatives Considered
5.1 Switching noexcept on and off with a constant expression
One use of [[does_not_throw]] is to allow defensive checks to throw an exception through an otherwise-
nonthrowing interface. One proposed way to achieve this behavior for nonthrowing functions is to use
noexcept in such a way that it can be turned off when desired. This approach can be implemented with the
help of the preprocessor. For example, using the framework described in “The unit testing universe” section,
noexcept can be turned off when CHECKED_MODE is defined:

#ifdef CHECKED_MODE
inline constexpr bool does_not_throw = false;
#else
inline constexpr bool does_not_throw = true;
#endif

void f(int i) noexcept(does_not_throw) // BAD IDEA!
{

ASSERT(i < 0);

7

http://wg21.link/P2552R3

// ...
}

With this approach, the expression noexcept(f(0)) will yield different results depending on the CHECKED_MODE
macro, possibly resulting in different logic paths for debug and release builds, and will thus violate the
principle that essential behavior must not be changed by build modes — a principle convincingly advocated
for in P2831R0 and P2834R0 and named, by the latter, Build-Mode Independence.

6 Effects on the Standard Library
No changes would be needed immediately in the C++23 Standard Library if [[throws_nothing]] were
adopted. LWG can discuss whether to replace or augment “Throws: nothing” in the description with
[[throws_nothing]] in the interface of functions having narrow contracts that promise not to throw when
called in contract.

An immediate change to the C++26 Working Paper might be necessary if any narrow-contract functions
targeted for C++26 are currently annotated with noexcept; perhaps those annotations should be changed to
[[throws_nothing]] or perhaps the Standard should omit the annotation and leave it up to the implemen-
tation to decide whether to use [[throws_nothing]]. Violations of the Lakos Rule already in C++23 could
be handled on a case-by-case basis (via DRs). Minimizing such violations would result in greater stability
across implementations and versions of the Standard.

7 Implementation Experience
At present, no compilers implement this feature. If this paper receives a favorable response in EWGI, we
will implement the proposed facility before presenting it to EWG. Implementation is expected to be a fairly
simple delta on the existing implementation of noexcept.

8 Formal Wording
Changes are relative to the May 2023 Working Paper, N4950.

Note: This wording is known to be incomplete, Open issues are called out when possible.

Insert the following note somewhere within paragraph 5 [except.spec]:

[Note: The [[throws_nothing]] attribute is not a non-throwing specification. — end note]

Insert the following new paragraph after paragraph 5 [except.spec]:

Whenever an exception is thrown and the search for a handler ([except.handle]) encounters
the outermost block of a function previously declared with the throws_nothing attribute, it is
implementation-defined whether the function std::terminate is invoked ([except.terminate]).

Open issue: Does anything need to be said about such a function called indirectly via a function pointer?

Insert the following new subsection at the end of the [dcl.attr] section:

Throws nothing attribute [dcl.attr.throwsnothing]

The attribute-token throws_nothing specifies that a function cannot exit via an exception. No
attribute-argument clause shall be present. The attribute may be applied to a function or a lambda
call operator. The first declaration of a function shall specify the throws_nothing attribute if
any declaration of that function specifies the throws_nothing attribute. If a function is declared
with the throws_nothing attribute in one translation unit and the same function is declared
without the throws_nothing attribute in another translation unit, the program is ill-formed, no
diagnostic required. The effects of the throws_nothing attribute is described in [except.spec].

8

http://wg21.link/P2831R0
http://wg21.link/P2834R0
http://wg21.link/N4950

[Note 1 : Unlike the exception specification of a function ([except.spec]), whether a function is
marked with throws_nothing has no effect on the function’s type and is not observable through
the noexcept operator ([expr.unary.noexcept]). — end note]

Recommended practice: An implementation should provide to users the ability to translate a
program such that all instances of throws_nothing result in std::terminate being invoked as
described above. An implementation should further provide to users the ability to translate a
program such that all instances of throws_nothing are ignored. The value of a has-attribute-
expression for the throws_nothing attribute should be 0 if, for a given implementation, the
throws_nothing attribute never causes std::terminate to be invoked.

Rationale: The Recommended Practice wording is consistent with proposed wording for the Contracts
facility; see P2877R0.

[Example 1 :

[[throws_nothing]] void f(int x) {
if (x < 0)

throw "negative"; // Behavior is implementation-defined if x < 0.
}

static_assert(noexcept(f(-1) == false)); // OK, attribute is not queryable.

— end example]

9 Conclusion
The noexcept specifier is problematic because it can be queried via the noexcept operator, which means that it
cannot be changed without changing the meaning of a client program. Moreover, the consequence of violating a
noexcept specification is immediate program termination. By creating similar feature, [[throws_nothing]],
that differs only in that it (1) cannot be queried and (2) can be ignored without violating its semantics, we
enable optimizing for multiple distinct universes; adopting this proposal achieves the wants and needs of the
multiverse.

10 Acknowledgments
Thanks to John Lakos, Joshua Berne, Brian Bi, Mungo Gill, Timur Doumler, and Lori Hughes for reviewing
this paper and offering useful improvements. Thanks to Timur Doumler for providing most of the formal
wording and Nina Ranns and Joshua Berne for reviewing the wording.

9

http:/wg21.link/P2877R0

	Abstract
	Brief Sketch of the Proposed Feature
	Motivation
	Purpose of noexcept
	The Lakos Rule
	Resistance to the Lakos Rule
	Serving the C++ Multiverse
	The embedded-software development universe
	The graceful-termination universe
	The must-not-terminate universe
	The library-specification universe

	Proposed Feature
	Feature comparison
	Syntax and spelling

	Alternatives Considered
	Switching noexcept on and off with a constant expression

	Effects on the Standard Library
	Implementation Experience
	Formal Wording
	Conclusion
	Acknowledgments

