
constexpr structured bindings

and

references to constexpr variables
Document #: P2686R1
Date: 2023-05-14
Programming Language C++
Audience: EWG
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Brian Bi <bbi10@bloomberg.net>

Abstract

P1481R0 [2] proposed allowing references to constant expressions to be themselves con-
stant expressions, as a means to support constexpr structured bindings. This paper reports
implementation experience on this proposal and provides updated wording.

Issues with R0 and possible solutions

The previous revision of this paper, (P2686R0 [1]), was approved by the EWG in Issaquah
and was subsequently reviewed by CWG, which found the proposed wording to be quite
insufficient.

No issue arises with allowing constexpr structured binding in general, except for the case of
an automatic storage duration structured binding initialized by a tuple, i.e.,

void f() {
constexpr auto [a] = std::tuple(1);
static_assert(a == 1);

}

which translates to

void f() {
constexpr auto __sb = std::tuple(1); // __sb has automatic storage scenario.
constexpr const int& a = get<0>(__sb);

}

When the structured binding is over an array or a class type, it doesn’t create actual references,
so we have no issue. When the structured binding is not at function scope, the underlying
tuple object has static storage duration, and its address is a permitted result of a constant
expression.

1

mailto:corentin.jabot@gmail.com
mailto:bbi10@bloomberg.net
https://wg21.link/P1481R0
https://wg21.link/P2686R0

So the problematic case occurs when we are creating an automatic storage duration (i.e., at
block scope) structured binding of a tuple (or tuple-like) object. This specific situation, though,
is not uncommon.

The initial wording simply allowed references initialized by a constant expression to be usable
in constant expressions. This phrasing failed to observe that the address of a constexpr
variable with automatic storage duration may be different for each evaluation of a function
and, therefore, cannot be a permitted result of a constant expression.

The CWG asks that the EWG consider and pick one direction to resolve these concerns. Some
options are explored below.

Possible solutions

0. Allowing static and non-tuple constexpr structured binding

We should be clear that nothing prevents constexpr structured bindings from just working
when binding an aggregate or an array since those are modeled by special magic aliases that
are not quite references (which allows them to work with bitfields).

A constexpr structured binding of a tuple with static storage duration, i.e.,

static constexpr auto [a, b] = std::tuple{1, 2};

would also simply work as it would be equivalent to

static constexpr auto __t = std::tuple{1, 2};
static constexpr auto & a = std::get<0>(__t);
static constexpr auto & b = std::get<1>(__t);

Supporting this solution requires no further changes to the language than basically allowing
the compiler to parse and apply the constexpr specifier. Independently of the other solutions
presented here, this option would be useful and should be done.

The problematic scenario is an automatic storage duration binding to a tuple.

We could stop there, not try to solve this problem, and force users to use static. We would,
however, have to ensure that expansion statements work with static variables since that was
one of the motivations for this paper.

1. Making constexpr implicitly static

We could make constexpr variables implicitly static, but doing so would most certainly break
existing code, in addition to being inconsistent with the meaning of constexpr:

int f() {
constexpr struct S {

mutable int m ;
} s{0};
return ++s.m;

2

}

int main() {
assert(f() + f() == 2); // currently 2. Becomes 3 if 's' is made implicitly static

}

So this solution is impractical. We could make constexpr static only in some cases to alleviate
some of the breakages or even make only constexpr bindings static, not other variables, but
this option feels like a hack rather than an actual solution.

2. Always re-evaluate a call to get?

We could conceive that during constant evaluation, tuple structured bindings are replaced by
a call to get every time they are constant-evaluated. This would help with constexpr structured
binding but would still disallow generic cases:

constexpr in not_a_sb =1;
constexpr const int& a = sb;

Additionally, this would be observable in scenarios in which get would perform some kind of
compile-time i/o such as proposed by P2758R0 [3].

3. Symbolic addressing

The most promising option — the one we think should be pursued — is for constexpr refer-
ences to designate a specific object, rather than an address, and to retain that information
across constant evaluation contexts. This is how constant evaluation of references works,
but this information is not currently persisted across constant evaluation, which is why we
do not permit constexpr references to refer to objects with automatic storage duration (or
subobjects thereof).

To quote a discussion on the reflector:

This would also resolve a longstanding complaint that the following is in-
valid:

void f() {
constexpr int a = 1;
constexpr auto *p = &a;

}

It seems like a lot of C++ developers expect the declaration of p to be valid,
even though it’s potentially initialized to a different address each time f is
invoked.

This solution has the benefit of not being structured-binding specific and would arguably meet
user expectations better than the current rule. Interestingly andmaybe counter-intuitively, the
constexprness of pointers and references is completely orthogonal to that of their underlying
object:

3

https://wg21.link/P2758R0
https://lists.isocpp.org/core/2023/04/14163.php

int main() {
static int i = 0;
static constexpr int & r = i; // currently valid

int j = 0;
constexpr int & s = j; // could be valid under the "symbolic addressing" model

}

References can be constant expressions because we can track during constant evaluation
which objects they refer to, independently of whether the value of that object is or isn’t a
constant expression.

We would have to be careful about several things. Pointers and references to variables with
automatic storage duration cannot be used outside of the lifetime of their underlying objects,
so they could not appear

• in template arguments

• as the initializer of a variable with static storage duration

Similarly, we can construct an automatic storage duration constexpr reference to a static
variable but not a static constexpr reference bound to an automatic storage duration object.

Additional considerations

Thread-local variables

Taking the address of a thread-local variable may initialize the variable, and that initialization
may not be a constant expression. Supporting references/pointers to thread-local variables
would therefore require additional consideration, and we would probably want to allow it
only if it were already initialized on declaration.

We could exclude thread locals from the design entirely as we’re not sure a compelling use
case exists for constexpr references to thread-local objects.

Lambda capture of constexpr references bound to automatic storage duration objects

constexpr references are not ODR-used. Therefore, a constexpr reference used in a lambda
does not trigger a capture. This would be problematic for references bound to automatic
storage duration objects:

auto f() {
int i = 0;
constexpr const int & ref = i;
return [] {

return ref;
});

}
f(); //# ! try to access i outside of its lifetime

4

We will have to modify [basic.def.odr]/p5.1 so that constexpr references to automatic storage
duration variables (or subobjects thereof) are ODR-used.

Next step

CWG is asking EWG to pick a direction. We will provide wording consistent with that direction.
We need to pick one of the options presented in this paper.

• Option 1: Making constexpr implicitly static

• Option 2: Always re-evaluate a call to get

• Option 3: Symbolic addressing

Because Options 1 and 2 can either break existing code or introduce inconsistency, we suggest
that the third option, symbolic addressing, constitutes the best path forward.

If we pick that third option, we should further decide whether we want to limit ourselves to
allow constexpr references to automatic duration storage objects, or if we should also support
constexpr references to thread local duration storage objects, knowing that this will require
additional complexity due to the fact that thread-local variables are initialized at the point of
use.

In the meantime, this paper retains the wording for constexpr structured binding, which can
be pursued independently. (Automatic storage duration bindings of tuple will simply not
work.) This is the wording for Option 0.

Wording for constexpr structured binding

[Editor’s note: This wording - corresponding to option 0 - makes constexpr a valid grammatical
construct but does not permit automatic storage duration bindings of tuple-like objects.]

�? Declarations [dcl.dcl]

�? Preamble [dcl.pre]

[Editor’s note: Change 9.1.6 as follow]

A simple-declarationwith an identifier-list is called a structured binding declaration [dcl.struct.bind].
Each decl-specifier in the decl-specifier-seq shall be constexpr, static, thread_local, auto [dcl.spec.auto],
or a cv-qualifier. [Example:

template<class T> concept C = true;
C auto [x, y] = std::pair{1, 2}; // error: constrained placeholder-type-specifier
// not permitted for structured bindings

—end example]

5

http://eel.is/c++draft/basic.def.odr#5.1

�? Structured binding declarations [dcl.struct.bind]

A structured binding declaration introduces the identifiers v0, v1, v2, . . . of the identifier-list
as names of structured bindings. Let cv denote the cv-qualifiers in the decl-specifier-seq and S
consist of the constexpr and storage-class-specifiers of the decl-specifier-seq (if any). A cv that in-
cludes volatile is deprecated; see [depr.volatile.type]. First, a variable with a unique name e is
introduced. If the assignment-expression in the initializer has array type cv1 A and no ref-qualifier
is present, e is definedby attribute-specifier-seqopt S cv A e ;

and each element is copy-initialized or direct-initialized from the corresponding element of
the assignment-expression as specified by the form of the initializer. Otherwise, e is defined as-
if by attribute-specifier-seqopt decl-specifier-seq ref-qualifieropt e initializer ;

where the declaration is never interpreted as a function declaration and the parts of the
declaration other than the declarator-id are taken from the corresponding structured bind-
ing declaration. The type of the id-expression e is called E. [Note: E is never a reference
type[expr.prop]. —end note]

If the initializer refers to one of the names introduced by the structured binding declaration,
the program is ill-formed.

If E is an array type with element type T, the number of elements in the identifier-list shall
be equal to the number of elements of E. Each vi is the name of an lvalue that refers to the
element i of the array and whose type is T; the referenced type is T. [Note: The top-level
cv-qualifiers of T are cv. —end note] [Example:

auto f() -> int(&)[2];
auto [x, y] = f(); // x and y refer to elements in a copy of the array

return value
auto& [xr, yr] = f(); // xr and yr refer to elements in the array referred

to by f's return value

—end example]

�? The constexpr and consteval specifiers [dcl.constexpr]

The constexpr specifier shall be applied only to the definition of a variable or variable template,
a structured binding declaration, or the declaration of a function or function template. The
consteval specifier shall be applied only to the declaration of a function or function template.
A function or static datamember declared with the constexpr or consteval specifier is implicitly
an inline function or variable [dcl.inline]. If any declaration of a function or function template
has a constexpr or consteval specifier, then all its declarations shall contain the same specifier.

Feature test macros

[Editor’s note: In [tab:cpp.predefined.ft], bump __cpp_structured_bindings to the date of
adoption] .

6

Acknowledgments

We would like to thank Bloomberg for sponsoring this work. Thanks to Nina Dinka Ranns,
Pablo Halpern, and Joshua Berne for their feedback.

Thanks to Richard Smith for the original discussion of possible solutions on the Core reflector.

Thanks to Nicolas Lesser for the original work on P1481R0 [2].

References

[1] Corentin Jabot. P2686R0: Updated wording and implementation experience for p1481
(constexpr structured bindings). https://wg21.link/p2686r0, 10 2022.

[2] Nicolas Lesser. P1481R0: constexpr structured bindings. https://wg21.link/p1481r0, 1
2019.

[3] Barry Revzin. P2758R0: Emitting messages at compile time. https://wg21.link/p2758r0, 1
2023.

[N4885] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N4885

7

https://wg21.link/P1481R0
https://wg21.link/p2686r0
https://wg21.link/p1481r0
https://wg21.link/p2758r0
https://wg21.link/N4885

	1 Abstract
	2 Issues with R0 and possible solutions
	3 Possible solutions
	3.1 0. Allowing static and non-tuple constexpr structured binding
	3.2 1. Making constexpr implicitly static
	3.3 2. Always re-evaluate a call to get?
	3.4 3. Symbolic addressing
	3.5 Additional considerations
	3.5.1 Thread-local variables
	3.5.2 Lambda capture of constexpr references bound to automatic storage duration objects

	4 Next step
	5 Wording for constexpr structured binding
	6 Declarations
	6.1 Preamble

	7 Structured binding declarations
	7.1 The constexpr and consteval specifiers

	8 Feature test macros
	9 Acknowledgments
	10 References

