
Deprecate and Replace Fenv Rounding Modes
Doc. No: P2746R1

Contact: Hans Boehm (hboehm@google.com)
Audience: SG6, LEWG
Date: Mar. 14, 2023

Target: C++26

Abstract
We argue that floating point rounding modes as specified by fesetround() are largely
unusable, at least in C++. Furthermore, this implicit argument to floating point operations, which
is almost never used, and largely opaque to the compiler, causes both language design and
compilation problems. We thus make the somewhat drastic proposal to deprecate it, in spite of
its long history, and to replace it with a much better-behaved facility. This is a draft proposal for
feedback on the idea and on the approach for a replacement.

History
Issaquah, Feb. 2023, SG6

1. We would still like more feedback on use cases. So far, the only known ones are (1)
bunding true results, e.g for interval arithmetic, and (2) perturbing the results to get a
heuristic idea of numerical stability. Further instances of these were brought up during
the meeting.

2. There was unanimous agreement that we should strive to replace fesetround(). There
were no supporters of the current API. Most of us thought we should replace it with a
library with explicit rounding mode arguments. There was some support for a C23-style
statically scoped mechanism, together with some optimism that this may result in
implementations. There was a volunteer to develop such a proposal. We do not plan to
pursue this approach in this proposal, but welcome the opportunity to compare the two.

3. There was agreement that any library should follow the simplest possible route and not
introduce a separate type for correctly rounded floats, but instead simply provide free
functions on the existing types. This applies in spite of the danger of overlooking
operations that could affect rounding.

4. There was also consensus that we should use nominally runtime rounding mode
arguments, in spite of the valid concern that this would increase compile time. Given the
scarcity of actual use cases for the current mechanism, we did not feel this is likely to
turn into a significant issue.

Feb 28, 2023 C floating point committee meeting (virtual)



Also no real attachment to fesetround(). General preference for the C23 statically
scoped #pragma solution. Fairly strong preference for keeping floating point exception
environment dynamic. (FP exceptions were not discussed in SG6.)

Prior email discussions pointed out that the CORE-MATH project is developing libraries
that (1) produce correctly rounded results for all rounding modes, and (2) generally do
not actually adjust round modes. The general approach seems to be to initially carry
enough extra precision for the rounding mode not to matter, and then perform one final
operation that combines say, two halves of the result using the current dynamic rounding
mode. This allows a C23 implementation to call a single math function to produce
correctly rounded results depending on the current dynamic rounding mode. This
proposal would probably remove the need for such strong guarantees, but such a library
could still be used to implement correctly-rounded functions discussed here.

R1 changes: Some corrections to explanatory text. Reflected some of Jim Thomas’ WG14
comments. Focussed on the free function approach favored by SG6, and outlined a more
specific API.

Introduction
Currently floating point rounding modes are specified either dynamically, through the
floating-point environment via fesetround() or, in C, statically, via #pragma STDC

FENV_ROUND.

As far as we can tell, fesetround(), in spite of its long history, has very few real use cases,
and those are either not fully correct, or not portable across common implementations. There
are many reasons for this:

1. Implementations can't be counted on to implement it correctly. Without the FENV_ACCESS

pragma, compilers perform optimizations that do not preserve rounding behavior. That
fenv.h pragma is explicitly not required to be supported in C++, and hence C++ provides
no guarantee that fesetround() behaves reasonably..

2. In practice, it seems to be inconsistent, and somewhat unpredictable, what calls to
standard math functions, and even more so, user-defined functions, do when invoked
with non-standard rounding modes. (This is based on looking at some implementations. I
didn't study this systematically)

3. If you really need to control rounding to guarantee specific properties of the result,
rounding modes cannot, in general, just be specified for a region of code; they need to
be carefully applied to each operation. What does it mean to set the rounding mode for
cos(a + b)? It does make sense to specify a single rounding mode if every operation
in the block is monotone increasing in every argument, or for very carefully designed
code (e.g. https://hal.inria.fr/hal-03721525.)

4. As Jim Thomas points out, you could try to get some idea of floating point errors by
trying with different rounding modes. (See

https://hal.inria.fr/hal-03721525
https://hal.inria.fr/hal-03721525


http://people.eecs.berkeley.edu/~wkahan/Mindless.pdf) But, by the same argument as
(3), that seems to be at best a little better than randomly perturbing the results. And the
whole approach can break either because the program logic relies on rounding mode, or
if the code itself sets the rounding mode. I believe it fails completely for (x - y) - (y - x).

5. Compilers seem to commonly ignore rounding modes for compile-time evaluations,
making it very hard for the programmer to predict what they are actually getting. (This is
my reading anyway, though the current C standard seems to say otherwise?)

6. If we really wanted to use rounding modes to bound results, constants would also have
to be rounded according to the current rounding mode. This is explicitly disallowed, even
by C, before C23: "All floating constants of the same source form(79) shall convert to the
same internal format with the same value." C23 requires that static rounding modes
affect constants. But this raises new issues:

a. “Constant” macros can change meaning depending on the rounding mode
context in which they are used. If the macros include arithmetic operations like
subtraction or division, that change in meaning may be very different from any
expectation.

b. The same syntactic type, like char[(int)1.99999999999999999999] denotes
different types, depending on the rounding mode.

c. A “negative constant” like -0.1 is rounded in the opposite direction of the one
requested, since the minus sign is not part of the constant.

7. Especially in C++, it is unclear what the rounding modes mean for operations that are
not correctly rounded to start with. Although IEEE requires correct rounding, basically no
standard library implementations conform.

C’s FENV_ROUND pragma is, in our opinion, an improvement, but not enough to actually make it
very useful. Most of the above points still apply in some form.

As far as we can tell, these facilities are thus very rarely used in practice. The canonical use
case seems to be interval arithmetic, or other uses where it is necessary to get an accurate
upper or lower bound on the true result. But such code appears to be uncommon, and
<fenv.h> seems to be a particularly bad match. That’s especially true in C++, since it inherited
the facility from C, but did not keep up with recent improvements to the C standard. But even in
C, its utility seems questionable.

Although this facility does not appear to be very useful, it does seem to cause a disproportionate
amount of trouble, notably in the context of constexpr math functions. Effectively all floating
point functions have an implicit rounding mode argument, set by desetround(), whose value is
not predictable by the compiler, confounding optimizations expected by users. In C++, it is
unclear whether math libraries should respect rounding modes, or even do anything reasonable
in a nonstandard rounding mode.

http://people.eecs.berkeley.edu/~wkahan/Mindless.pdf


Prior discussions

A prior email discussion of d1381r1 suggested introducing correctly rounded math functions,
with an explicit rounding argument for the rare occasions on which explicit rounding modes are
useful. I think that's a much better replacement, even if the set of such functions is minimal. This
is the approach we pursue here.

Matthias Kretz points out that there have been prior rounding-related proposals to WG21:

* N2899 Directed Rounding Arithmetic Operations (Revision 2) by G. Melquiond,
S. Pion (2009-06-19) (older revisions: N2876 and N2811). This proposes free functions with
explicit rounding modes, and constant suffixes, roughly along the lines we propose here. The
major differences are the fact that we choose nominally run-time parameters instead of template
arguments for the rounding modes.
* P0105R1 Rounding and Overflow in C++ by Lawrence Crowl (2017-02-05) discusses some
current narrower rounding issues, for both integers and floating point, and suggests some
templatized free functions to explicitly control rounding and overflow handling.

Replacement proposal
We propose to deprecate the fesetround() and fegetround() functions, moving any mention
of them, and the associated Note 1 describing any use as implementation-defined, to Appendix
D.

Given the long history of this facility, even in spite of its sparse use, we do not expect this to be
acceptable without a replacement facility. Given the infrequent use of the current facility, our
inclination is to strive for a minimalist, but extensible, replacement facility. The rest of this
document focuses on such a replacement.

It is not entirely clear to us what the various rounding modes should mean in the absence of
correctly rounded arithmetic. In addition, recent versions of the IEEE floating point arithmetic
standard basically require correct rounding. Thus, as suggested in previous discussions, we
propose to introduce a mechanism for generating correctly rounded IEEE-conforming floating
point results. These would then also allow the explicit specification of rounding modes.

The design of this facility requires us to resolve several questions that do not have 100% clear
answers. We make the following calls, based on SG6 discussions:

1. We provide appropriately named free functions on the existing floating point types as in
N2899. This is simplest, but seems error-prone to use, in that it is easy to accidentally
apply a non-correctly-rounded conversion, or even arithmetic operation as part of a
computation that is intended to use e.g. a directed rounding mode. Given the low

http://wg21.link/n2899
http://wg21.link/p0105


observed usage rate of the current API, it was not felt that we should complicate the
proposal to address this issue.

2. N2899 suggests passing the rounding mode as a template argument. This avoids some
compile time overhead of optimizing out the runtime parameter in the usual case. SG6
felt that, unlike the <atomic> API, where it is a known issue, all indications are that
rounding mode APIs are very rarely used, so this should not be a major issue. Passing it
as a regular argument is a bit simpler, and makes it easier to port this facility to C, should
that be desired at some point.

We thus propose just the following free functions, where actual wording and syntax checking is
left as future work:

// Do the cr_ functions fully conform to IEC 60559?

template<floating_point F>

constexpr bool conforms_to_iec_60559();

template<floating_point F>

constexpr F cr_add(F x, F y, float_round_style r = round_to_nearest);

template<floating_point F>

constexpr F cr_subtract(F x, F y,

float_round_style r = round_to_nearest);

template<floating_point F>

constexpr F cr_multiply(F x, F y,

float_round_style r = round_to_nearest);

template<floating_point F>

constexpr F cr_divide(F x, F y,

float_round_style r = round_to_nearest);

// Round to a different floating point type.

// Conversion is expected to be exact if sizeof(F) >= sizeof(G)

template<floating_point F. floating_point G>

constexpr F cr_cast(G x, float_round_style r = round_to_nearest);

// Convert a string s representing a constant to the floating

// point value it represents. S may be a signed floating-point

// constant. It is implementation-defined which other

// constant strings representing constant floating-point

// expressions are supported. Throws if the argument is not supported.

template<floating_point F> consteval F cr_const(string s);



template<floating point F>

constexpr F cr_sqrt(F x, float_round_style r = round_to_nearest);

// We may want to add assert_exact as another rounding mode here?

Currently we do not provide literals corresponding to directed rounding. This somewhat reduces
the problem that -0.1 rounds in an unexpected direction.

-cr_const<float>(“0.1”, round_toward_infinity)

yields -0.1 rounded downward, but hopefully makes that less surprising, but
cr_const<float>(“-0.1”, round_toward_infinity)

rounds fully as expected.

We require that cr_const() works for normal floating point constants, optionally preceded by a
minus sign. This should be easy to implement. It is in fact usually possible to guarantee
correctly rounded evaluation of more complex expressions, and that would probably be ideal,
though perhaps a bit challenging to specify and implement. It is not clear that this would be used
enough to be worth the implementation cost, so we leave support for a wider variety of
expressions implementation-defined.

Our expectation is that other math functions in the same style may eventually be added, if
demand warrants. We do not add cr_ functions until we are convinced that practically useful
implementations of the correctly rounded functions are feasible. This is already the case for
many more functions than are listed here, at least for correctly_rounded<float>. See for
example, Lim and Nagarakatte, “High Performance Correctly Rounded Math Libraries for 32-bit
Floating Point Representations”.

Semantics:
We propose to require that:

1. If conforms_to_iec_60559() yields true, then all provided cr_ operations provide
correctly rounded IEEE-conforming results.

2. At a minimum, round_toward_infinity and round_toward_neg_infinity should
bound the true results.

3. In the presence of fesetenv(), fesetenv() will not affect cr_ operations.

A note on implementation:
For machine architectures that expect the rounding mode to be specified in floating point control
register rather than in each instruction, we expect that implementations supporting fesetenv()

will need to set the control register before every sequence of cr_ operations, and reset it to the
original value when done. Normal floating point operations will continue to behave as they do
now, even in the presence of fesetenv(). If fesetenv() is unsupported, we expect that the

https://dl.acm.org/doi/abs/10.1145/3385412.3386004
https://dl.acm.org/doi/abs/10.1145/3385412.3386004


control register will normally indicate to-nearest rounding, and be adjusted only when a different
mode is required.

Questions

Should we omit the constexpr and consteval specifiers initially to simplify implementation? I’m
leaning towards “yes”.

Is this the right way to handle constants?

Are these the right minimum semantics? Is this OK for a completely non-IEEE implementation?
Do we care?

Are we missing anything for the first round?


