
Document number: 	 P2774R1

Date: 	 2023-09-30

Project: 	 Programming Language C++

Audience:	 SG1

Reply-to:	 Michael Florian Hava <mfh.cpp@gmail.com>
1

Concurrent object pool 
(was: Scoped thread-local storage)

Abstract
This paper proposes a concurrent object pool, designed as cache for parallel algorithms lacking a
straightforward one-to-one mapping between input and output.

Tony Table

Revisions
R0: Initial version

R1: Redesign after SG1 review on 2023-06-13:

• Changed design to concurrent object pool.

• The design is no longer limited by what can be expressed with std::atomic.

Before Proposed
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

span<Triangle> input = …;

double max_area = …;

//split triangle mesh based on max triangle size

mutex m;

deque<vector<Triangle>> tmp;

//process in parallel

for_each(execution::par, input.begin(), input.end(),

 [&](const auto & tria) {

 //extract exclusive object

 auto object{[&] -> vector<Triangle> {

 const lock_guard lock{m};

 if(tmp.empty()) return {}; //need new object

 auto val{move(tmp.front())};

 tmp.pop_front();

 return val;

 }()};

 //generating unbounded output

 for(const auto & t : split(tria, max_area))

 object.emplace_back(t);

 //make object available again

 const lock_guard lock{m};

 partial.emplace_back(std::move(object));

 }

);

//post-process partial results sequentially

for(const auto & t : tmp | views::join)

 process(t);

span<Triangle> input = …;

double max_area = …;

//split triangle mesh based on max triangle size

object_pool<vector<Triangle>> tmp;

//process in parallel

for_each(execution::par, input.begin(), input.end(),

 [&](const auto & tria) {

 //get handle to exclusive object

 auto handle{tmp.lease()};

 auto & object{*handle};

 //generating unbounded output

 for(const auto & t : split(tria, max_area))

 object.emplace_back(t);

 //~handle() makes object available again

 }

);

//post-process partial results sequentially

for(const auto & t : tmp.lease_all() | views::join)

 process(t);

 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at1

1

mailto:michael.hava@risc-software.at
mailto:mfh.cpp@gmail.com

Motivation
C++17 introduced parallel algorithms to the standard library. The design of said algorithms
embodies the popular fork-join model of parallelization. Combining this structured parallelization
style with the functional aspects of the “STL” was a perfect match for querying (e.g. std::find),
in-place transformations (e.g. std::sort), and one-to-one transformations (e.g.
std::transform).

One class of algorithms the standard library never supported (apart from “abusing”
std::for_each) were one-to-many transformations. Applying the fork-join model to these
algorithms proves to be difficult as their unbounded nature doesn’t lend itself easily to
aggregating the results in a singular target object without overt locking.

If no singular result object is needed, the issue of locking could be sidestepped by the usage of
thread_local variables - but such an approach has extensive hidden costs for all threads and
transforms a local issue into a global problem.

We propose an alternative approach based on a concurrently accessible object pool. The
proposed design does not require expensive locking for concurrent access, nor does it introduce
global memory overhead.

Design Space
std::object_pool is a concurrency-safe, dynamically growing object pool. Conceptually it is
similar to the following class, though implementations should use more efficient synchronization
mechanisms than locking .
2

Given its intended usage as a (low-level) concurrency primitive, std::object_pool is neither
copy- nor movable (as neither is possible in a lock-free manner) and offers allocator support.

We decided to require pooled objects to be default-constructible (doing value-initialization like
containers) as the alternatives would require us to store an initialization function. Said function
would have to be either a high-level function like T() - requiring T to be move-constructible -, or a
low-level function like void(T *).

Furthermore, this design sidesteps the unresolved issue of allocator-aware polymorphic function
wrappers that lead to the removal of allocator support in std::function ([P0302R1]). We expect
users to use wrappers like std::optional for non-default-constructible types or when a custom
initialization logic is needed.

template<default_initializable T, typename Allocator = allocator<T>>

class object_pool {

 mutable mutex mutex;

 mutable intrusive_list<T, Allocator> storage;

 class handle; // see below

 class snapshot; // see below

public:

 object_pool(Allocator allocator = Allocator{}) noexcept;

 object_pool(const object_pool &) =delete;

 auto operator=(const object_pool &) -> object_pool & =delete;

 ~object_pool() noexcept;

 [[nodiscard]]

 auto lease() const -> handle;

 [[nodiscard]]

 auto lease_all() const noexcept -> snapshot;

};

 Our reference implementation employs atomic operations (DWCAS specifically).2

2

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0302r1.html

A pooled object is at any given point either directly managed by the pool, in which case it is
available for future requests, or by a RAII-class granting exclusive access to it. There are two
extraction operations:

• lease obtains ownership of a single object. In case of an empty pool, a new objects is 3

allocated.

• lease_all obtains ownership of all objects currently available in the pool.

Both of these functions can safely be called concurrently, therefore they are marked const, even
though they mutate the pool.

Handles
std::object_pool::handle is a RAII-class that manages exclusive access to an extracted
object. Its interface is as follows:

Handles are tied to the constructing pool and pass the managed object back to it on destruction.
Access to the object is granted via the dereference operators (*, ->) and get.

As handles may never outlive the respective pool we propose a design that makes them
immovable, relying on guaranteed copy-elision. This design removes the need for a moved-from
state and (somewhat) limits the potential for dangling.

Snapshots
The design of std::object_pool::snapshot follows std::object_pool::handle but instead
manages multiple objects and provides iteration support - enabling post-processing of partial
results from parallel computations with any STL-style algorithm. Its interface is rather self-
explanatory:

Comparison to Established Practice
During the SG1 review of R0 we’ve been pointed to several existing implementations in/close to
the domain of this paper. We don’t provide extensive technical reviews of those, but give a high-
level comparison to our proposed design:

template<default_initializable T, typename Allocator>

class object_pool<T, Allocator>::handle {

 object_pool & owner;

 typename decltype(storage)::node_type object;

public:

 handle() =delete;

 handle(const handle &) =delete;

 auto operator=(const handle &) -> handle & =delete;

 ~handle() noexcept;

 auto operator*() const noexcept -> T &;

 auto operator->() const noexcept -> T *;

 auto get() const noexcept -> T *;

};

template<default_initializable T, typename Allocator>

class object_pool<T, Allocator>::snapshot {

 vector<handle> handles;

public:

 snapshot() =delete;

 snapshot(const snapshot &) =delete;

 auto operator=(const snapshot &) -> snapshot & =delete;

 ~snapshot() noexcept;

 class iterator { … };

 static_assert(forward_iterator<iterator>);

 auto begin() noexcept -> iterator;

 auto end() noexcept -> iterator;

};

 The name lease was chosen to indicate that the caller only temporarily gets access to the object.3

3

Two of the designs (Folly, TBB) we analyzed emulate thread-local storage bound to a local object.
Whilst such a design is easy to reason about, it becomes sub-optimal in environments with high
thread counts and little reuse during a parallel operation . R0 of this paper proposed a similar 4

design and switched to the current object pool design after evaluating SG1 feedback.

The other design (BDE) we compared to is also an object pool, albeit of a different design -
offering some control on the pool’s size and providing a customization point for resetting an
object on release. The need to control the count of objects has never come up in our use-cases,
but we reckon it would be trivial to add to our design. Customizing resetting behavior is
something that although not directly supported by our design, can be replicated by looping over a
snapshot - the benefit of this approach is increased flexibility.

Impact on the Standard
This proposal is a pure library addition.

Implementation Experience
The proposed design has been implemented at https://github.com/MFHava/P2774.

Proposed Wording
Wording is relative to [N4958]. Additions are presented like this, removals like this and drafting
notes like this.

[version.syn]

This paper BDE ObjectPool Folly ThreadLocal
TBB

enumerable_threa
d_specific

Design object pool object pool thread-local
storage emulation

thread-local
storage emulation

Copyable ❌ ❌ ❌ ✔

Moveable ❌ ❌ ✔ ✔

Allocator support ✔ ✔ ❌ ✔

Iterator support ✔ ❌ ✔ ✔

Explicit size
management ❌

increaseCapacity

reserveCapacity ❌ ❌

Object
initialization value-initialization void(*)(void *,

 allocator *); T*(*)(); T(*)();

Object recycling automatic releaseObject automatic automatic

#define __cpp_lib_object_pool YYYYMML //also in <object_pool>

[DRAFTING NOTE: Adjust the placeholder value as needed to denote the proposal’s date of adoption.]

 e.g. GPUs and dedicated accelerators4

4

https://github.com/bloomberg/bde/blob/main/groups/bdl/bdlcc/bdlcc_objectpool.h
https://github.com/facebook/folly/blob/main/folly/ThreadLocal.h
https://github.com/oneapi-src/oneTBB/blob/master/include/oneapi/tbb/enumerable_thread_specific.h
https://github.com/MFHava/P2774
http://wg21.link/N4958

[thread.general], extend Table [tab:thread.summary]

[racefree]

Subclause Header

… … …

[saferecl] Safe reclamation <rcu>, <hazard_pointer>

[racefree] Race-free storage <object_pool>

[DRAFTING NOTE: Add a new section in [thread]]

??.?? Race-free storage [racefree]
??.??.1 General [racefree.general]

1 ??.?? describes components that provide race-free storage in multithreaded environments.

??.??. 2 Header <object_pool> synopsis [objectpool.syn]

namespace std {

 // [racefree.objectpool.class], class template object_pool

 template<class T, class Allocator = allocator<T>> class object_pool;

 namespace pmr {

 template<class T>

 using object_pool = std::object_pool<T, polymorphic_allocator<T>>;

 }

}

??.??.3 Class template object_pool [racefree.objectpool.class]

namespace std {

 template<default_initializable T, class Allocator = allocator<T>>

 class object_pool {

 public:

 // [racefree.objectpool.handle.class], class object_pool::handle

 class handle;

 // [racefree.objectpool.snapshot.class], class object_pool::snapshot

 class snapshot;

 // [racefree.objectpool.ctor], constructors, assignment, and destructor

 object_pool(const Allocator& alloc = Allocator());

 object_pool(const object_pool&) =delete;

 object_pool& operator=(const object_pool&) =delete;

 ~object_pool();

 // [racefree.objectpool.mod], modifiers

 [[nodiscard]] handle lease() const;

 [[nodiscard]] snapshot lease_all() const noexcept;

 };

}

1 The object_pool class template is a concurrency-safe, dynamically growing object pool. Growing the pool does not invalidate pointers or
references to existing objects.

2 Allocator shall be a cv-unqualified type that meets the Cpp17Allocator requirements ([allocator.requirements.general]).

3 Recommended practice: Implementations should avoid high synchronization overhead for concurrent access to storage.

??.??.3.1 Constructors, and destructor [racefree.objectpool.ctor]

object_pool(const Allocator& alloc = Allocator());

1 Effects: Initializes the pool with alloc.

~object_pool();

2 Effects: Releases all managed objects.

??.??.3.2 Modifiers [racefree.objectpool.mod]

[[nodiscard]] handle lease() const;

1 Effects: If the pool contains no objects, creates a new value-initialzed object obj. Otherwise, extracts an object obj from the pool.

2 Synchronization: Synchronizes with other access to the pool.

5

3 Returns: A handle whose owner is initialized with *this and whose object is obj.

4 Throws: Any exception thrown when growing the pool.

[[nodiscard]] snapshot lease_all() const noexcept;

5 Let objs be all objects in the pool.

6 Postconditions: The pool contains no objects.

7 Synchronization: Synchronizes with other access to the pool.

8 Returns: A snapshot whose owner is initialized with *this and whose objects is objs.

??.??.4 Class object_pool::handle [racefree.objectpool.handle.class]

namespace std {

 template<default_initializable T, class Allocator>

 class object_pool<T, Allocator>::handle {

 object_pool & owner; //exposition only

 T * object; //exposition only

 public:

 // [racefree.objectpool.handle.ctor], constructors, assignment, and destructor

 handle() =delete;

 handle(const handle&) =delete;

 handle& operator=(const handle&) =delete;

 ~handle();

 // [racefree.objectpool.handle.acc], accessors

 T& operator*() const noexcept;

 T* operator->() const noexcept;

 T* get() const noexcept;

 };

}

1 The object_pool::handle class allows exclusive access to an object owned by the creating object_pool.

??.??.4.1 Constructors, and destructor [racefree.objectpool.handle.ctor]

~handle();

1 Synchronization: Synchronizes with other accesses to the pool of owner.

2 Postconditions: object is available in the pool of owner.

??.??.4.2 Accessors [racefree.objectpool.handle.acc]

T& operator*() const noexcept;

1 Returns: Equivalent to: *object.

T* operator->() const noexcept;

T* get() const noexcept;

2 Returns: Equivalent to: object.

??.??.5 Class object_pool::snapshot [racefree.objectpool.snapshot.class]

namespace std {

 template<default_initializable T, class Allocator>

 class object_pool<T, Allocator>::snapshot {

 object_pool & owner; //exposition only

 vector<T *> objects; //exposition only

 public:

 using iterator = implementation-defined;

 using const_iterator = implementation-defined;

 // [racefree.objectpool.snapshot.ctor], constructors, assignment, and destructor

 snapshot() =delete;

 snapshot(const snapshot&) =delete;

 snapshot& operator=(const snapshot&) =delete;

 ~snapshot();

 // [racefree.objectpool.snapshot.iter], iteration

 const_iterator begin() const noexcept;

 iterator begin() noexcept;

 const_iterator cbegin() const noexcept;

 const_iterator end() const noexcept;

 iterator end() noexcept;

 const_iterator cend() const noexcept;

 };

}

6

Acknowledgements
Thanks to RISC Software GmbH for supporting this work. Thanks to Peter Kulczycki for proof
reading.

1 The object_pool::snapshot class allows exclusive access to multiple objects owned by the creating object_pool.

2 object_pool::snapshot::iterator meets the forward iterator requirements ([forward.iterators]) with value type T.

3 object_pool::snapshot::const_iterator meets the requirements of a constant iterator and those of a forward iterator with value type T.

??.??.5.1 Constructors, and destructor [racefree.objectpool.snapshot.ctor]

~snapshot();

1 Synchronization: Synchronizes with other accesses to the pool of owner.

2 Postconditions: objects are available in the pool of owner.

??.??.5.2 Iteration [racefree.objectpool.snapshot.iter]

const_iterator begin() const noexcept;

iterator begin() noexcept;

const_iterator cbegin() const noexcept;

1 Returns: An iterator referring to the start of objects.

const_iterator end() const noexcept;

iterator end() noexcept;

const_iterator cend() const noexcept;

2 Returns: An iterator representing the past-the-end of objects.

7

https://www.risc-software.at/

	Abstract
	Tony Table
	Revisions
	Motivation
	Design Space
	Impact on the Standard
	Implementation Experience
	Proposed Wording
	Acknowledgements

