
 Page 1 of 43

Document: P2646R0
Date: 2022-OCT-15
Project: Programming Language C++
Audience: EWG
Reply-to: Parsa Amini: me@parsaamini.net

Joshua Berne: jberne4@bloomberg.net
John Lakos: jlakos@bloomberg.net

Explicit Assumption Syntax

Can Reduce Run Time

Abstract

Many compilers provide platform-specific assumption syntax, such as
__builtin_assume in Clang or idiomatic use of __builtin_unreachable() in

GCC. This augmented syntax can then indicate to the compiler that it is
allowed but not required to assume that some condition — typically a Boolean-
valued expression — is always true. Recently, after due consideration, the
[[assume]] attribute was formally adopted into the C++ working draft

(P1774R8) to provide a facility for expressing such assumptions portably in
source code. As is well known and easily demonstrated, the use of such
compiler-accessible assumption constructs can noticeably affect compile times
as well as object-code and overall program sizes. On the other hand, some
members of the C++ Standards Committee have suggested (wrongly) that
modern compilers and CPUs conspire to realize essentially all runtime
performance benefits available on modern architectures, thereby obviating use
of explicit assumption constructs in source code.

Until recently, empirical studies that (1) demonstrate any meaningful impact of
compiler-accessible assumption constructs on run time and (2) are
reproducible on modern platforms have not been readily available. In this
paper, we first exhibit some potential reasons why the use of an assumption
attribute might reduce run time. We then go on to develop a benchmark
framework suitable for demonstrating that using such assumption constructs
can meaningfully reduce the overall run time of C++ programs. Even without a
portable way to express assumptions, we exploit equivalent, platform-specific
assumption constructs to reproducibly quantify the sometimes-substantial
effects of explicitly stated assumptions on overall run times for today’s most
current platforms. We conclude that the recent addition of [[assume]]

(P1774R8) to the C++ working draft will benefit those who aspire to use C++23
to implement software having truly optimal runtime performance.

INTRODUCTION

Explicit assumption syntax — i.e., language constructs used by the

programmer to explicitly inform the compiler of some truth that it might

otherwise be unable to deduce — is not new. Such syntax, albeit platform-

mailto:me@parsaamini.net
mailto:jberne4@bloomberg.net
mailto:jlakos@bloomberg.net

 Page 2 of 43

specific until now, has existed in C++ for nearly a quarter century.1 As of

Visual Studio 2005, the __assume construct had been in multiple prior

releases of that compiler. GCC introduced __builtin_unreachable in 2010

(GCC version 4.5) about a decade ago, and Clang introduced

__builtin_assume about four years after that.2 Such constructs typically

achieve their purpose by introducing undefined behavior (UB) into the program

when some explicitly stated condition must hold.

For example, consider the double-valued function sqrt:

double sqrt(double x)

 // Return the positive value whose representation multiplied by itself

 // is the closest to `x`; if there's a tie, prefer the smaller one. The

 // behavior is undefined unless `x >= 0`.

{

 __builtin_assume(x >= 0); // compiler-accessible assumption construct

 if (x < 0) return 0; // Defined behavior may be elided as `x >= 0` is true.

 // … (remaining implementation elided)

}

Providing the platform-dependent __builtin_assume assumption construct

above allows the compiler to remove the line that would return 0 if x were

negative, which is correct since the contract states non-negative x as a

precondition.

Even without explicit syntax, we can still try communicating with the compiler

by creating our own, say, MY_ASSUME(BOOLEAN_VALUE) macro that, if the

provided Boolean expression is false, would immediately invoke some obvious

UB (e.g., dereferencing and assigning to a literal null pointer):

#define MY_ASSUME(BOOLEAN_VALUE) { if (!(BOOLEAN_VALUE)) *(int*)(0) = 0; }

 // Replace with undefined behavior if `(BOOLEAN_VALUE == false)`; else NOP.

double sqrt(double x)

 // (Return… …smaller one.) The behavior is undefined unless `x >= 0`.

{

 MY_ASSUME(x >= 0); // home-grown compiler-accessible assumption construct

 if (x < 0) return 0; // defined behavior *might* still be elided

 // … (remaining implementation elided)

}

As it turns out, not all compilers treat all UB equally. In our experiments, for

example, MSVC3 and ICX4 did not optimize based on assignment through a

literal null pointer. Clang5 had almost identical results between assigning

1 P1774R8
2 Clang 3.6.0
3 Microsoft Visual C++ 2022 (MSVC 12.33.31630)
4 Intel ICX 2022.2.0.20220730
5 Clang 15.0.1

 Page 3 of 43

through a null pointer and use of its __builtin_assume intrinsic, whereas

GCC6 seemed to optimize a null reference slightly better than it did when we

used the __builtin_unreachable idiom:

double sqrt(double x)

 // (Return… …smaller one.) The behavior is undefined unless `x >= 0`.

{

 if (x < 0) __builtin_unreachable(); // compiler-accessible assumption (GCC)

 if (x < 0) return 0; // defined behavior (*might* still be elided)

 // … (remaining implementation elided)

}

Moreover, if the compiler can see that calling sqrt on a negative value would

be UB, the compiler is allowed to use any such inevitable (i.e., cannot-be-

bypassed) call to elide code upstream from that call, sometimes referred to as a

time travel optimization:

int negative_y_count = 0; // count number of negative args to `myFunc`

double myFunc(double y)

 // Do something; `y` must not be negative.

{

 if (y < 0) ++negative_y_count; // can be elided because, if we get here,

 // sqrt(y) will always be reached

 return sqrt(y);

}

Anecdotal tales of various meaningful effects of home-grown and

implementation-specific compiler-accessible assumption constructs on

generated code have long been touted. Historically, however, surprisingly little

reproducible empirical data has been available to suggest what effect, if any,

such compile-time assumptions might have on overall program run times.

Absent compelling empirical data, some committee members have merrily

conjectured that assumptions, though they might have an impact on reducing

generated code size, will necessarily worsen compile time and, at best, have a

negligible impact on run time. Modern compilers typically notice and perform

the optimizations available on the current platform. With modern CPU

architectures and branch predictors, even when the compiler fails to elide an

untaken branch, that branch can nonetheless execute with effectively zero cost

if it is well predicted.

One paper, in particular7, suggests that when enabling compiler-accessible

assumption constructs on preconditions, the overall run time of a particular

application grew by approximately 1%. This surprising result was questioned

during the SG21 meeting in Prague in February 2020. Herb Sutter and John

Lakos agreed that Bloomberg would undertake a comprehensive study to

6 GCC 12.2.0
7 P2064R0

 Page 4 of 43

determine if and to what extent making a precondition a compiler-accessible

assumption might affect overall program run times: (1) in which direction, (2)

by how much, and (3) characterized by what kinds of coding patterns. The

research and results we present in this paper form the beginning of our

response to that open question.

With the adoption of portable assumptions8 to the C++ working paper,

understanding the potential impact such assumptions can have on runtime

performance now becomes important to all users considering using

[[assume]]. In this paper, we’ll start by discussing several use cases in which

explicit assumptions made available to the compiler appear to improve code

generation and lead to improved runtime performance. We then choose just

one of those use cases and establish a specific experiment that demonstrates

— beyond any doubt — that a compiler-accessible assumption can and does

meaningfully affect (invariably reduce) overall runtime performance.

In particular, we’ll exhibit reproducible data that, even on the most modern

compilers, shows significant potential runtime effects of introducing explicit

compiler-accessible assumption syntax. This potential runtime benefit will, in

turn, underscore the importance of having such crucial semantics now part of

the (portable) Standard rather than only as optional, eclectic, inconsistent,

nonportable extensions.

THEORETICAL ADVANTAGES

As one might reasonably expect, the more accurate information a compiler has

to work with, the more likely it will be able to generate better object code —

e.g., code that takes less time to run. One might also presume that analyzing

more information could take additional compile time. One could also imagine

scenarios where the additional information might result in less generated code,

which in pathologically extreme cases might noticeably reduce overall

compilation time. Taking this reasoning a step further, less code typically runs

faster, so we might conjecture that run times might also be affected.

Although compiler-accessible assumptions sometimes lead to substantially

smaller programs, the smaller size is not necessarily reflected in reduced

overall run times. In many cases, the reduction in object code results from

dead-code elimination. Even when the dead code is not eliminated via an

explicit assumption construct, compilers are typically still smart enough to

place the presumed unlikely code remotely, and branch predictors often obviate

loading the dead code into memory. In such cases, the difference in run time,

with and without a compiler-accessible assumption construct, is often nothing

more than a single, readily predicted branch, leading to no measurable

difference in run times.

8 P1774R8

 Page 5 of 43

In numerous specific cases, however, we might reasonably expect that a well-

placed compiler-accessible assumption construct could lead to better-

generated code and meaningful reductions in run times, whereas without an

explicit assumption construct, the compiler would have no way to deduce such

truth and thus could not apply the corresponding optimizations. In what

follows, we briefly delineate some distinct ways in which user-provided

assumption constructs might significantly impact generated code and thus the

prospect of perhaps also achieving some meaningful reduction in run times. In

each of these six cases, we will use a local-library-provided ASSUME(EXP)

macro to indicate to the compiler that EXP can be assumed to be (convertible

to) true.

1. Eliding conditional branches. If there is one thing compiler-accessible

assumptions are good at, it’s removing conditional branches (and

associated dead code) where only one direction is supported behavior.

Consider a simple function, branches, that takes as its only argument a

Boolean flag, firstBranch, such that the if-branch will be executed if

the flag is true and the else-branch otherwise:

void branches(bool firstBranch)

 // Invoke `doSomething` if `firstBranch` is `true`; otherwise, invoke

 // `doSomethingElse`.

{

 if (firstBranch) {

 doSomething();

 }

 else {

 doSomethingElse();

 }

}

A function with no preconditions is said to have a wide contract;

otherwise, it has a narrow contract. Suppose we know that we will never

pass false to the function. We can then change the contract from a

wide to a narrow one and assume that the contract will be followed

scrupulously:

void branches2(bool firstBranch)

 // Invoke `doSomething` if `firstBranch` is `true`; otherwise the behavior

 // is undefined.

{

 ASSUME(firstBranch); // Per English contract: `firstBranch` must be true.

 if (firstBranch) { // elidable

 doSomething();

 }

 else {

 doSomethingElse(); // elidable

 }

}

 Page 6 of 43

Since the compiler knows it can assume that firstBranch is always

true, it can elide both the expression check and the else-block without

changing the meaning of a correct program:

void elidedBranches2(bool firstBranch)

 // Invoke `doSomething` if `firstBranch` is `true`; otherwise the behavior

 // is undefined.

{

 doSomething();

}

This first theoretical case is the one we will analyze deeply in this paper.

Note that although we will employ nested if-else expressions to help us

extract quantifiable results, nesting is not essential for code generation

to be affected significantly.

2. Loop unrolling. A common compiler optimization is unrolling loops into

multiple instances of the loop body. Loop unrolling is atypical in that it

leverages increasing code size (due to multiple copies of the loop body) to

reduce the number of branch conditions that need to be evaluated and

thus the number of instructions to be executed. Importantly, if a loop is

unrolled into n copies, special consideration will need to be taken up-

front within the generated code to handle cases where the number of

iterations will not be a multiple of n. Such optimizations will often involve

the compiler generating the moral equivalent of Duff’s Device — a switch

statement and an associated additional, unconventional branch into the

code block associated with the switch. For example, consider a function,

loop, taking as its argument an integer number of iterations, n:

void loop(int n)

 // Do something `n` times. The behavior is undefined unless `n > 0`.

{

 for (int i = 0; i < n; ++i) {

 doSomething();

 }

}

A compiler might choose to translate loop to an equivalent function,

loopUnrolled4, in which the loop body is unrolled four times:

void loopUnrolled4(int n)

 // Do something `n` times. The behavior is undefined unless `n > 0`.

{

 int i = 0;

 switch (n % 4) {

 do {

 case 0: doSomething();

 case 3: doSomething();

 case 2: doSomething();

 case 1: doSomething();

 ++i;

 } while (i < (n+3)/4);

 }

}

 Page 7 of 43

Compilers will attempt to choose the optimal number of times to unroll a

loop based on (1) their ability to predict the results of the loop

termination condition (and perhaps the cost of evaluating it), (2) the size

of the loop body, and (3) the optimal use of space in the instruction

cache for the target CPU. Supplying an appropriate compiler-accessible

assumption construct can, however, significantly reduce the size of

transformed code.

Let’s now consider a function, loopAssumed, whose contract advertises

that the number of iterations must be an integer multiple of 4 or else the

behavior is undefined:

void loopAssumed4(int n)

 // Do something `n` times. The behavior is undefined unless `n >= 0`

 // and `n` is an integer multiple of 4.

{

 ASSUME(n % 4 == 0);

 for (int i = 0; i < n; ++i) {

 doSomething();

 }

}

With the explicit ASSUME(n % 4 == 0) in place, the compiler is permitted

to translate the function to an equivalent one, such as

loopAssumedUnrolled4:

void loopAssumedUnrolled4(int n)

{

 for (int i = 0; i < n; i += 4) {

 doSomething();

 doSomething();

 doSomething();

 doSomething();

 }

}

Note that as long as the assumption on the number of iterations, n, is an

integer multiple of how many times the compiler chooses to unroll the

loop body, this seemingly improved transformation can be readily

achieved.

3. Vectorization. When loops are unrolled, another common

transformation that can be applied to the unrolled loop is automatic

(compiler-initiated) vectorization. This transformation replaces many

instructions with a single CPU-specific instruction capable of doing all

those operations simultaneously. Consider, for example, a function, sum,

that sums a given number of double-precision floating-point values:

double sum(double* data, int count)

 // Sum the specified `count` numbers in the specified `data` array. The

 // behavior is undefined unless the first `count` members of `data` are

 // valid (non-NaN) objects of type `double`, `count` is a multiple of 8,

 // and `data` is aligned on a 64-byte boundary.

{

 ASSUME(count % 8 == 0); // #1

 Page 8 of 43

 ASSUME(reinterpret_cast<std::uintptr_t>(data) % 64 == 0); // #2

 double output = 0;

 for (int i = 0; i < count; ++i) {

 output += data[i];

 }

 return output;

}

Using just the first compiler-accessible assumption construct (ASSUME

#1), the compiler may choose to unroll the loop and then transform the

code:

double sumVectorized(double* data, int count)

{

 double output = 0;

 for (int i = 0; i <= count; i += 8) {

 __m512d v = _mm512_loadu_pd(data + i); // Read 8 doubles.

 output += _mm512_reduce_add_pd(v); // vectorized addition

 }

 return output;

}

Access to the second assumption (ASSUME #2) allows for use of an aligned

load, which would replace the __mm512_loadu_pd CPU instruction with

__mm512_load_pd a more specialized instruction that might show

significant improvements in execution time. Even without these

assumptions, many similar scenarios will still see vectorization at the

compiler’s discretion, but substantial extra code, including runtime

branch statements, will need to be emitted to handle cases where the

data is (1) not a multiple of the number of elements that can be operated

on in a single SIMD instruction or (2) not sufficiently aligned.

4. Memory Aliasing. Absent specific knowledge, a compiler must generate

code that works properly for all valid input. In particular, a compiler can

rarely safely assume that two distinct pointers, independently passed to

a function, do not point to overlapping objects. For example, any write-

through to an object referenced by one pointer could potentially

invalidate the compiler’s knowledge about the value referenced by some

other pointer. Consider, for example, a function, foo, that takes two

integer pointers, a and b, sets the value to which a points to 17, and

returns twice the value to which b points. The behavior is undefined if

the storage (typically 4 bytes) to which a points overlaps that of b.

int foo(int *a, int *b)

 // Store 17 in `*a` and return `2 * *b`; the behavior is undefined

 // if `a == b`. Note that, on platforms that do not require *natural*

 // *alignment*, this precondition might not be sufficient.

{

 int output = 0;

 output += *b; // reads `b`

 *a = 17;

 output += *b; // must read `b` again

 return output;

}

 Page 9 of 43

With larger objects and user-defined types or both, the task of guarding

against aliasing becomes even more complex. The C language provides a

specific keyword, restrict, which informs the compiler that a pointer

does not refer to the same address as any other pointer:

int fooInC(int *a, int * restrict b)

{

 int output = 0;

 output += *b; // reads `b`

 *a = 17;

 output += *b; // `b` does not need to be read again.

 return output;

}

C++ does not provide restrict, but an assumption should be able to

provide the same (or at least sufficiently similar) information:

int fooInCpp(int *a, int *b)

{

 ASSUME(a != b);

 int output = 0;

 output += *b; // reads `b;`

 *a = 17;

 output += *b; // `b` does not need to be read again.

 return output;

}

Note that this is just a simple case where C’s restrict keyword is

effective and improves code generation. Using our home-grown, compiler-

accessible ASSUME macro in a way that more fully approximates the

power of restrict could, however, be challenging.

5. Floating-point arithmetic. The floating-point data types provided in

C++ — float, double, and long double — have the sometimes-

frustrating property of not being regular. These types reserve a series of

representations, each of which is not a number (NaN) and has the

interesting property of returning false from all comparison operations,

including comparison with itself! Because the compiler is required to deal

with any valid floating-point object, even one that doesn’t represent a

number, seemingly simple source code might require an unexpectedly

complex object-code generation to accommodate pathological cases that

are designed to never occur in most typical applications. Consider two

functions, f and g, each taking a single argument of type double, each of

which returns its argument, provided that the argument is not a NaN:

double f(double argument)

 // Return the specified `argument`.

{

 if (argument * argument < 0) { return 0; } // always false

 return argument;

}

double g(double argument)

 // Return the specified `argument`. The behavior is undefined if

 // `argument` is a NaN.

 Page 10 of 43

{

 if (argument * argument >= 0) { return argument; } // true except for a NaN

 return 0;

}

On most platforms, the first function, f, compiles to a single return

statement (return val;), while g must have a branch to handle

returning 0 when passed a NaN. As one might surmise, the implementer

of g had little concern for what g’s behavior would be when passed a

NaN. In such cases, one could employ the structure of g and achieve the

generated-object-code compactness of f by supplying an appropriate

compiler-accessible assumption construct explicitly:

#include <cmath> // std::isnan(double)

double g2(double argument)

{

 ASSUME(!std::isnan(argument)); // or maybe `ASSUME(argument == argument);`

 if (argument * argument >= 0) { return argument; } // always true

 return 0;

}

By informing the compiler explicitly that it may assume no NaN will ever

be passed into g2, object code need not be generated to handle a NaN’s

noisome idiosyncrasies.

6. Signed arithmetic. Overflowing a signed integral type in both C and C++

is explicitly UB, whereas overflow on an unsigned integral type is defined

and required to wrap. Hence, one can encounter expressions where the

compiler can make optimizations for a signed expression that it could not

make for a structurally similar unsigned expression. For example,

consider two functions, f1 and f2, trafficking in unsigned and signed

integers, respectively9:

unsigned int f1(unsigned int i) int f2(int i)

 // Return something (wide contract). // Return 10 (narrow contract).

{ { ASSUME(i >= 0);

 unsigned int j, k = 0; int j, k = 0;

 for (j = i; j < i + 10; ++j) for (j = i; j < i + 10; ++j)

 ++k; ++k;

 return k; return k;

} }

Notice that f1 can overflow; hence, object code must be generated to

accommodate that possibility. On the other hand, the compiler can

assume that no overflow will occur for f2; hence, the body of f2 can

safely be optimized to simply return 10, provided the caller respects that

the behavior is undefined unless INT_MIN <= i && i < INT_MAX – 10. This

example shows how just, by using a signed type, we introduce an implicit

compiler-accessible assumption that the computation cannot overflow,

and thus choice of signed-ness can substantially affect code generation.

9 https://www.airs.com/blog/archives/120

 Page 11 of 43

Further indicating to the compiler that the argument cannot be negative,

however, requires an explicit one as the original function was implicitly

undefined for negative values.

Each of the six use cases above provides realistic opportunities for

meaningfully affecting generated code. This paper, however, will focus on just

the first one, eliding conditional branches.

PLAN

Compile-time assumptions might benefit code generation — now or in the

future — in innumerable ways. Given that [[assume]] is currently part of the

C++ working draft, slated for release as part of C++23, we wanted to provide

dispositive proof that compiler-accessible assumptions can measurably reduce

run times in C++ code.

Since our goal is to provide an existence proof, we opted to pick just one

optimization theory — eliding conditional branches, which is the first item in

the previous section’s list of benefits — and to write a microbenchmark to

explore that space (see the following section, Apparatus, for more details):

1. Create a trivially simple, portable, and ideally reusable custom

framework that can be run standalone on any conforming platform (i.e.,

hardware/compiler combination).

2. Making use of pseudo-recursive macros and conditional compilation,

devise a test function having two compile-time integer parameters

suitable for creating a family of functions that can be used to exhibit and

quantify the effects of nested if-else statements versus, as a control,

some other, inert way of similarly increasing code size.

3. Design, for each if-else branch, a (perhaps distinct) conditional

expression tied to a single runtime parameter of the function such that,

for a particular chosen magic value of the runtime parameter, the

expression will (1) always evaluate to true and (2) minimize the

likelihood that a compiler, absent an explicit assumption construct, will

be able to identify that particular magic value when optimizing.

4. Insert an optionally-enabled (controlled via conditional compilation)

compiler-accessible assumption that the runtime function parameter is,

in fact, our chosen magic number. The mechanism used to deliver the

assumption depends on the host platform: Use a home-grown construct

based on assignment through a null pointer if that works; otherwise, use

a compiler-specific intrinsic (assuming one exists and provides consistent

results).

5. Run each member of the 2D family of inputs with and without compiler-

accessible assumptions enabled and graph the ratios of compile times,

 Page 12 of 43

generated code sizes, and run times as surfaces in 3D and, for exposition

purposes, as a series of 2D heat maps.

6. Determine if and to what extent compiler-accessible assumptions affect

our code generation and runtime behavior.

7. Contrast the effect of the compiler-accessible assumption constructs on

the test function’s single runtime argument for increasingly nested if-else

depth (first dimension) juxtaposed with similarly increasing body size

(second dimension), given that the increasing the value in either

dimension by 1 effectively doubles the size of the compiler input in

testfunc.cpp.

8. Where meaningful, assess whether the net effect of compiler-accessible

assumptions on code generation improves or degrades compile times,

code sizes, and especially run times.

Importantly, this experiment models one function having a narrow contract;

hence, not all syntactically valid inputs are considered defined behaviors by the

function’s author. If the compiler is unaware of the preconditions in a

function’s English contract, it will be obliged to generate object code that has

no purpose in any correct program. Conversely, by dint of an explicit

assumption construct, the compiler may instead assume that it needs to

handle only a single input value (which could be generalized to any sufficiently

reduced range of inputs) and, hence, much of the supererogatory object code

that might otherwise be generated may now be elided.

To bind this proposed, highly customized, artificial microbenchmark to the real

world, let’s consider just one more example motivating this particular

theoretical optimization opportunity. Suppose some popular library provides an

inline function, algo, such that the body of algo is always visible to each of

its callers. Suppose further that this function sports a wide contract, meaning

that it is prepared to handle every valid combination of inputs:

inline double algo(int i, double, const char *cp)

// This inline function has a wide contract.

{

 // ... (Body is visible to caller's compiler.)

}

One can reasonably suspect that not every client will require the full, wide

contract supported by the robust algo library function.

Let’s now consider three tiny but not necessarily inline client functions — f, g,

and h — in turn. The first, f, takes a single argument (via parameter i), which

is required to be non-negative:

double f(int i)

 // The behavior is undefined unless `i >= 0`.

{

 ASSUME(i >= 0); // E.g., `if (i >= 0)` may also be elided in `algo`.

 Page 13 of 43

 return algo(i, 1.0, nullptr); // Much of `algo` may be elided automatically!

}

Because the compiler for f above can see two literal arguments coming into

algo, the generated code can already be heavily elided. Providing the additional

compiler-accessible assumption in the body of f affords additional information

at compile time that might lead to further object-code improvement. Note that

the compiler would be within its rights to choose not to inline algo in f, in

which case none of these optimizations would take effect. (Naughty compiler!)

Let's now consider a client function, g, that requires a (non-null) null-

terminated string as input:

#include <limits> // std::numeric_limits<double>::quiet_NaN();

double g(int x, char* string)

 // The behavior is undefined unless `string` refers to an NTBS.

{

 ASSUME(string); // sufficient to avoid conditional check for nullness

 return algo(x, std::numeric_limits<double>::quiet_NaN(), string);

}

In g above, the compiler might be able to do something with the knowledge that

this instantiation of algo will always get a quiet NaN as its second argument,

but that’s entirely beyond our control. On the other hand, by stating explicitly

that string will not be null, we enable the client compiler (i.e., of g) to elide all

such redundant checks and associated actions from the generated object of

algo inlined for g.

Finally, we look at one more client function, h, that specifies a highly restricted

range for algo’s middle argument:

double h(int i, double d = 1.0)

 // The behavior is undefined unless `0.5 <= d <= 2.0`.

{

 ASSUME(0.5 <= d); ASSUME(d <= 2.0);

 return algo(i, 1.0/d, nullptr); // `cp` is 0 and `1.0/d` will always be finite.

}

In this third client function, h, the compiler automatically knows that any test

for a null value of cp within algo will be true and thus can elide that test

along with all code that handled a non-null cp. When the compiler is explicitly

provided with an accessible assumption indicating the range to which d is

bounded, it may then determine the range of the results for operations on d,

potentially exclude infinite and NaN results, and thus reduce the amount of

generated object code by — in particular — eliding nested conditional

branches.

APPARATUS

Our deliberately simple, portable microbenchmark framework consists of

various scripts that build and drive a C++ program comprising three local

 Page 14 of 43

translation units (TUs) that, in turn, depend on only the platform’s native

Standard Libraries.

Each of these three local TUs serves a distinct purpose in this

microbenchmarking framework:

driver.cpp — a reusable main driver file that, once compiled and

linked, reads command-line configuration arguments to control a for

loop used to invoke a suitably customized test function repeatedly.

testfunc.cpp — a component that defines an insulated function,

testFunction, which is parameterized via conditional compilation to

yield the precise function whose physical characteristic (e.g., compile
time, object-code size, and run time) we wish to analyze.

opaqueobj.cpp — a tiny component that defines an insulated volatile

object that can be leveraged in the other TUs to prevent some compiler
optimizations.

In the remainder of this section, we'll take a more in-depth look at each part of

our framework.

Suite of scripts to configure, buil d, and run program

driver.cpp

testfunc

testFunction

main

opaqueObject

opaqueobj

(native)

C++ Standard Library

1

2

3

libcpp.a

 Page 15 of 43

At the first level (labeled 1) of our local physical hierarchy, we have a

component, opaqueobj, that contains the opaque definition of an insulated

volatile unsigned int object, opaqueObject, whose file-scope, statically

initialized state is the value 1u. The compiler has no means of determining that

this value will not change, so it must not make any assumptions about what

actual values opaqueObject might or might not contain:

// opaqueobj.cpp

volatile unsigned int opaqueObject = 1;

The express purpose of this tiny component is to enable us to both (1) remove

optimizations that would otherwise cause a microbenchmark to become

irrelevant and thereby (2) mimic the effects that might be seen in real code as it

scales. Importantly, by using the value of an insulated volatile object, the

compiler will be unable to make any assumptions about the state of this object

when compiling our other TUs. Although modern compilers having link-time

optimization enabled might be able to make such assumptions anyway, we

deliberately avoid building any of our test executables with link-time

optimization enabled to preserve the efficacy of the benchmark.

At the third level (labeled 3) of our component hierarchy, we have the

driver.cpp file, which defines main. This small TU is responsible for

processing any runtime program arguments from the command line, such as

the number of times to call testFunction from within a tight loop:

// driver.cpp

#include <testfunc.h> // `unsigned int testFunction(unsigned int);`

#include <opaqueobj.h> // `volatile unsigned int opaqueObject;`

#include <iostream> // `std::cout`

int main(int argc, const char *argv[])

{

 int k = argc > 1

 ? std::atoi(argv[1]) // Parse the first argument if provided.

 : 100'000'000; // 100 million is the default.

 std::cout << k << std::endl; // Print # loop iterations.

 int log2_i = 0; // log base 2 of first trial `(i = 1)`, is 0.

 long long iNext = 1; // when to print next `log2_i`

 for (long long i = 1; i <= k; ++i) { // `i` is the `i`th trial

 if (i >= iNext) {

 std::cout << ' ' << log2_i++ << std::flush;

 iNext <<= 1;

 }

 opaqueObject = testFunction(opaqueObject);

 }

 return 0;

}

Before starting the loop, the program prints, to stdout, the runtime-specified

loop-iteration count. The body of the loop is deliberately kept minimal but, to

enable the human user to monitor progress during longer benchmarks, has an

extra Boolean test that is used to successively print, with exponentially

x-webdoc://13B8607B-F0E4-4ED7-B9D8-291B5F9613DD/#include
x-webdoc://13B8607B-F0E4-4ED7-B9D8-291B5F9613DD/#include
x-webdoc://13B8607B-F0E4-4ED7-B9D8-291B5F9613DD/#include

 Page 16 of 43

decreasing frequency, log2 of the current loop index to stdout. Finally, the loop

invokes the (insulated) testFunction on the opaque statically initialized

volatile unsigned int opaqueObject and then assigns it the resulting

inscrutable value upon its return.

Importantly, on each iteration of the loop, the value opaqueObject is

repeatedly filtered through the benchmark’s test function. Without the

knowledge that this value will stay 1, which we have carefully prevented the

compiler from concluding within any single TU of our microbenchmark

program, the compiler is forced to generate object code for testFunction to

account for a wide range of opaqueObject values. In practice, however, when

the value is initialized to 1, it will stay 1 indefinitely, and our assumption for

this benchmark will be that the value is always 1. Because we have secretly

structured this microbenchmark program such that testFunction is always

invoked with the same opaqueObject value, 1, we are able to introduce that

valid assumption (or not) into testFunction (see below) and thereby observe

whatever physical benefits enabling such a compiler-accessible assumption

might bring us.

Sandwiched between the main driver and the component defining

opaqueObject at the second level (labeled 2), is the testfunc component,

which defines our highly compile-time-customizable, insulated testFunction,

taking a single unsigned int value and returning some inscrutable value of

the same type:

// testfunc.h

#ifndef INCLUDED_TESTFUNC

#define INCLUDED_TESTFUNC

unsigned int testFunction(unsigned int v);

#endif

We need to pass in some unknown argument so that the compiler of this TU

cannot automatically elide code based on what it already knows about the

caller. We need the test function to return some unknowable value to prevent

the client compiler from optimizing away the call or discovering other artificial

optimizations that would tend not to mimic real-world code as it scales up.

Finally, we need to make sure that testFunction, when passed our magic

value of 1u, always returns that same magic value of 1u, thereby ensuring that

the value of our volatile opaqueObject will remain stable through each

iteration of our test-driver loop and we can introduce an assumption that our

function parameter, v, always has a value of 1u as well.

What makes this component especially unusual is the extent to which it can be

aggressively customized at compile time to create a 2D family of functions

having wildly varying object sizes, parameterized by two non-negative integers,

M and N, in which M describes the depth of a symmetric if-else tree and N

indicates size and is proportional to the logarithm of the number of additional

 Page 17 of 43

sequential instructions in each if-else code block (body). One effective way

of achieving such flexibility is to create a sequence of pseudo-recursive macros

and then use conditional compilation to select the appropriate recursion depth

using -D on the compilation command line:

// testfunc.cpp

#include <testfunc.h> // declaration of `testFunction`

#include <opaqueobj.h> // declaration of `opaqueObject`

#define X opaqueObject

#define BODY0 r += X ; r *= X; r -= X; r *= X; // If `X` is 1, `r` is unchanged.

#define BODY1 BODY0 BODY0

#define BODY2 BODY1 BODY1

#define BODY3 BODY2 BODY2

// : : :

#define BODYJ BODYI BODYI

#ifndef BODY // `BODY` must be defined using `-D` to one of the above.

#error BODY is not defined

#endif

#define IFELSE0 { BODY } // `BODY` is the customization point for body size.

#define IFELSE1 if (EXPR1) { IFELSE0 r &= X; } else { IFELSE0 r |= X; }

#define IFELSE2 if (EXPR2) { IFELSE1 r &= X; } else { IFELSE1 r |= X; }

#define IFELSE3 if (EXPR3) { IFELSE2 r &= X; } else { IFELSE2 r |= X; }

// : : : : : : : : : : : : :

#define IFELSEJ if (EXPRJ) { IFELSEI r &= X; } else { IFELSEI r |= X;

#ifndef IFELSE // `IFELSE` must be defined using `-D` to one of the above.

#error IFELSE is not defined

#endif

unsigned testFunction(unsigned int v)

{

 #ifdef ASSUME // compiler-switch to enable home-grown assumption construct

 if (v != 1) *(int *)0 = 0; // If `v` is not `1`, we have undefined behavior.

 #endif

 unsigned int r = v; // Start the macro ball rolling.

 IFELSE; // customization point for if-else depth.

 return r; // designed to return `1u` provided `v` was `1u`

}

Also configurable at compile-time are whether an explicit compiler-accessible

assumption construct operating on the input parameter is enabled and, if so,

whether to use native compiler intrinsics (not shown) or some other home-

grown language construct (e.g., assigning to a dereferenced null pointer) to

introduce UB if the assumption would ever evaluate to false.

Additionally, not all branch conditions (see EXPR1, EXPR2, ..., above) benefit

equally from compiler-accessible assumptions, especially when the compiler

can infer during its normal optimization procedures, without an assumption,

that certain values will lead to predictable branching for the given expressions.

For many common nested expressions, the compiler might be able to glean

 Page 18 of 43

useful optimization information even without explicit compiler-accessible

assumptions.

Initially, one of the early expressions was 1 == v. On the branch where the

conditional expression was true (i.e., the branch our framework would always
take), all remaining expressions in terms of v were deducible at compile time,

meaning that the nonassumed build of our test function performed only a
single comparison and branch at run time; hence, we saw no significant benefit
in the assumed build. Instead, we chose to make the comparison expressions
distinctly independent so that the result of one expression could not be used to
determine the results of the remaining expressions. The benchmark data
shown in this paper is the result of using a series of expressions where the mth
expression is true only if a particular bit (bit m) is not set in v (note that there

is no expression when m is 0):

#define IFELSE1 if (0 == v ^ (v << (v + 0))) { IFELSE0 } else { IFELSE0 }

#define IFELSE2 if (0 == v ^ (v << (v + 1))) { IFELSE1 } else { IFELSE1 }

#define IFELSE3 if (0 == v ^ (v << (v + 2))) { IFELSE2 } else { IFELSE2 }

 : : : : : : : : : : :

We also made sure that the sequence of linear instructions was not amenable

to optimization due to concurrence. Moreover, we chose our arithmetic

calculations such that, provided the opaqueObject had an initial value of 1u,

after each repeated sequence of four arithmetic operations, opaqueObject

would again have that same value but — by explicit design — the compiler

would have no way to know that. Thus opaqueObject == 1u remains a stable

invariant throughout the repeated calls to testFunction.

We developed several scripts of varying degrees of portability, each of which

assist in gathering data needed to understand how our benchmark performs.

For each set of values of the control variables (if-else depth, body size, and

assumption enablement), we perform six steps:

1. Compile separately the testfunc.cpp TU with the appropriate compile-

time parameters and build options.

2. Measure the time taken by the compilation process.

3. Measure the size of the resulting object file, testfunc.o.

4. Link the object files from testfunc.o, driver.o, and opaqueobj.o into

an executable.

5. Run the resulting executable with a sufficiently large input size (e.g., 108)

to ensure execution times are substantial enough (e.g., > 1 second) to get

meaningful results.

6. Measure the time taken for the executable to run to completion.

The if-else depth, M, is controlled by defining (typically using -D) the value of

the macro IFELSE to one of the numbered or lettered IFELSE<N> macros

 Page 19 of 43

available in testfunc.cpp. The body size, N, for each of the if and else

blocks is similarly controlled by defining the value of BODY. Both of these

macros must be defined for testfunc.cpp to compile. Assumption is disabled

by default and can be enabled if the macro ASSUME is defined.

As a purely illustrative example, consider two independent build-link-run

sequences for this benchmark program, targeting a specific compiler and

presupposing that the other TUs have already been compiled. To understand

what the script is doing as it executes, before each sequence, we output (echo

-n) the if-else depth, body size, and assumption enablement — `_` for disabled

and `@` for enabled:

simple (pedagogical) script file to run two independent tests

echo -n "(3 1 _)"

 time g++ -O3 -I. -c -DIFELSE=IFELSE3 -DBODY=BODY1 testfunc.cpp

 stat -c%s testfunc.o

 g++ driver.o testfunc.o opaqueobj.o -o test_3_1

 time ./test_3_1 10000000

echo -n "(0 6 @)"

 time g++ -O3 -I. -c -DIFELSE=IFELSE0 -DBODY=BODY6 -DASSUME testfunc.cpp

 stat -c%s testfunc.o

 g++ driver.o testfunc.o opaqueobj.o -o test_0_6_a

 time ./test_0_6_a 100000000

Sourcing this file produces several lines of output10:

(3 1 _)

real 0m0.328s

user 0m0.171s

sys 0m0.123s

2680

10000000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

real 0m0.166s

user 0m0.078s

sys 0m0.030s

(0 6 @)

real 0m0.397s

user 0m0.203s

sys 0m0.139s

2480

100000000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

real 0m14.967s

user 0m14.890s

sys 0m0.000s

Notice that, along with various compile time, object size, and run time data,

information sufficient to characterize each program run is embedded within the

output:

(1, 6, _) ... 10000000 ; N=1; M=6; assume disabled; called 10MM (10^7) times.

(3, 0, @) ... 100000000 ; N=3; M=0; assume enabled; called 100MM (10^8) times.

10 ThinkPad 480s running GCC 11.2.0 (c. 2021)

 Page 20 of 43

Running a postprocessing script to collect and render the raw output might

yield something a bit more user friendly:

Config. <-- Compile Time --> .o Num <----- Run Time ----->

(N M A) real user system Size Calls real user system

------- ------ ------ ------ ---- ----- ------- ------- ------

(1 3 _) 0.328s 0.171s 0.123s 2680 10MM 0.166s 0.078s 0.030s

(6 0 @) 0.397s 0.203s 0.139s 2480 100MM 14.967s 14.890s 0.000s

We now have all the tools we need to start exploring the space of the theoretical

advantage we’re focusing on: eliding conditional branches.

EXPERIMENT

Given the apparatus discussed in the previous section, we are now ready to

describe how we proceeded to collect the data for this paper. Recall that our

framework supports compile-time parameters that include (M) the depth of the

if-else tree, (N) the log2 of the size of the body of code expanded within each

if-else block, and (A) whether some compiler-accessible assumption is

enabled. The number of invocations of the test function can also be passed to

the generated executable, as a command-line argument, at run time.

The raw data we collect from each run includes (1) the time required to compile

testfunc.cpp, which defines just our testFunction, (2) the size in bytes of

the object file, i.e., testfunc.obj for MSVC and testfunc.o on all other

platforms, and (3) the time needed to run the linked overall benchmark

program. Although we collect wall, user, and system times in these

experiments, we typically run on dedicated hardware, so we have opted to use

wall time for all time (duration) measurements. For further analysis, we also

run the linked benchmark program on Linux with the perf command to gather

CPU performance counters such as instruction count, branch count, and L1

data cache loads and stores.

Running the benchmark program for a particular configuration — i.e., compile-

time value of if-else depth (M), body size (N), and whether compiler-accessible

assumptions are enabled (A) — produces raw data that, by itself, is not

especially informative. But by running the same if-else depth and body size

partial configuration twice, first with assumptions (A) disabled (`_`) and then

enabled (`@`), we get two distinct raw data points that we can use to assess the

effect of providing the explicit assumption on the baseline code for whatever

data is of interest.

For example, we could use a simple script to compile, link, and test two such

related configurations:

simple (pedagogical) script file to run two independent tests

echo -n "(5 2 _)" #disabled

 time g++ -O3 -I. -c -DIFELSE=IFELSE5 -DBODY=BODY2 testfunc.cpp

 stat -c%s testfunc.o

 g++ driver.o testfunc.o opaqueobj.o -o test_5_2

 time ./test_5_2 100000000

 Page 21 of 43

echo -n "(5 2 @)" #enabled

 time g++ -O3 -I. -c -DIFELSE=IFELSE5 -DBODY=BODY2 -DASSUME testfunc.cpp

 stat -c%s testfunc.o

 g++ driver.o testfunc.o opaqueobj.o -o test_5_2_a

 time ./test_5_2_a 100000000

After executing these commands and collecting the output, we get a meaningful

pair of data points that we can use to quantify the effects of adding compiler-

accessible assumptions for this particular (if-else depth = 5, body size = 2)

partial configuration of testFunction:

Config. <-- Compile Time --> .o Num <---- Run Time ---->

(M N A) real user system Size Calls real user system

------- ------ ------ ------ ---- ----- ------ ------ ------

(5 2 _) 1.321s 0.640s 0.514s 7340 100MM 1.401s 1.311s 0.000s

(5 2 @) 0.493s 0.265s 0.093s 1408 100MM 1.267s 1.234s 0.000s

For example, suppose the baseline compile time before any changes, B, is 1.321s and the

compile-time after assumptions are enabled, A, is 0.493s:

Relative Compile Time

𝒂𝒇𝒕𝒆𝒓

𝒃𝒆𝒇𝒐𝒓𝒆
=

𝒂𝒔𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝒔

𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆

𝑨

𝑩
=

𝟎. 𝟒𝟗𝟑𝒔

𝟏. 𝟑𝟐𝟏𝒔
= 𝟎. 𝟑𝟕𝟑𝟐

As the calculation above shows, compile-time for this partial configuration with

compiler-accessible assumptions enabled is approximately 37% of what it

would be when not enabled; in other words, compiler-accessible assumptions

improved compilation speed by nearly 300% in this instance.

Applying the same A/B ratio for (a) code size (in bytes) and (b) run time (wall

seconds) for this particular configuration also yields improvements:

(a) Relative Code Size (b) Relative Run Time
𝑨

𝑩
=

𝟏𝟒𝟎𝟏 𝒃𝒚𝒕𝒆𝒔

𝟕𝟑𝟒𝟎 𝒃𝒚𝒕𝒆𝒔
= 𝟎. 𝟏𝟗𝟎𝟗

𝑨

𝑩
=

𝟏. 𝟐𝟔𝟕𝒔

𝟏. 𝟒𝟎𝟏𝒔
= 𝟎. 𝟗𝟎𝟒𝟒

Thus, we see that in this build mode (-O3 on GCC), the size of the generated

testFunc.o file is more than five times as large without compiler-accessible

assumptions as with them. Moreover, we also observe a decrease in the overall

relative run time of nearly 10%.

Throughout the remainder of this paper, we will use this A/B ratio on linear

measures, such as time or size, to exhibit the relative effects of compiler-

accessible assumptions. We deliberately avoid reciprocal measures, such as

speed or frequency, which can be needlessly confusing. What’s important

about this ratio is that it (1) is unitless and (2) uniformly describes the data

obtained from a closely related pair of runs of the benchmark with compiler-

accessible assumptions represented as a multiplicative factor of the data

obtained without them:

 Page 22 of 43

Now that we fully understand the meaning of a single relative data point, we

can organize how we collect and present the data for a 2D array of compile-

time values for if-else depth and body size. The dimensions of the input array

are governed primarily by what is feasible to build on our available platforms.

Increasing if-else depth or body size by just one essentially doubles the amount

of executable source code in the implementation of testFunction. Hence,

values of the sum of these parameters that exceed a fairly low threshold (on the

order of 20 to 30) would often lead to compilations that failed in various ways.

Large compilations that did not fail could take hours or even days to complete

and hence were deemed infeasible.

For these practical reasons, we found that a maximum if-else depth of 13 and

body size of 7 mostly succeeded for the platforms on which we ran our

experiments while still providing us with a sufficient breadth of gathered data.

The few cases where we could not build a particular configuration of our

benchmark occurred only when using MSVC and only when both parameters

approached their respective maximum values; in such cases, we have left the

corresponding relative result blank.

We organized our script so that each relative pair — nonassumed and assumed

for the same if-else depth and body size partial configuration — was output

consecutively. Next, we grouped all eight partial configuration pairs with if-else

depth = 0 first. We followed that by a second block of eight pairs having if-else

depth = 1, and so on:

if-else depth = 0, body size = 0, A = _

if-else depth = 0, body size = 0, A = @

if-else depth = 0, body size = 1, A = _

if-else depth = 0, body size = 1, A = @

: : : : : : : :

if-else depth = 0, body size = 7, A = _

if-else depth = 0, body size = 7, A = @

if-else depth = 1, body size = 0, A = _

if-else depth = 1, body size = 0, A = @

: : : : : : : :

if-else depth = 13, body size = 7, A = _

if-else depth = 13, body size = 7, A = @

Running a script to gather this data and invoking the program 14 × 8 × 2 = 224

times on a given platform for a given set of build-optimization levels is what we

mean by running an experiment.

Several important reasons for creating a 2D array of relative data points bear

mention:

1. A full experiment contains a great amount of data (typically multiple

runs of 224 distinct configurations of the benchmark program).

2. Visualization helps us observe trends and relationships as the two

compile-time parameters subtly interact.

 Page 23 of 43

3. Because both the M and N parameters we have chosen for this

benchmark (if-else depth and body size, respectively) affect the source-

code size of the function being compiled similarly for this benchmark, we

can assess how they trade off at a given overall input size.

4. Because there's a family of similar functions, we introduce random

compiled-object-quality noise with each incremental change in

configuration (e.g., associated with page and cache-line alignments),

which will tend to average out and cannot be addressed by simply

rerunning the same executable multiple times alone.

Once we have a script capable of running an experiment on a 2D family of

functions (with and without assumptions enabled), we can improve our

measurements by repeating each experiment on the current platform at a given

build level some number (e.g., 10) of times. Looking at each grid point

individually, we might choose to drop, say, the top and bottom two values and

average the remaining six. Such filtering and smoothing of the raw data points

will remove much of the noise introduced by running programs on real

multitasking machines and provide a better feel for the intrinsic variations

among each data point we seek.

PLATFORMS

We collected benchmark results on several platforms based largely on what we

had readily accessible. To avoid biasing our results to a single platform, we

inspected data on each of three operating system and CPU-architecture

combinations:

1. Windows on x86, including a personal laptop (Intel Kaby Lake), a desktop

machine (Intel Skylake), and a hosted virtual machine (Intel Haswell

E/EP).

2. Linux on x86, including a desktop machine (Intel Gulftown EP) and a

hosted machine dedicated to benchmarking (Intel Cascade Lake)

3. macOS on AArch64, including several Apple MacBook Pro personal

laptops (Apple M1 Pro and Apple M1 Max)

Our most extensive analysis was performed on the x86 machine running

Linux, which was dedicated solely to this benchmarking effort. Where available,

we attempted our experiment with multiple different compiler toolchains (in the

order in which we tried each particular compiler suite for the first time):

1. The GNU Compiler Collection (GCC), versions 10.3.0 and 12.2.0

2. Clang, version 15.0.1

3. Microsoft Visual C++ (MSVC), 2019 and 2022

 Page 24 of 43

4. Intel ICX 2022.2.0.20220730

As we gathered data, we focused on obtaining complete results, including

sufficiently large numbers of runs to attenuate unrelated noise (as might occur

in multiple runs of the identical executable). In particular, we chose to use the

median value of multiple runs to represent a normalized raw value as input to

the analysis performed for a small number of platforms, which we present at

the end of this paper.

Finally, we discovered early on that some compilers would treat compiler-

accessible assumption constructs that rely on explicit undefined behavior,

specifically assigning through a null pointer, differently to those that employ

native compiler intrinsics (e.g., __builtin_assume). Some compilers would

aggressively optimize our benchmark using either, while others would not

optimize at all based on explicit UB.

Where we saw it have some effect, we used assignment through a null pointer

for our benchmarks, and in other situations we used a platform-specific

compiler intrinsic, which ultimately led to the preprocessor logic used to

implement our compiler-accessible assumption construct in testFunction:

#if !defined(ASSUME_INTRINSIC)

 if (1 != v)

 (int) 0 = 0; // if v is not 1 we have UB

#else // defined(ASSUME_INTRINSIC)

 #if defined(__clang__)

 __builtin_assume(1 == v);

 #elif defined(__INTEL_COMPILER) || defined(_MSC_VER)

 __assume(1 == v);

 #elif defined(__GNUC__)

 if (1 != v)

 __builtin_unreachable();

 #endif

#endif

For GCC and Clang, we did not define the ASSUME_INTRINSIC macro; for MSVC

and Intel, however, we did, as neither of these two later compilers showed any

difference in generated code when using just assignment through a null

pointer.

RESULTS AND ANALYSIS

This section explores the results of executing our plan on several platforms. In

all experiments, each data point will represent the ratio of the average values

for a benchmark compiled with assumptions enabled versus disabled.

First, we will show the effects of compiler-accessible assumptions observed on

compile times and object sizes — two metrics indicative of the assumption’s

impact but necessarily correlating to the most compelling metric, i.e., overall

run times. Then, we will illustrate the runtime performance impact we

observed. Finally, we’ll explore in detail some low-level CPU performance

metrics that we gathered for one particular platform, discussing how those

 Page 25 of 43

metrics might reflect the behavior of our benchmark function and how they

might have contributed to achieving the runtime changes we measured.

In general, we ran experiments using four compilers — GCC, Clang, MSVC,

and the Intel compiler — on a mix of Linux (x86), Windows (x86), and macOS

(AArch64: Apple M1 Pro) machines. All builds used the most aggressive

optimization level available from the toolchain, -O3 on most platforms and /O2

with MSVC. For each configuration (if-else depth, body size, assumption

enablement), enough runs were performed to achieve confidence in the

precision of the answer (generally more so with the shorter runtimes), and we

show their respective median values.

Throughout this section, we will present a representative sample of platforms.

Our results for all platforms not explicitly mentioned here were generally

similar in form to those we discuss.

Compile Times

We can posit that assumptions will impact compilation speed in a few different

ways:

• Providing additional assumptions, gives the compiler more code to
process and analyze, requiring more work and thereby plausibly
increasing compilation times.

• By allowing the compiler to elide branches, sometimes early during the
compilation process, we reduce the amount of code that needs to be
more aggressively optimized during later phases, perhaps decreasing
compilation time.

• Compilers may treat very large functions differently based on bounds
compiler vendors determine, which can result in a large function not
being optimized; on some compilers, compiler-accessible assumptions
might even affect which side of such boundaries our benchmark
function would reside.

We begin our investigation by looking at the ratios of compile times using GCC

— with compiler-accessible assumptions versus without— depicted as the 3D

surface shown in Figure 1.

 Page 26 of 43

Compile Times: Assumed ÷ Nonassumed (GCC)

Figure 1: This surface represents ratios of compile duration: assumed versus nonassumed. Both height
and color indicate compile time ratio (Cascade Lake, GCC 12.2.0, -O3).

Here we have graphed the ratio of compilation times as we varied the if-else

depth from 0–12 (y-axis) and the body size from 20 to 27 lines (x-axis). Note that

the graph is oriented so that the origin is located in the back, behind the

surface, to better display the shape of this graph; hence, the corner in the

lower front represents the maximum displayable values for x and y.

As the body size increased, a corresponding significant decrease occurred in

relative compilation time with assumptions enabled. Given that our benchmark

demonstrates that adding a simple assumption results in the elimination of

substantial portions of the resulting generated code (all but one of the 2(if-else

depth) branches), obviating having to optimize further and generate those

superfluous branches appears to dominate compile time.

While this 3D view is visually striking and easy to understand, we found it

limiting when attempting to interpret many of the other results we had

measured. Therefore, we found visualizing our results as heat maps more

serviceable, and the heat maps more readably encapsulate the details of our

 Page 27 of 43

results. The relationship between our 3D surface and our heat maps is

illustrated in Figure 2 by successively rotating the data in Figure 1.

Original
First Rotation

Second Rotation Final

Figure 2: These surface plots represent the same data as shown in Figure 1. The surface plot is transformed
into a heat map via three successive rotations as a visual aid (Cascade Lake, GCC 12.2.0, -O3).

As we can see, the 2D heat map shown in Figure 3 represents the same data as

the 3D graphs shown in Figures 1 and 2, but now we can read the individual

result values explicitly and more readily observe small quantitative differences

across surrounding data points.

y

z

x

y

z

x

y
x

z

z

y

x

 Page 28 of 43

Compile Times: Assumed ÷ Nonassumed (GCC)

Figure 3: This heat map represents ratios of compile duration: assumed versus nonassumed (Cascade Lake,
GCC 12.2.0, -O3).

Exploring different platforms, we observed similar results when compiling

using Clang, as can be seen in Figure 4.

y

z

x

 Page 29 of 43

Compile Times: Assumed ÷ Nonassumed (Clang)

Figure 4: This heat map represents ratios of compile duration: assumed versus nonassumed (Cascade
Lake, Clang 15.0.1, -O3).

Interestingly, when using MSVC, we observed results of a different shape, as

shown in Figure 5.

 Page 30 of 43

Compile Times: Assumed ÷ Nonassumed (MSVC)

Figure 5: This heat map represents ratios of compile times: assumed versus nonassumed. Gray cells
indicate unavailable data (Shadow Cloud VM, Haswell E/EP, MSVC 19.33.31630, /O2).

Past a certain downward-sloping size frontier11, enabling compile-time

assumptions results in minimal differences in compile times, and, given the

relatively large compilation times (on the order of minutes or more), the small

variance observed is not unexpected. In these cases, it seems as though the

compiler has considered our assumption and, based on decision-making

metrics of its own, decided to do very little differently for code generation than

it did without the assumptions enabled. This size-frontier pattern will resurface

again in this compiler for both code sizes and run times.

Object Sizes

The generated code in our benchmark function primarily consists of two kinds

of programmatic constructs:

1. Comparisons and branch instructions that implement the if-else

statements

2. Arithmetic operations that make up the body on each of the 2(if-else depth)

branches

11 Note that the aspect ratio of this heat map is skewed to make the x axis look
disproportionately larger than the y axis, which belies the intent that increasing by one along
either axis essentially doubles (asymptotically) the number of source lines of input to the
compiler.

 Page 31 of 43

The object size, which we can easily measure, also includes a fair bit of

metadata on the contents of our translation unit, but that metadata is fixed

and independent of the variables in our experiment. Measuring the size of just

the generated function would exclude this fixed overhead but is not as

implementable reliably in a portable fashion. We should expect that, when

assumptions are enabled and when a compiler properly infers all branch

results based on our benchmark’s assumption, exactly 0 comparisons and

branches and only a single instance of the 2(if-else depth) bodies are generated. The

relative code size should, therefore, approximate (asymptotically) a 1/2(if-else

depth) ratio of object sizes (enabled/disabled) when the compiler fully exploits

compiler-accessible assumptions.

Object Sizes: Assumed ÷ Nonassumed (GCC)

Figure 6: This heat map represents ratios of object sizes: assumed vs nonassumed (GCC, 12.2.0, -O3).

The shown GCC (and unshown Clang and ICX) results in Figure 6 clearly

illustrate this expected result. As either body size and if-else depth grow, it

soon dominates the object file format’s fixed-size overhead, and we observe a

general trend in our results matching our expected, exponentially decreasing

ratio of object sizes to if-else depth.

Next, consider the heat map representation for relative object-code sizes when

using MSVC, as shown in Figure 7.

 Page 32 of 43

Object Sizes: Assumed ÷ Nonassumed (MSVC)

Figure 7: This heat map represents ratios of object sizes: assumed versus nonassumed. Gray cells
indicate unavailable data (MSVC 19.33.31630, /O2).

Again, MSVC shows similar results to the other platforms in the cases where

the assumption impacted object size. For those if-else depth and body size

configurations where we saw no change in the generated object-file size, we

observed, at most, a negligible (±3%) difference in corresponding compile times.

Further inspection of the generated objects showed that they are identical; the

assumed and nonassumed object files had no differences in the cases above

the clear threshold, which indicates that, as we pass some threshold of

function size or complexity or both, this platform no longer attempts to reason

about the impact of our assumption, and thus no branches are elided.

As expected, measuring the linked task size showed the same trends we saw

with the object file size since the other object files in our framework remained

unchanged across builds.

Run Times

With compiled executables in hand, we ran each configuration several times

and measured the amount of time each process took to run to completion. The

median value was used to show the runtime ratios.

Let’s begin with the results for relative run times obtained using GCC, as

depicted in Figure 8.

 Page 33 of 43

Run Times: Assumed ÷ Nonassumed (GCC)

Figure 8: This heat map represents ratios of run times: assumed versus nonassumed (Cascade Lake,

GCC 12.2.0, -O3).

Similar results for relative run times obtained using Clang are depicted in

Figure 9.

 Page 34 of 43

Run Times: Assumed ÷ Nonassumed (Clang)

Figure 9 This heat map represents ratios of run times: assumed versus nonassumed (Cascade Lake,
Clang 15.0.1, -O3).

The first important takeaway is that in no case did we see a performance

degradation on either of these platforms due to enabling our compiler-

accessible assumptions. Overall, as the if-else depth increased, we saw a

downward trend in relative run times. As expected, an increase in body size

diminished the improvement in run times because a more significant portion of

run time was spent in the body (which was deliberately chosen to be immune

to assumption-based optimization) and not in the comparisons and branches,

which were being elided by our assumption.

When comparing the relative run times for Clang and GCC on the same

hardware, Clang showed a reduction of 48%, a marked improvement due to

compiler-accessible assumptions compared to GCC, which peaked at only a

28% reduction. Upon inspection, however, this greater relative benefit seemed

to result from GCC’s more aggressive optimization of the unassumed build

than Clang’s, and thus we saw less of a relative bump in the assumed build

using GCC.

Next, we focused on the relative run times on MSVC, depicted in Figure 10.

 Page 35 of 43

Run Times: Assumed ÷ Nonassumed (MSVC)

Figure 10: This heat map represents ratios of run times: assumed versus nonassumed. Gray cells
indicate unavailable data (Shadow Cloud VM, Haswell E/EP, MSVC 19.33.31630, /O2).

MSVC showed the same trend where the assumed build with all branches

elided took relatively less run time (i.e., ran faster) than the nonassumed build

as the if-else depth increased for smaller-sized programs. But, yet again, past a

certain input-size threshold (based on the combined if-else depth and body

size), we observed that compiler-accessible assumptions had no meaningful

difference in runtimes.

We know, from having inspected the pairs of executables, that they were byte-

for-byte identical; hence, we would not expect any significant difference in

relative runtimes, and any difference that we did observe would be attributable

solely to unrelated noise while running the benchmark. Still, meaningful

information can be gleaned from this data.

If we look at each of the 34 entries in question, we will find that they group

quite normally around 1.00: 2 (0.98), 5 (0.99), 21 (1.00), 5 (1.01), and 1 (1.02).

The mean, median, and mode are 0.9994, 1.00, and 1.00, respectively. In fact,

this normal distribution is remarkably close to perfect, reflecting an absence of

bias.

Now suppose hypothetically that the executables were not identical and that

there was some minuscule and arguably insignificant drift downward (say -

0.1%) associated with an enabled assumption. Taken over these 34 entries, we

 Page 36 of 43

expect the cumulative (negative) drift to be a measurable -0.034. Given our

observed random cumulative drift of -0.02 (where the expected drift is zero),

even a mere average drift of -0.01% is something we should probably be able to

observe.

Now consider that just one experiment involves not 34, but 8 × 14 = 112

separate pairs of trials. In that case, we could expect a cumulative drift of .112,

whereas we would expect the typical random cumulative to decrease in

distance from 0.00. Hence, even an average drift of just -0.1% would have been

well above the noise level for this particular experiment.

Looking across the four major compilers surveyed in this paper, GCC, Clang,

and Intel compilers exhibit increasing relative runtime performance with

increasing if-else depth, but that relative performance advantage diminishes

with increasing body size. MSVC also follows this trend for smaller inputs;

however, we observed zero change in the object code size produced above a

certain size threshold and, correspondingly, no meaningful effect on runtime

performance.

Hardware Performance Counter Measurements

By comparing the trends of object size and runtime ratios, we can observe that

most of the decrease in object sizes does not translate to faster run times,

which matches our expectations since most of the code being eliminated from

generated objects is dead code. As body size increased, an ever-smaller

proportion of the code eliminated was (otherwise executed) comparisons and

branches.

To better understand the runtime results we observed, we reran our

benchmarks using the perf tool on Linux to collect various CPU performance

data (counters). These results tell an interesting story of how improved code

generation can and cannot realize runtime performance gains. We will present

this level of detail for GCC on Linux only, though we obtained similar results

for Clang and ICX on the same hardware.

Branch Instructions

Our benchmark primarily alters generated code by removing branches and the

resulting dead code. When executing a nonassumed build, we should expect to

see each if-else construct (up to the depth we have configured) execute a

test-and-branch operation. On the other hand, the assumed build should have

all of these branches elided. Overall, according to our measurements, this

theory generally holds.

For example, the relative branches executed during a run of our benchmark

with and without compile-time assumptions enabled is depicted in Figure 11.

 Page 37 of 43

Branches: Assumed ÷ Nonassumed (GCC)

Figure 11: This heat map represents ratios of branches executed at run time: assumed versus
nonassumed (Cascade Lake, GCC 12.2.0, -O3).

An interesting observation, the number of branches at an if-else depth of 0 was

greater for the assumed build than for the unassumed one. When we inspected

the generated code, we observed that our makeshift assumption contraption in

GCC, implemented with an if statement followed by assignment through a

null pointer, actually generated the comparison and branch followed by a UD2

instruction, which indicates to the CPU that an illegal state has been reached.

This extra branch, resulting from translating our makeshift compiler-accessible

assumption construct to a runtime check, did not appear when we used

__builtin_unreachable()on GCC or with the other compilers on Linux

whether we employed a native compiler-intrinsic or our makeshift compiler-

accessible assumption construct to elide branches.

Furthermore, these results confirm that the number of branches is

independent of the body size, which we expected as each if-else body in our

benchmarks is deliberately composed exclusively of sequential arithmetic

operations. The reduction in branches correlated with the reduction in run

time, but not completely and directly. More specifically, even with a significant

reduction in branches, the reduction in run time was often negligible for the

smaller cases.

 Page 38 of 43

One might reasonably posit that this lack of relative difference is due to the

CPU’s branch predictor correctly guessing all of these branches in the

unassumed build (thereby making their complete removal have minimal effect)

until a sufficient if-else depth is reached.

Instructions

C++ programmers commonly treat the number of instructions executed as a

primitive proxy for run time. Unsurprisingly, this assumption has limited

utility and does not always hold, as evidenced by our benchmarks. For

example, consider the relative measured number of instructions executed in

our benchmark runs on GCC, as depicted in Figure 12.

Instructions: Assumed ÷ Nonassumed (GCC)

Figure 12: This heat map represents ratios of executed instructions: assumed versus nonassumed
(Cascade Lake, GCC 12.2.0, -O3).

The reduced number of instructions executed roughly correlates to the number

of comparisons and branches elided by our assumption. The reduction

increases as the if-else depth increases, and the magnitude of that reduction

decreases as the size of the body increases.

Again, the removed instructions do not impact runtime in proportion to the

number of instructions in the body that remain in the assumed build because

the instructions are either branch instructions that are reliably predicted or

 Page 39 of 43

comparisons of values already in registers, both of which contribute minimally

to run time. The relative values for executed instructions are similar to those

for run times, suggesting that these branches and comparisons, however

cheap, are not free.

For the smallest cases, the same effect we saw earlier when measuring

branches exhibits itself here when counting instructions, resulting in a small

increase in instruction counts due to the branches and comparisons generated

by our home-grown compiler-accessible assumption construct on GCC. These

extra instructions were dominated by the decrease in instructions for any non-

if-else depth. We saw no increases in the number of instructions with other

compilers.

Level 1 Data Cache Loads

Interpreting memory access measurements is challenging but can often

account for a significant portion of run time in modern CPUs. Within our

benchmark, each operation in the body requires memory accesses to load or

store the volatile object. For example, we measured level 1 data cache loads to

see how many of those instructions led to actual loads from memory by the

CPU when compiled under GCC, as depicted in Figure 13.

 Page 40 of 43

Level 1 Data Cache Loads: Assumed ÷ Nonassumed (GCC)

Figure 13: This heat map represents ratios of level 1 data cache loads: assumed versus nonassumed
(Cascade Lake, GCC 12.2.0, -O3).

Here we see a trend of decreased relative loads when our assumption elides at

least one branch (i.e., if-else depth ≥ 1). One might reasonably posit that this

result is due to the compiler’s enhanced ability to reorder instructions leading

to the CPUs’ enhanced ability to pipeline consecutive function calls without

stopping between each iteration to evaluate a series of comparisons and branch

instructions. As we would expect, the longer the series of arithmetic

instructions per body (increasing body size), the less relative effect reordering

the ends of a single sequential arithmetic sequence will have. The cases where

if-else depth is 0 further support this theory by demonstrating that there is no

corresponding impact on memory-usage behavior when no branches are elided.

Level 1 Data Cache Stores

Level 1 data cache stores, which correspond to writes to memory, show a

different result. For example, consider the relative cache stores for our

benchmark program running on GCC, as depicted in Figure 14.

 Page 41 of 43

Level 1 Data Cache Stores: Assumed ÷ Nonassumed (GCC)

Figure 14: This heat map represents ratios of level 1 data cache stores: assumed versus nonassumed
(Cascade Lake, GCC 12.2.0, -O3).

Inspecting the actual measurements, the cases with no branches (i.e., those

with an if-else depth of 0 or enabled assumption) showed a very stable number

of data cache stores, around 3.2 per iteration. The cases with no branches

roughly doubled the number of stores per iteration. Clang and ICX builds

exhibited this same behavior. The presence of these branches, all of which

involved comparisons on the nonvolatile function parameter v, added

additional data cache loads was undetermined from the generated object code.

Summary

Overall, we observed several measurable attributes of our benchmark improve

when we enabled assumptions. The general trends followed our expectations in

two ways:

1. Increasing the if-else depth showed greater improvement in most cases

where there was any meaningful effect.

2. Increasing body size diluted the benefits since a larger fraction of the

implementation of our testFunction consisted of sequential code

specifically designed not to be impacted by enabling the compiler-

accessible assumption.

 Page 42 of 43

More importantly, we can take away a few significant lessons from these

results: Enabling compiler assumptions often led to easily observable

improvements in generated code, such as code size or branches taken, but had

a muted impact on run times. As we scaled higher, improvements that showed

little to no effect in run time for smaller values of if-else depth quickly began to

exhibit meaningful benefits, indicating that although modern hardware has

made some operations, such as branches, very inexpensive, those operations

are not entirely free and that practical limits apply to what compilers and

hardware can achieve unassisted.

CONCLUSION

Demonstrating that compiler-accessible assumptions, such as

__builtin_assume, reduce run time is difficult because (1) code for which

such assumptions make no difference is common and (2) even when

substantially different object code is generated, run times are often not

meaningfully affected. Hence, absent objective data to the contrary, one can

easily albeit mistakenly conclude that — due to modern CPU architectures,

branch predictors, and ever-maturing compiler technology — no meaningful

runtime performance benefits remain to be had from employing explicit

assumption constructs. The justifications of these conjectures are also

misguided.

In this paper, we began by presenting many alternate cogent theories for why

making explicit assumptions available to the compiler might reduce run time;

for example, unsigned arithmetic is required to wrap, whereas signed

arithmetic, in conjunction with explicit knowledge that the (signed) result will

never be negative, enables the compiler to optimize, assuming the expression

will not overflow.

We settled for demonstrating improved runtime performance for just one

pattern: nested if-else statements depending on predicates whose values are

informed by explicit compiler-accessible assumption constructs. We then

described a simple, portable, custom benchmarking framework comprising a

general-purpose driver that calls a particular compile-time-parameterized

family of related test functions.

To observe whether compiler-accessible assumptions can have a meaningful

effect on run times, we organized our family of functions on a single integer, x,

around two compile-time integer parameters: (M) is the depth of a balanced

tree of if-else statements whose conditions involved the value of x, and (N) is

the power-of-two number of consecutive nonbranching statements in an

unrelated sequential computation. A third, Boolean parameter controls

whether the compiler is aware of the assumption that x = 1.

 Page 43 of 43

An experiment consisted of building each of 112 configurations (M ∊ [0..13] × N

∊ [0..7]) with and without the compiler-accessible assumption enabled.

Running the experiment allowed us to obtain the respective compile times,

generated object-code sizes, and program run times for each combination of

values for M and N — with and without compiler-visible assumptions enabled.

We then graphed the ratios of each of these three respective metrics — with-to-

without assumptions enabled — as a surface in a three-dimensional heat map,

thereby allowing us to readily and visually observe the detailed interactions

between M, N, and the Boolean flag. We repeated this experiment across several

platforms (e.g., Windows, Linux, and macOS) and compilers (e.g., Clang, GCC,

MSVC), running on various hardware.

The totality of our results for experiments across multiple compilers and

computer architectures involving sufficiently optimized build modes revealed

that increasing the depth of the if-else tree (M) consistently demonstrated

meaningfully reduced run times when compiler-accessible assumptions were

enabled. This relative reduction in run times was most pronounced (up to 48%)

for smaller numbers (N) of consecutive nonbranching statements. Larger values

of (N) produced proportionally smaller generated object code with assumptions

enabled but offered minimal effect on run times.

Importantly, throughout all of the benchmark tests we performed, there were

no cases where we observed any meaningful increase in runtime as the result

of enabling compiler-accessible assumptions. In those few cases (MSVC only)

where we did observe a (spurious) increase (1-2%), it was due purely to random

noise as the object code run in either case — with or without assumptions —

was byte-for-byte identical.

Now that an explicit-assumption construct — the new [[assume]] attribute —

is part of the language, we can expect to see compilers providing these same

benefits to code that is entirely standard-conforming and hence portable. As

this now-portable, compiler-accessible assumption construct becomes more

widely used, we expect to see commensurate improvements in compiler

technology to leverage explicit-assumption information and thus continue to

provide ever-increasing runtime performance.

	Compile Times
	Object Sizes
	Run Times
	Hardware Performance Counter Measurements
	Branch Instructions
	Instructions
	Level 1 Data Cache Loads
	Level 1 Data Cache Stores
	Summary

