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Explicit Assumption Syntax  

Can Reduce Run Time  

Abstract 

Many compilers provide platform-specific assumption syntax, such as 
__builtin_assume in Clang or idiomatic use of __builtin_unreachable() in 

GCC. This augmented syntax can then indicate to the compiler that it is 
allowed but not required to assume that some condition — typically a Boolean-
valued expression — is always true. Recently, after due consideration, the 
[[assume]] attribute was formally adopted into the C++ working draft 

(P1774R8) to provide a facility for expressing such assumptions portably in 
source code. As is well known and easily demonstrated, the use of such 
compiler-accessible assumption constructs can noticeably affect compile times 
as well as object-code and overall program sizes. On the other hand, some 
members of the C++ Standards Committee have suggested (wrongly) that 
modern compilers and CPUs conspire to realize essentially all runtime 
performance benefits available on modern architectures, thereby obviating use 
of explicit assumption constructs in source code. 

Until recently, empirical studies that (1) demonstrate any meaningful impact of 
compiler-accessible assumption constructs on run time and (2) are 
reproducible on modern platforms have not been readily available. In this 
paper, we first exhibit some potential reasons why the use of an assumption 
attribute might reduce run time. We then go on to develop a benchmark 
framework suitable for demonstrating that using such assumption constructs 
can meaningfully reduce the overall run time of C++ programs. Even without a 
portable way to express assumptions, we exploit equivalent, platform-specific 
assumption constructs to reproducibly quantify the sometimes-substantial 
effects of explicitly stated assumptions on overall run times for today’s most 
current platforms. We conclude that the recent addition of [[assume]] 

(P1774R8) to the C++ working draft will benefit those who aspire to use C++23 
to implement software having truly optimal runtime performance. 

INTRODUCTION 

Explicit assumption syntax — i.e., language constructs used by the 

programmer to explicitly inform the compiler of some truth that it might 

otherwise be unable to deduce — is not new. Such syntax, albeit platform-
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specific until now, has existed in C++ for nearly a quarter century.1  As of 

Visual Studio 2005, the __assume construct had been in multiple prior 

releases of that compiler. GCC introduced __builtin_unreachable in 2010 

(GCC version 4.5) about a decade ago, and Clang introduced 

__builtin_assume about four years after that.2 Such constructs typically 

achieve their purpose by introducing undefined behavior (UB) into the program 

when some explicitly stated condition must hold. 

For example, consider the double-valued function sqrt: 

double sqrt(double x) 

    // Return the positive value whose representation multiplied by itself  

    // is the closest to `x`; if there's a tie, prefer the smaller one.  The 

    // behavior is undefined unless `x >= 0`. 

{ 

    __builtin_assume(x >= 0);  // compiler-accessible assumption construct 

 

    if (x < 0) return 0; // Defined behavior may be elided as `x >= 0` is true.  

 

    // … (remaining implementation elided) 

} 

Providing the platform-dependent __builtin_assume assumption construct 

above allows the compiler to remove the line that would return 0 if x were 

negative, which is correct since the contract states non-negative x as a 

precondition.  

Even without explicit syntax, we can still try communicating with the compiler 

by creating our own, say, MY_ASSUME(BOOLEAN_VALUE) macro that, if the 

provided Boolean expression is false, would immediately invoke some obvious 

UB (e.g., dereferencing and assigning to a literal null pointer): 

#define MY_ASSUME(BOOLEAN_VALUE) { if (!(BOOLEAN_VALUE)) *(int*)(0) = 0; } 

    // Replace with undefined behavior if `(BOOLEAN_VALUE == false)`; else NOP. 

 

double sqrt(double x) 

    // (Return… …smaller one.) The behavior is undefined unless `x >= 0`. 

{ 

    MY_ASSUME(x >= 0);  // home-grown compiler-accessible assumption construct 

 

    if (x < 0) return 0;  // defined behavior *might* still be elided  

 

    // … (remaining implementation elided) 

} 

As it turns out, not all compilers treat all UB equally. In our experiments, for 

example, MSVC3 and ICX4 did not optimize based on assignment through a 

literal null pointer. Clang5 had almost identical results between assigning 
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through a null pointer and use of its __builtin_assume intrinsic, whereas 

GCC6 seemed to optimize a null reference slightly better than it did when we 

used the __builtin_unreachable idiom: 

double sqrt(double x) 

    // (Return… …smaller one.) The behavior is undefined unless `x >= 0`. 

{     

    if (x < 0) __builtin_unreachable();   // compiler-accessible assumption (GCC) 

 

    if (x < 0) return 0;  // defined behavior (*might* still be elided) 

 

    // … (remaining implementation elided) 

} 

Moreover, if the compiler can see that calling sqrt on a negative value would 

be UB, the compiler is allowed to use any such inevitable (i.e., cannot-be-

bypassed) call to elide code upstream from that call, sometimes referred to as a 

time travel optimization: 

int negative_y_count = 0;  // count number of negative args to `myFunc` 

 

double myFunc(double y) 

    // Do something; `y` must not be negative. 

{ 

    if (y < 0) ++negative_y_count;  // can be elided because, if we get here, 

                                    // sqrt(y) will always be reached   

    return sqrt(y);     

} 

Anecdotal tales of various meaningful effects of home-grown and 

implementation-specific compiler-accessible assumption constructs on 

generated code have long been touted. Historically, however, surprisingly little 

reproducible empirical data has been available to suggest what effect, if any, 

such compile-time assumptions might have on overall program run times. 

Absent compelling empirical data, some committee members have merrily 

conjectured that assumptions, though they might have an impact on reducing 

generated code size, will necessarily worsen compile time and, at best, have a 

negligible impact on run time. Modern compilers typically notice and perform 

the optimizations available on the current platform. With modern CPU 

architectures and branch predictors, even when the compiler fails to elide an 

untaken branch, that branch can nonetheless execute with effectively zero cost 

if it is well predicted. 

One paper, in particular7, suggests that when enabling compiler-accessible 

assumption constructs on preconditions, the overall run time of a particular 

application grew by approximately 1%. This surprising result was questioned 

during the SG21 meeting in Prague in February 2020. Herb Sutter and John 

Lakos agreed that Bloomberg would undertake a comprehensive study to 
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determine if and to what extent making a precondition a compiler-accessible 

assumption might affect overall program run times: (1) in which direction, (2) 

by how much, and (3) characterized by what kinds of coding patterns. The 

research and results we present in this paper form the beginning of our 

response to that open question. 

With the adoption of portable assumptions8 to the C++ working paper, 

understanding the potential impact such assumptions can have on runtime 

performance now becomes important to all users considering using 

[[assume]]. In this paper, we’ll start by discussing several use cases in which 

explicit assumptions made available to the compiler appear to improve code 

generation and lead to improved runtime performance. We then choose just 

one of those use cases and establish a specific experiment that demonstrates 

— beyond any doubt — that a compiler-accessible assumption can and does 

meaningfully affect (invariably reduce) overall runtime performance.  

In particular, we’ll exhibit reproducible data that, even on the most modern 

compilers, shows significant potential runtime effects of introducing explicit 

compiler-accessible assumption syntax. This potential runtime benefit will, in 

turn, underscore the importance of having such crucial semantics now part of 

the (portable) Standard rather than only as optional, eclectic, inconsistent, 

nonportable extensions. 

THEORETICAL ADVANTAGES  

As one might reasonably expect, the more accurate information a compiler has 

to work with, the more likely it will be able to generate better object code — 

e.g., code that takes less time to run. One might also presume that analyzing 

more information could take additional compile time. One could also imagine 

scenarios where the additional information might result in less generated code, 

which in pathologically extreme cases might noticeably reduce overall 

compilation time. Taking this reasoning a step further, less code typically runs 

faster, so we might conjecture that run times might also be affected. 

Although compiler-accessible assumptions sometimes lead to substantially 

smaller programs, the smaller size is not necessarily reflected in reduced 

overall run times. In many cases, the reduction in object code results from 

dead-code elimination. Even when the dead code is not eliminated via an 

explicit assumption construct, compilers are typically still smart enough to 

place the presumed unlikely code remotely, and branch predictors often obviate 

loading the dead code into memory. In such cases, the difference in run time, 

with and without a compiler-accessible assumption construct, is often nothing 

more than a single, readily predicted branch, leading to no measurable 

difference in run times. 
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In numerous specific cases, however, we might reasonably expect that a well-

placed compiler-accessible assumption construct could lead to better-

generated code and meaningful reductions in run times, whereas without an 

explicit assumption construct, the compiler would have no way to deduce such 

truth and thus could not apply the corresponding optimizations. In what 

follows, we briefly delineate some distinct ways in which user-provided 

assumption constructs might significantly impact generated code and thus the 

prospect of perhaps also achieving some meaningful reduction in run times. In 

each of these six cases, we will use a local-library-provided ASSUME(EXP) 

macro to indicate to the compiler that EXP can be assumed to be (convertible 

to) true. 

1. Eliding conditional branches. If there is one thing compiler-accessible 

assumptions are good at, it’s removing conditional branches (and 

associated dead code) where only one direction is supported behavior. 

Consider a simple function, branches, that takes as its only argument a 

Boolean flag, firstBranch, such that the if-branch will be executed if 

the flag is true and the else-branch otherwise: 

void branches(bool firstBranch) 

    // Invoke `doSomething` if `firstBranch` is `true`; otherwise, invoke 

    // `doSomethingElse`. 

{ 

    if (firstBranch) { 

        doSomething(); 

    } 

    else { 

        doSomethingElse();   

    } 

} 

A function with no preconditions is said to have a wide contract; 

otherwise, it has a narrow contract. Suppose we know that we will never 

pass false to the function. We can then change the contract from a 

wide to a narrow one and assume that the contract will be followed 

scrupulously: 

void branches2(bool firstBranch) 

    // Invoke `doSomething` if `firstBranch` is `true`; otherwise the behavior  

    // is undefined. 

{ 

    ASSUME(firstBranch); // Per English contract: `firstBranch` must be true. 

 

    if (firstBranch) {      // elidable 

        doSomething(); 

    }                        

    else { 

        doSomethingElse();  // elidable 

    } 

} 
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Since the compiler knows it can assume that firstBranch is always 

true, it can elide both the expression check and the else-block without 

changing the meaning of a correct program: 

void elidedBranches2(bool firstBranch) 

    // Invoke `doSomething` if `firstBranch` is `true`; otherwise the behavior  

    // is undefined. 

{ 

    doSomething(); 

} 

This first theoretical case is the one we will analyze deeply in this paper. 

Note that although we will employ nested if-else expressions to help us 

extract quantifiable results, nesting is not essential for code generation 

to be affected significantly. 

2. Loop unrolling. A common compiler optimization is unrolling loops into 

multiple instances of the loop body. Loop unrolling is atypical in that it 

leverages increasing code size (due to multiple copies of the loop body) to 

reduce the number of branch conditions that need to be evaluated and 

thus the number of instructions to be executed. Importantly, if a loop is 

unrolled into n copies, special consideration will need to be taken up-

front within the generated code to handle cases where the number of 

iterations will not be a multiple of n. Such optimizations will often involve 

the compiler generating the moral equivalent of Duff’s Device — a switch 

statement and an associated additional, unconventional branch into the 

code block associated with the switch. For example, consider a function, 

loop, taking as its argument an integer number of iterations, n: 

void loop(int n) 

    // Do something `n` times. The behavior is undefined unless `n > 0`. 

{ 

    for (int i = 0; i < n; ++i) { 

        doSomething(); 

   } 

} 

 

A compiler might choose to translate loop to an equivalent function, 

loopUnrolled4, in which the loop body is unrolled four times: 

void loopUnrolled4(int n) 

    // Do something `n` times. The behavior is undefined unless `n > 0`. 

{ 

    int i = 0; 

    switch (n % 4) { 

        do { 

            case 0: doSomething(); 

            case 3: doSomething(); 

            case 2: doSomething(); 

            case 1: doSomething(); 

            ++i; 

        } while (i < (n+3)/4); 

    }             

} 
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Compilers will attempt to choose the optimal number of times to unroll a 

loop based on (1) their ability to predict the results of the loop 

termination condition (and perhaps the cost of evaluating it), (2) the size 

of the loop body, and (3) the optimal use of space in the instruction 

cache for the target CPU. Supplying an appropriate compiler-accessible 

assumption construct can, however, significantly reduce the size of 

transformed code.  

Let’s now consider a function, loopAssumed, whose contract advertises 

that the number of iterations must be an integer multiple of 4 or else the 

behavior is undefined: 

void loopAssumed4(int n) 

    // Do something `n` times. The behavior is undefined unless `n >= 0`  

    // and `n` is an integer multiple of 4. 

{ 

    ASSUME(n % 4 == 0); 

    for (int i = 0; i < n; ++i) { 

        doSomething(); 

   }     

} 

With the explicit ASSUME(n % 4 == 0) in place, the compiler is permitted 

to translate the function to an equivalent one, such as 

loopAssumedUnrolled4: 

void loopAssumedUnrolled4(int n) 

{ 

    for (int i = 0; i < n; i += 4) { 

        doSomething(); 

        doSomething(); 

        doSomething(); 

        doSomething(); 

    } 

} 

Note that as long as the assumption on the number of iterations, n, is an 

integer multiple of how many times the compiler chooses to unroll the 

loop body, this seemingly improved transformation can be readily 

achieved. 

3. Vectorization. When loops are unrolled, another common 

transformation that can be applied to the unrolled loop is automatic 

(compiler-initiated) vectorization. This transformation replaces many 

instructions with a single CPU-specific instruction capable of doing all 

those operations simultaneously. Consider, for example, a function, sum, 

that sums a given number of double-precision floating-point values: 

double sum(double* data, int count) 

    // Sum the specified `count` numbers in the specified `data` array.  The 

    // behavior is undefined unless the first `count` members of `data` are 

    // valid (non-NaN) objects of type `double`, `count` is a multiple of 8,  

    // and `data` is aligned on a 64-byte boundary. 

{ 

    ASSUME(count % 8 == 0);                                    // #1 
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    ASSUME(reinterpret_cast<std::uintptr_t>(data) % 64 == 0);  // #2 

    double output = 0; 

    for (int i = 0; i < count; ++i) { 

        output += data[i]; 

    } 

    return output; 

} 

Using just the first compiler-accessible assumption construct (ASSUME 

#1), the compiler may choose to unroll the loop and then transform the 

code: 

double sumVectorized(double* data, int count) 

{ 

    double output = 0; 

    for (int i = 0; i <= count; i += 8) { 

        __m512d v = _mm512_loadu_pd(data + i);  // Read 8 doubles. 

        output += _mm512_reduce_add_pd(v);      // vectorized addition 

    } 

    return output; 

} 

Access to the second assumption (ASSUME #2) allows for use of an aligned 

load, which would replace the __mm512_loadu_pd CPU instruction with 

__mm512_load_pd a more specialized instruction that might show 

significant improvements in execution time. Even without these 

assumptions, many similar scenarios will still see vectorization at the 

compiler’s discretion, but substantial extra code, including runtime 

branch statements, will need to be emitted to handle cases where the 

data is (1) not a multiple of the number of elements that can be operated 

on in a single SIMD instruction or (2) not sufficiently aligned. 

4. Memory Aliasing. Absent specific knowledge, a compiler must generate 

code that works properly for all valid input. In particular, a compiler can 

rarely safely assume that two distinct pointers, independently passed to 

a function, do not point to overlapping objects. For example, any write-

through to an object referenced by one pointer could potentially 

invalidate the compiler’s knowledge about the value referenced by some 

other pointer. Consider, for example, a function, foo, that takes two 

integer pointers, a and b, sets the value to which a points to 17, and 

returns twice the value to which b points. The behavior is undefined if 

the storage (typically 4 bytes) to which a points overlaps that of b.  

int foo(int *a, int *b) 

    // Store 17 in `*a` and return `2 * *b`; the behavior is undefined 

    // if `a == b`. Note that, on platforms that do not require *natural* 

    // *alignment*, this precondition might not be sufficient. 

{ 

    int output = 0; 

    output += *b;  // reads `b` 

    *a = 17;  

    output += *b;  // must read `b` again 

    return output; 

} 



 Page 9 of 43 

With larger objects and user-defined types or both, the task of guarding 

against aliasing becomes even more complex. The C language provides a 

specific keyword, restrict, which informs the compiler that a pointer 

does not refer to the same address as any other pointer: 

int fooInC(int *a, int * restrict b) 

{ 

    int output = 0; 

    output += *b;  // reads `b` 

    *a = 17;  

    output += *b;  // `b` does not need to be read again. 

    return output; 

} 

C++ does not provide restrict, but an assumption should be able to 

provide the same (or at least sufficiently similar) information: 

int fooInCpp(int *a, int *b) 

{ 

    ASSUME(a != b); 

    int output = 0; 

    output += *b;  // reads `b;` 

    *a = 17;  

    output += *b;  // `b` does not need to be read again. 

    return output; 

} 

Note that this is just a simple case where C’s restrict keyword is 

effective and improves code generation. Using our home-grown, compiler-

accessible ASSUME macro in a way that more fully approximates the 

power of restrict could, however, be challenging. 

5. Floating-point arithmetic. The floating-point data types provided in 

C++ — float,  double, and long double — have the sometimes-

frustrating property of not being regular. These types reserve a series of 

representations, each of which is not a number (NaN) and has the 

interesting property of returning false from all comparison operations, 

including comparison with itself! Because the compiler is required to deal 

with any valid floating-point object, even one that doesn’t represent a 

number, seemingly simple source code might require an unexpectedly 

complex object-code generation to accommodate pathological cases that 

are designed to never occur in most typical applications. Consider two 

functions, f and g, each taking a single argument of type double, each of 

which returns its argument, provided that the argument is not a NaN: 

double f(double argument) 

    // Return the specified `argument`. 

{ 

    if (argument * argument < 0) { return 0; }        // always false 

    return argument; 

} 

 

double g(double argument) 

    // Return the specified `argument`. The behavior is undefined if 

    // `argument` is a NaN. 
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{ 

    if (argument * argument >= 0) { return argument; } // true except for a NaN 

    return 0; 

} 

On most platforms, the first function, f, compiles to a single return 

statement (return val;), while g must have a branch to handle 

returning 0 when passed a NaN. As one might surmise, the implementer 

of g had little concern for what g’s behavior would be when passed a 

NaN. In such cases, one could employ the structure of g and achieve the 

generated-object-code compactness of f by supplying an appropriate 

compiler-accessible assumption construct explicitly: 

#include <cmath>  // std::isnan(double) 

 

double g2(double argument) 

{ 

    ASSUME(!std::isnan(argument));  // or maybe `ASSUME(argument == argument);` 

    if (argument * argument >= 0) { return argument; }  // always true 

    return 0; 

} 

By informing the compiler explicitly that it may assume no NaN will ever 

be passed into g2, object code need not be generated to handle a NaN’s 

noisome idiosyncrasies. 

6. Signed arithmetic. Overflowing a signed integral type in both C and C++ 

is explicitly UB, whereas overflow on an unsigned integral type is defined 

and required to wrap. Hence, one can encounter expressions where the 

compiler can make optimizations for a signed expression that it could not 

make for a structurally similar unsigned expression. For example, 

consider two functions, f1 and f2, trafficking in unsigned and signed 

integers, respectively9: 

unsigned int f1(unsigned int i)            int f2(int i) 

    // Return something (wide contract).       // Return 10 (narrow contract). 

{                                          {   ASSUME(i >= 0);    

    unsigned int j, k = 0;                     int j, k = 0; 

    for (j = i; j < i + 10; ++j)               for (j = i; j < i + 10; ++j)              

        ++k;                                       ++k; 

    return k;                                  return k;                                                                       

}                                          }  

Notice that f1 can overflow; hence, object code must be generated to 

accommodate that possibility. On the other hand, the compiler can 

assume that no overflow will occur for f2; hence, the body of f2 can 

safely be optimized to simply return 10, provided the caller respects that 

the behavior is undefined unless INT_MIN <= i && i < INT_MAX – 10. This 

example shows how just, by using a signed type, we introduce an implicit 

compiler-accessible assumption that the computation cannot overflow, 

and thus choice of signed-ness can substantially affect code generation. 

 
9 https://www.airs.com/blog/archives/120 
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Further indicating to the compiler that the argument cannot be negative, 

however, requires an explicit one as the original function was implicitly 

undefined for negative values. 

Each of the six use cases above provides realistic opportunities for 

meaningfully affecting generated code. This paper, however, will focus on just 

the first one, eliding conditional branches.  

PLAN 

Compile-time assumptions might benefit code generation — now or in the 

future — in innumerable ways. Given that [[assume]] is currently part of the 

C++ working draft, slated for release as part of C++23, we wanted to provide 

dispositive proof that compiler-accessible assumptions can measurably reduce 

run times in C++ code. 

Since our goal is to provide an existence proof, we opted to pick just one 

optimization theory — eliding conditional branches, which is the first item in 

the previous section’s list of benefits — and to write a microbenchmark to 

explore that space (see the following section, Apparatus, for more details): 

1. Create a trivially simple, portable, and ideally reusable custom 

framework that can be run standalone on any conforming platform (i.e., 

hardware/compiler combination). 

2. Making use of pseudo-recursive macros and conditional compilation, 

devise a test function having two compile-time integer parameters 

suitable for creating a family of functions that can be used to exhibit and 

quantify the effects of nested if-else statements versus, as a control, 

some other, inert way of similarly increasing code size.  

3. Design, for each if-else branch, a (perhaps distinct) conditional 

expression tied to a single runtime parameter of the function such that, 

for a particular chosen magic value of the runtime parameter, the 

expression will (1) always evaluate to true and (2) minimize the 

likelihood that a compiler, absent an explicit assumption construct, will 

be able to identify that particular magic value when optimizing.  

4. Insert an optionally-enabled (controlled via conditional compilation) 

compiler-accessible assumption that the runtime function parameter is, 

in fact, our chosen magic number. The mechanism used to deliver the 

assumption depends on the host platform: Use a home-grown construct 

based on assignment through a null pointer if that works; otherwise, use 

a compiler-specific intrinsic (assuming one exists and provides consistent 

results). 

5. Run each member of the 2D family of inputs with and without compiler-

accessible assumptions enabled and graph the ratios of compile times, 
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generated code sizes, and run times as surfaces in 3D and, for exposition 

purposes, as a series of 2D heat maps. 

6. Determine if and to what extent compiler-accessible assumptions affect 

our code generation and runtime behavior. 

7. Contrast the effect of the compiler-accessible assumption constructs on 

the test function’s single runtime argument for increasingly nested if-else 

depth (first dimension) juxtaposed with similarly increasing body size 

(second dimension), given that the increasing the value in either 

dimension by 1 effectively doubles the size of the compiler input in 

testfunc.cpp. 

8. Where meaningful, assess whether the net effect of compiler-accessible 

assumptions on code generation improves or degrades compile times, 

code sizes, and especially run times. 

Importantly, this experiment models one function having a narrow contract; 

hence, not all syntactically valid inputs are considered defined behaviors by the 

function’s author. If the compiler is unaware of the preconditions in a 

function’s English contract, it will be obliged to generate object code that has 

no purpose in any correct program. Conversely, by dint of an explicit 

assumption construct, the compiler may instead assume that it needs to 

handle only a single input value (which could be generalized to any sufficiently 

reduced range of inputs) and, hence, much of the supererogatory object code 

that might otherwise be generated may now be elided. 

To bind this proposed, highly customized, artificial microbenchmark to the real 

world, let’s consider just one more example motivating this particular 

theoretical optimization opportunity. Suppose some popular library provides an 

inline function, algo, such that the body of algo is always visible to each of 

its callers. Suppose further that this function sports a wide contract, meaning 

that it is prepared to handle every valid combination of inputs: 

inline double algo(int i, double, const char *cp) 

// This inline function has a wide contract. 

{ 

    // ... (Body is visible to caller's compiler.) 

} 

One can reasonably suspect that not every client will require the full, wide 

contract supported by the robust algo library function. 

Let’s now consider three tiny but not necessarily inline client functions — f, g, 

and h — in turn. The first, f, takes a single argument (via parameter i), which 

is required to be non-negative: 

double f(int i) 

    // The behavior is undefined unless `i >= 0`. 

{ 

    ASSUME(i >= 0); // E.g., `if (i >= 0)` may also be elided in `algo`. 
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    return algo(i, 1.0, nullptr ); // Much of `algo` may be elided automatically! 

} 

Because the compiler for f above can see two literal arguments coming into 

algo, the generated code can already be heavily elided. Providing the additional 

compiler-accessible assumption in the body of f affords additional information 

at compile time that might lead to further object-code improvement. Note that 

the compiler would be within its rights to choose not to inline algo in f, in 

which case none of these optimizations would take effect. (Naughty compiler!) 

Let's now consider a client function, g, that requires a (non-null) null-

terminated string as input:  

#include <limits> // std::numeric_limits<double>::quiet_NaN(); 

 

double g(int x, char* string) 

    // The behavior is undefined unless `string` refers to an NTBS.  

{ 

    ASSUME(string); // sufficient to avoid conditional check for nullness 

    return algo(x, std::numeric_limits<double>::quiet_NaN(), string); 

} 

In g above, the compiler might be able to do something with the knowledge that 

this instantiation of algo will always get a quiet NaN as its second argument, 

but that’s entirely beyond our control. On the other hand, by stating explicitly 

that string will not be null, we enable the client compiler (i.e., of g) to elide all 

such redundant checks and associated actions from the generated object of 

algo inlined for g. 

Finally, we look at one more client function, h, that specifies a highly restricted 

range for algo’s middle argument: 

double h(int i, double d = 1.0) 

    // The behavior is undefined unless `0.5 <= d <= 2.0`. 

{ 

    ASSUME(0.5 <= d); ASSUME(d <= 2.0);  

    return algo(i, 1.0/d, nullptr); // `cp` is 0 and `1.0/d` will always be finite. 

} 

In this third client function, h, the compiler automatically knows that any test 

for a null value of cp within algo will be true and thus can elide that test 

along with all code that handled a non-null cp. When the compiler is explicitly 

provided with an accessible assumption indicating the range to which d is 

bounded, it may then determine the range of the results for operations on d, 

potentially exclude infinite and NaN results, and thus reduce the amount of 

generated object code by — in particular — eliding nested conditional 

branches. 

APPARATUS 

Our deliberately simple, portable microbenchmark framework consists of 

various scripts that build and drive a C++ program comprising three local 
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translation units (TUs) that, in turn, depend on only the platform’s native 

Standard Libraries. 

 

Each of these three local TUs serves a distinct purpose in this 

microbenchmarking framework: 

driver.cpp — a reusable main driver file that, once compiled and 

linked, reads command-line configuration arguments to control a for 

loop used to invoke a suitably customized test function repeatedly. 

testfunc.cpp — a component that defines an insulated function, 

testFunction, which is parameterized via conditional compilation to 

yield the precise function whose physical characteristic (e.g., compile 
time, object-code size, and run time) we wish to analyze. 

opaqueobj.cpp — a tiny component that defines an insulated volatile 

object that can be leveraged in the other TUs to prevent some compiler 
optimizations. 

In the remainder of this section, we'll take a more in-depth look at each part of 

our framework. 

Suite of scripts to configure, buil d, and run program

driver.cpp

testfunc

testFunction

main

opaqueObject

opaqueobj

(native)

C++ Standard Library 

1

2

3

libcpp.a
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At the first level (labeled 1) of our local physical hierarchy, we have a 

component, opaqueobj, that contains the opaque definition of an insulated 

volatile unsigned int object, opaqueObject, whose file-scope, statically 

initialized state is the value 1u. The compiler has no means of determining that 

this value will not change, so it must not make any assumptions about what 

actual values opaqueObject might or might not contain: 

// opaqueobj.cpp 

volatile unsigned int opaqueObject = 1; 

The express purpose of this tiny component is to enable us to both (1) remove 

optimizations that would otherwise cause a microbenchmark to become 

irrelevant and thereby (2) mimic the effects that might be seen in real code as it 

scales. Importantly, by using the value of an insulated volatile object, the 

compiler will be unable to make any assumptions about the state of this object 

when compiling our other TUs. Although modern compilers having link-time 

optimization enabled might be able to make such assumptions anyway, we 

deliberately avoid building any of our test executables with link-time 

optimization enabled to preserve the efficacy of the benchmark. 

At the third level (labeled 3) of our component hierarchy, we have the 

driver.cpp file, which defines main. This small TU is responsible for 

processing any runtime program arguments from the command line, such as 

the number of times to call testFunction from within a tight loop: 

// driver.cpp 

#include <testfunc.h>  // `unsigned int testFunction(unsigned int);` 

#include <opaqueobj.h> // `volatile unsigned int opaqueObject;` 

#include <iostream>    // `std::cout` 

 

int main(int argc, const char *argv[]) 

{ 

    int k = argc > 1 

        ? std::atoi(argv[1])      // Parse the first argument if provided. 

        : 100'000'000;            // 100 million is the default. 

    std::cout << k << std::endl;  // Print # loop iterations. 

 

    int log2_i = 0;       // log base 2 of first trial `(i = 1)`, is 0. 

    long long iNext = 1;  // when to print next `log2_i` 

 

    for (long long i = 1; i <= k; ++i) { // `i` is the `i`th trial 

        if (i >= iNext) { 

            std::cout << ' ' << log2_i++ << std::flush; 

            iNext <<= 1; 

        } 

        opaqueObject = testFunction(opaqueObject); 

    } 

    return 0; 

} 

Before starting the loop, the program prints, to stdout, the runtime-specified 

loop-iteration count. The body of the loop is deliberately kept minimal but, to 

enable the human user to monitor progress during longer benchmarks, has an 

extra Boolean test that is used to successively print, with exponentially 

x-webdoc://13B8607B-F0E4-4ED7-B9D8-291B5F9613DD/#include
x-webdoc://13B8607B-F0E4-4ED7-B9D8-291B5F9613DD/#include
x-webdoc://13B8607B-F0E4-4ED7-B9D8-291B5F9613DD/#include
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decreasing frequency, log2 of the current loop index to stdout. Finally, the loop 

invokes the (insulated) testFunction on the opaque statically initialized 

volatile unsigned int opaqueObject and then assigns it the resulting 

inscrutable value upon its return. 

Importantly, on each iteration of the loop, the value opaqueObject is 

repeatedly filtered through the benchmark’s test function. Without the 

knowledge that this value will stay 1, which we have carefully prevented the 

compiler from concluding within any single TU of our microbenchmark 

program, the compiler is forced to generate object code for testFunction to 

account for a wide range of opaqueObject values. In practice, however, when 

the value is initialized to 1, it will stay 1 indefinitely, and our assumption for 

this benchmark will be that the value is always 1. Because we have secretly 

structured this microbenchmark program such that testFunction is always 

invoked with the same opaqueObject value, 1, we are able to introduce that 

valid assumption (or not) into testFunction (see below) and thereby observe 

whatever physical benefits enabling such a compiler-accessible assumption 

might bring us. 

Sandwiched between the main driver and the component defining 

opaqueObject at the second level (labeled 2), is the testfunc component, 

which defines our highly compile-time-customizable, insulated testFunction, 

taking a single unsigned int value and returning some inscrutable value of 

the same type: 

// testfunc.h 

#ifndef INCLUDED_TESTFUNC 

#define INCLUDED_TESTFUNC 

unsigned int testFunction(unsigned int v); 

#endif 

We need to pass in some unknown argument so that the compiler of this TU 

cannot automatically elide code based on what it already knows about the 

caller. We need the test function to return some unknowable value to prevent 

the client compiler from optimizing away the call or discovering other artificial 

optimizations that would tend not to mimic real-world code as it scales up. 

Finally, we need to make sure that testFunction, when passed our magic 

value of 1u, always returns that same magic value of 1u, thereby ensuring that 

the value of our volatile opaqueObject will remain stable through each 

iteration of our test-driver loop and we can introduce an assumption that our 

function parameter, v, always has a value of 1u as well. 

What makes this component especially unusual is the extent to which it can be 

aggressively customized at compile time to create a 2D family of functions 

having wildly varying object sizes, parameterized by two non-negative integers, 

M and N, in which M describes the depth of a symmetric if-else tree and N 

indicates size and is proportional to the logarithm of the number of additional 
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sequential instructions in each if-else code block (body). One effective way 

of achieving such flexibility is to create a sequence of pseudo-recursive macros 

and then use conditional compilation to select the appropriate recursion depth 

using -D on the compilation command line: 

// testfunc.cpp 

#include <testfunc.h>   // declaration of `testFunction` 

#include <opaqueobj.h>  // declaration of `opaqueObject` 

 

#define X opaqueObject 

#define BODY0 r += X ; r *= X; r -= X; r *= X; // If `X` is 1, `r` is unchanged. 

#define BODY1 BODY0 BODY0 

#define BODY2 BODY1 BODY1 

#define BODY3 BODY2 BODY2 

// : : : 

#define BODYJ BODYI BODYI 

 

#ifndef BODY // `BODY` must be defined using `-D` to one of the above. 

#error BODY is not defined  

#endif 

 

#define IFELSE0 { BODY } // `BODY` is the customization point for body size. 

#define IFELSE1 if (EXPR1) { IFELSE0 r &= X; } else { IFELSE0 r |= X; } 

#define IFELSE2 if (EXPR2) { IFELSE1 r &= X; } else { IFELSE1 r |= X; } 

#define IFELSE3 if (EXPR3) { IFELSE2 r &= X; } else { IFELSE2 r |= X; } 

// : : : : : : : : : : : : : 

#define IFELSEJ if (EXPRJ) { IFELSEI r &= X; } else { IFELSEI r |= X; 

 

#ifndef IFELSE // `IFELSE` must be defined using `-D` to one of the above. 

#error IFELSE is not defined  

#endif 

 

unsigned testFunction(unsigned int v) 

{ 

    #ifdef ASSUME // compiler-switch to enable home-grown assumption construct 

    if (v != 1) *(int *)0 = 0; // If `v` is not `1`, we have undefined behavior. 

    #endif 

 

    unsigned int r = v; // Start the macro ball rolling. 

 

    IFELSE; // customization point for if-else depth. 

 

    return r; // designed to return `1u` provided `v` was `1u` 

} 

Also configurable at compile-time are whether an explicit compiler-accessible 

assumption construct operating on the input parameter is enabled and, if so, 

whether to use native compiler intrinsics (not shown) or some other home-

grown language construct (e.g., assigning to a dereferenced null pointer) to 

introduce UB if the assumption would ever evaluate to false. 

Additionally, not all branch conditions (see EXPR1, EXPR2, ..., above) benefit 

equally from compiler-accessible assumptions, especially when the compiler 

can infer during its normal optimization procedures, without an assumption, 

that certain values will lead to predictable branching for the given expressions. 

For many common nested expressions, the compiler might be able to glean 
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useful optimization information even without explicit compiler-accessible 

assumptions. 

Initially, one of the early expressions was 1 == v. On the branch where the 

conditional expression was true (i.e., the branch our framework would always 
take), all remaining expressions in terms of v were deducible at compile time, 

meaning that the nonassumed build of our test function performed only a 
single comparison and branch at run time; hence, we saw no significant benefit 
in the assumed build. Instead, we chose to make the comparison expressions 
distinctly independent so that the result of one expression could not be used to 
determine the results of the remaining expressions. The benchmark data 
shown in this paper is the result of using a series of expressions where the mth 
expression is true only if a particular bit (bit m) is not set in v (note that there 

is no expression when m is 0): 

#define IFELSE1 if (0 == v ^ (v << (v + 0))) { IFELSE0 } else { IFELSE0 } 

#define IFELSE2 if (0 == v ^ (v << (v + 1))) { IFELSE1 } else { IFELSE1 } 

#define IFELSE3 if (0 == v ^ (v << (v + 2))) { IFELSE2 } else { IFELSE2 } 

   :       :     :  :    :    :     :   :          :       :        : 

We also made sure that the sequence of linear instructions was not amenable 

to optimization due to concurrence. Moreover, we chose our arithmetic 

calculations such that, provided the opaqueObject had an initial value of 1u, 

after each repeated sequence of four arithmetic operations, opaqueObject 

would again have that same value but — by explicit design — the compiler 

would have no way to know that. Thus opaqueObject == 1u remains a stable 

invariant throughout the repeated calls to testFunction. 

We developed several scripts of varying degrees of portability, each of which 

assist in gathering data needed to understand how our benchmark performs. 

For each set of values of the control variables (if-else depth, body size, and 

assumption enablement), we perform six steps: 

1. Compile separately the testfunc.cpp TU with the appropriate compile-

time parameters and build options. 

2. Measure the time taken by the compilation process. 

3. Measure the size of the resulting object file, testfunc.o. 

4. Link the object files from testfunc.o, driver.o, and opaqueobj.o into 

an executable. 

5. Run the resulting executable with a sufficiently large input size (e.g., 108) 

to ensure execution times are substantial enough (e.g., > 1 second) to get 

meaningful results. 

6. Measure the time taken for the executable to run to completion. 

The if-else depth, M, is controlled by defining (typically using -D) the value of 

the macro IFELSE to one of the numbered or lettered IFELSE<N> macros 
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available in testfunc.cpp. The body size, N, for each of the if and else 

blocks is similarly controlled by defining the value of BODY. Both of these 

macros must be defined for testfunc.cpp to compile. Assumption is disabled 

by default and can be enabled if the macro ASSUME is defined. 

As a purely illustrative example, consider two independent build-link-run 

sequences for this benchmark program, targeting a specific compiler and 

presupposing that the other TUs have already been compiled. To understand 

what the script is doing as it executes, before each sequence, we output (echo 

-n) the if-else depth, body size, and assumption enablement — `_` for disabled 

and `@` for enabled: 

# simple (pedagogical) script file to run two independent tests 

echo -n "(3 1 _)" 

    time g++ -O3 -I. -c -DIFELSE=IFELSE3 -DBODY=BODY1 testfunc.cpp 

    stat -c%s testfunc.o 

    g++ driver.o testfunc.o opaqueobj.o -o test_3_1 

    time ./test_3_1 10000000 

echo -n "(0 6 @)" 

    time g++ -O3 -I. -c -DIFELSE=IFELSE0 -DBODY=BODY6 -DASSUME testfunc.cpp 

    stat -c%s testfunc.o 

    g++ driver.o testfunc.o opaqueobj.o -o test_0_6_a 

    time ./test_0_6_a 100000000 

Sourcing this file produces several lines of output10: 

(3 1 _) 

real 0m0.328s 

user 0m0.171s 

sys 0m0.123s 

2680 

10000000 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 

real 0m0.166s 

user 0m0.078s 

sys 0m0.030s 

(0 6 @) 

real 0m0.397s 

user 0m0.203s 

sys 0m0.139s 

2480 

100000000 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 

real 0m14.967s 

user 0m14.890s 

sys 0m0.000s 

Notice that, along with various compile time, object size, and run time data, 

information sufficient to characterize each program run is embedded within the 

output: 

(1, 6, _) ... 10000000 ; N=1; M=6; assume disabled; called 10MM (10^7) times. 

(3, 0, @) ... 100000000 ; N=3; M=0; assume enabled; called 100MM (10^8) times. 

 
10 ThinkPad 480s running GCC 11.2.0 (c. 2021) 
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Running a postprocessing script to collect and render the raw output might 

yield something a bit more user friendly: 

Config.  <-- Compile Time -->   .o    Num   <----- Run Time ----->  

(N M A)   real   user  system  Size  Calls  real user system  

-------  ------ ------ ------  ----  -----  ------- ------- ------  

(1 3 _)  0.328s 0.171s 0.123s  2680   10MM   0.166s  0.078s 0.030s 

(6 0 @)  0.397s 0.203s 0.139s  2480  100MM  14.967s 14.890s 0.000s 

We now have all the tools we need to start exploring the space of the theoretical 

advantage we’re focusing on: eliding conditional branches. 

EXPERIMENT  

Given the apparatus discussed in the previous section, we are now ready to 

describe how we proceeded to collect the data for this paper. Recall that our 

framework supports compile-time parameters that include (M) the depth of the 

if-else tree, (N) the log2 of the size of the body of code expanded within each 

if-else block, and (A) whether some compiler-accessible assumption is 

enabled. The number of invocations of the test function can also be passed to 

the generated executable, as a command-line argument, at run time. 

The raw data we collect from each run includes (1) the time required to compile 

testfunc.cpp, which defines just our testFunction, (2) the size in bytes of 

the object file, i.e., testfunc.obj for MSVC and testfunc.o on all other 

platforms, and (3) the time needed to run the linked overall benchmark 

program. Although we collect wall, user, and system times in these 

experiments, we typically run on dedicated hardware, so we have opted to use 

wall time for all time (duration) measurements. For further analysis, we also 

run the linked benchmark program on Linux with the perf command to gather 

CPU performance counters such as instruction count, branch count, and L1 

data cache loads and stores. 

Running the benchmark program for a particular configuration — i.e., compile-

time value of if-else depth (M), body size (N), and whether compiler-accessible 

assumptions are enabled (A) — produces raw data that, by itself, is not 

especially informative. But by running the same if-else depth and body size 

partial configuration twice, first with assumptions (A) disabled (`_`) and then 

enabled (`@`), we get two distinct raw data points that we can use to assess the 

effect of providing the explicit assumption on the baseline code for whatever 

data is of interest.  

For example, we could use a simple script to compile, link, and test two such 

related configurations: 

# simple (pedagogical) script file to run two independent tests 

echo -n "(5 2 _)" #disabled 

    time g++ -O3 -I. -c -DIFELSE=IFELSE5 -DBODY=BODY2 testfunc.cpp 

    stat -c%s testfunc.o 

    g++ driver.o testfunc.o opaqueobj.o -o test_5_2 

    time ./test_5_2 100000000 
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echo -n "(5 2 @)" #enabled 

    time g++ -O3 -I. -c -DIFELSE=IFELSE5 -DBODY=BODY2 -DASSUME testfunc.cpp 

    stat -c%s testfunc.o 

    g++ driver.o testfunc.o opaqueobj.o -o test_5_2_a 

    time ./test_5_2_a 100000000 

After executing these commands and collecting the output, we get a meaningful 

pair of data points that we can use to quantify the effects of adding compiler-

accessible assumptions for this particular (if-else depth = 5, body size = 2) 

partial configuration of testFunction: 

Config.  <-- Compile Time -->   .o    Num   <---- Run Time ---->  

(M N A)   real   user  system  Size  Calls   real   user  system  

-------  ------ ------ ------  ----  -----  ------ ------ ------ 

(5 2 _)  1.321s 0.640s 0.514s  7340  100MM  1.401s 1.311s 0.000s 

(5 2 @)  0.493s 0.265s 0.093s  1408  100MM  1.267s 1.234s 0.000s 

For example, suppose the baseline compile time before any changes, B, is 1.321s and the 

compile-time after assumptions are enabled, A, is 0.493s: 

Relative Compile Time 

𝒂𝒇𝒕𝒆𝒓

𝒃𝒆𝒇𝒐𝒓𝒆
=

𝒂𝒔𝒔𝒖𝒎𝒑𝒕𝒊𝒐𝒏𝒔 

𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 

𝑨

𝑩
=

𝟎. 𝟒𝟗𝟑𝒔

𝟏. 𝟑𝟐𝟏𝒔
= 𝟎. 𝟑𝟕𝟑𝟐 

As the calculation above shows, compile-time for this partial configuration with 

compiler-accessible assumptions enabled is approximately 37% of what it 

would be when not enabled; in other words, compiler-accessible assumptions 

improved compilation speed by nearly 300% in this instance. 

Applying the same A/B ratio for (a) code size (in bytes) and (b) run time (wall 

seconds) for this particular configuration also yields improvements: 

(a) Relative Code Size (b) Relative Run Time 
𝑨

𝑩
=

𝟏𝟒𝟎𝟏 𝒃𝒚𝒕𝒆𝒔

𝟕𝟑𝟒𝟎 𝒃𝒚𝒕𝒆𝒔
= 𝟎. 𝟏𝟗𝟎𝟗 

𝑨

𝑩
=

𝟏. 𝟐𝟔𝟕𝒔

𝟏. 𝟒𝟎𝟏𝒔
= 𝟎. 𝟗𝟎𝟒𝟒 

 

Thus, we see that in this build mode (-O3 on GCC), the size of the generated 

testFunc.o file is more than five times as large without compiler-accessible 

assumptions as with them. Moreover, we also observe a decrease in the overall 

relative run time of nearly 10%. 

Throughout the remainder of this paper, we will use this A/B ratio on linear 

measures, such as time or size, to exhibit the relative effects of compiler-

accessible assumptions. We deliberately avoid reciprocal measures, such as 

speed or frequency, which can be needlessly confusing. What’s important 

about this ratio is that it (1) is unitless and (2) uniformly describes the data 

obtained from a closely related pair of runs of the benchmark with compiler-

accessible assumptions represented as a multiplicative factor of the data 

obtained without them: 
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Now that we fully understand the meaning of a single relative data point, we 

can organize how we collect and present the data for a 2D array of compile-

time values for if-else depth and body size. The dimensions of the input array 

are governed primarily by what is feasible to build on our available platforms. 

Increasing if-else depth or body size by just one essentially doubles the amount 

of executable source code in the implementation of testFunction. Hence, 

values of the sum of these parameters that exceed a fairly low threshold (on the 

order of 20 to 30) would often lead to compilations that failed in various ways. 

Large compilations that did not fail could take hours or even days to complete 

and hence were deemed infeasible.  

For these practical reasons, we found that a maximum if-else depth of 13 and 

body size of 7 mostly succeeded for the platforms on which we ran our 

experiments while still providing us with a sufficient breadth of gathered data. 

The few cases where we could not build a particular configuration of our 

benchmark occurred only when using MSVC and only when both parameters 

approached their respective maximum values; in such cases, we have left the 

corresponding relative result blank. 

We organized our script so that each relative pair — nonassumed and assumed 

for the same if-else depth and body size partial configuration — was output 

consecutively. Next, we grouped all eight partial configuration pairs with if-else 

depth = 0 first. We followed that by a second block of eight pairs having if-else 

depth = 1, and so on: 

if-else depth = 0, body size = 0, A = _ 

if-else depth = 0, body size = 0, A = @ 

if-else depth = 0, body size = 1, A = _ 

if-else depth = 0, body size = 1, A = @ 

: : : : : : : : 

if-else depth = 0, body size = 7, A = _ 

if-else depth = 0, body size = 7, A = @ 

if-else depth = 1, body size = 0, A = _ 

if-else depth = 1, body size = 0, A = @ 

: : : : : : : : 

if-else depth = 13, body size = 7, A = _ 

if-else depth = 13, body size = 7, A = @ 

Running a script to gather this data and invoking the program 14 × 8 × 2 = 224 

times on a given platform for a given set of build-optimization levels is what we 

mean by running an experiment. 

Several important reasons for creating a 2D array of relative data points bear 

mention: 

1. A full experiment contains a great amount of data (typically multiple 

runs of 224 distinct configurations of the benchmark program). 

2. Visualization helps us observe trends and relationships as the two 

compile-time parameters subtly interact. 
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3. Because both the M and N parameters we have chosen for this 

benchmark (if-else depth and body size, respectively) affect the source-

code size of the function being compiled similarly for this benchmark, we 

can assess how they trade off at a given overall input size. 

4. Because there's a family of similar functions, we introduce random 

compiled-object-quality noise with each incremental change in 

configuration (e.g., associated with page and cache-line alignments), 

which will tend to average out and cannot be addressed by simply 

rerunning the same executable multiple times alone.  

Once we have a script capable of running an experiment on a 2D family of 

functions (with and without assumptions enabled), we can improve our 

measurements by repeating each experiment on the current platform at a given 

build level some number (e.g., 10) of times. Looking at each grid point 

individually, we might choose to drop, say, the top and bottom two values and 

average the remaining six. Such filtering and smoothing of the raw data points 

will remove much of the noise introduced by running programs on real 

multitasking machines and provide a better feel for the intrinsic variations 

among each data point we seek. 

PLATFORMS 

We collected benchmark results on several platforms based largely on what we 

had readily accessible. To avoid biasing our results to a single platform, we 

inspected data on each of three operating system and CPU-architecture 

combinations: 

1. Windows on x86, including a personal laptop (Intel Kaby Lake), a desktop 

machine (Intel Skylake), and a hosted virtual machine (Intel Haswell 

E/EP). 

2. Linux on x86, including a desktop machine (Intel Gulftown EP) and a 

hosted machine dedicated to benchmarking (Intel Cascade Lake) 

3. macOS on AArch64, including several Apple MacBook Pro personal 

laptops (Apple M1 Pro and Apple M1 Max) 

Our most extensive analysis was performed on the x86 machine running 

Linux, which was dedicated solely to this benchmarking effort. Where available, 

we attempted our experiment with multiple different compiler toolchains (in the 

order in which we tried each particular compiler suite for the first time): 

1. The GNU Compiler Collection (GCC), versions 10.3.0 and 12.2.0 

2. Clang, version 15.0.1 

3. Microsoft Visual C++ (MSVC), 2019 and 2022 
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4. Intel ICX 2022.2.0.20220730 

As we gathered data, we focused on obtaining complete results, including 

sufficiently large numbers of runs to attenuate unrelated noise (as might occur 

in multiple runs of the identical executable). In particular, we chose to use the 

median value of multiple runs to represent a normalized raw value as input to 

the analysis performed for a small number of platforms, which we present at 

the end of this paper. 

Finally, we discovered early on that some compilers would treat compiler-

accessible assumption constructs that rely on explicit undefined behavior, 

specifically assigning through a null pointer, differently to those that employ 

native compiler intrinsics (e.g., __builtin_assume). Some compilers would 

aggressively optimize our benchmark using either, while others would not 

optimize at all based on explicit UB.  

Where we saw it have some effect, we used assignment through a null pointer 

for our benchmarks, and in other situations we used a platform-specific 

compiler intrinsic, which ultimately led to the preprocessor logic used to 

implement our compiler-accessible assumption construct in testFunction:  

#if !defined(ASSUME_INTRINSIC) 

    if (1 != v) 

        *(int*) 0 = 0; // if v is not 1 we have UB 

#else // defined(ASSUME_INTRINSIC) 

    #if defined(__clang__) 

        __builtin_assume(1 == v); 

    #elif defined(__INTEL_COMPILER) || defined(_MSC_VER) 

        __assume(1 == v); 

    #elif defined(__GNUC__) 

    if (1 != v) 

        __builtin_unreachable(); 

    #endif 

#endif 

For GCC and Clang, we did not define the ASSUME_INTRINSIC macro; for MSVC 

and Intel, however, we did, as neither of these two later compilers showed any 

difference in generated code when using just assignment through a null 

pointer. 

RESULTS AND ANALYSIS 

This section explores the results of executing our plan on several platforms. In 

all experiments, each data point will represent the ratio of the average values 

for a benchmark compiled with assumptions enabled versus disabled. 

First, we will show the effects of compiler-accessible assumptions observed on 

compile times and object sizes — two metrics indicative of the assumption’s 

impact but necessarily correlating to the most compelling metric, i.e., overall 

run times. Then, we will illustrate the runtime performance impact we 

observed. Finally, we’ll explore in detail some low-level CPU performance 

metrics that we gathered for one particular platform, discussing how those 
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metrics might reflect the behavior of our benchmark function and how they 

might have contributed to achieving the runtime changes we measured. 

In general, we ran experiments using four compilers — GCC, Clang, MSVC, 

and the Intel compiler — on a mix of Linux (x86), Windows (x86), and macOS 

(AArch64: Apple M1 Pro) machines. All builds used the most aggressive 

optimization level available from the toolchain, -O3 on most platforms and /O2 

with MSVC. For each configuration (if-else depth, body size, assumption 

enablement), enough runs were performed to achieve confidence in the 

precision of the answer (generally more so with the shorter runtimes), and we 

show their respective median values. 

Throughout this section, we will present a representative sample of platforms. 

Our results for all platforms not explicitly mentioned here were generally 

similar in form to those we discuss. 

Compile Times 

We can posit that assumptions will impact compilation speed in a few different 

ways: 

• Providing additional assumptions, gives the compiler more code to 
process and analyze, requiring more work and thereby plausibly 
increasing compilation times.  

• By allowing the compiler to elide branches, sometimes early during the 
compilation process, we reduce the amount of code that needs to be 
more aggressively optimized during later phases, perhaps decreasing 
compilation time. 

• Compilers may treat very large functions differently based on bounds 
compiler vendors determine, which can result in a large function not 
being optimized; on some compilers, compiler-accessible assumptions 
might even affect which side of such boundaries our benchmark 
function would reside. 

We begin our investigation by looking at the ratios of compile times using GCC 

— with compiler-accessible assumptions versus without— depicted as the 3D 

surface shown in Figure 1. 
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Compile Times: Assumed ÷ Nonassumed (GCC) 

 
Figure 1: This surface represents ratios of compile duration: assumed versus nonassumed. Both height 
and color indicate compile time ratio (Cascade Lake, GCC 12.2.0, -O3). 

Here we have graphed the ratio of compilation times as we varied the if-else 

depth from 0–12 (y-axis) and the body size from 20 to 27 lines (x-axis). Note that 

the graph is oriented so that the origin is located in the back, behind the 

surface, to better display the shape of this graph; hence, the corner in the 

lower front represents the maximum displayable values for x and y. 

As the body size increased, a corresponding significant decrease occurred in 

relative compilation time with assumptions enabled. Given that our benchmark 

demonstrates that adding a simple assumption results in the elimination of 

substantial portions of the resulting generated code (all but one of the 2(if-else 

depth) branches), obviating having to optimize further and generate those 

superfluous branches appears to dominate compile time. 

While this 3D view is visually striking and easy to understand, we found it 

limiting when attempting to interpret many of the other results we had 

measured. Therefore, we found visualizing our results as heat maps more 

serviceable, and the heat maps more readably encapsulate the details of our 
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results. The relationship between our 3D surface and our heat maps is 

illustrated in Figure 2 by successively rotating the data in Figure 1. 

 

Original 
First Rotation 

 

  

 
 
 

Second Rotation Final 
 

 

 

Figure 2: These surface plots represent the same data as shown in Figure 1. The surface plot is transformed 
into a heat map via three successive rotations as a visual aid (Cascade Lake, GCC 12.2.0, -O3). 

As we can see, the 2D heat map shown in Figure 3 represents the same data as 

the 3D graphs shown in Figures 1 and 2, but now we can read the individual 

result values explicitly and more readily observe small quantitative differences 

across surrounding data points. 
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Compile Times: Assumed ÷ Nonassumed (GCC) 

 
Figure 3: This heat map represents ratios of compile duration: assumed versus nonassumed (Cascade Lake, 
GCC 12.2.0, -O3). 

Exploring different platforms, we observed similar results when compiling 

using Clang, as can be seen in Figure 4. 
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Compile Times: Assumed ÷ Nonassumed (Clang)

 
Figure 4: This heat map represents ratios of compile duration: assumed versus nonassumed (Cascade 
Lake, Clang 15.0.1, -O3). 

Interestingly, when using MSVC, we observed results of a different shape, as 

shown in Figure 5. 
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Compile Times: Assumed ÷ Nonassumed (MSVC)

 
Figure 5: This heat map represents ratios of compile times: assumed versus nonassumed. Gray cells 
indicate unavailable data (Shadow Cloud VM, Haswell E/EP, MSVC 19.33.31630, /O2). 

Past a certain downward-sloping size frontier11, enabling compile-time 

assumptions results in minimal differences in compile times, and, given the 

relatively large compilation times (on the order of minutes or more), the small 

variance observed is not unexpected. In these cases, it seems as though the 

compiler has considered our assumption and, based on decision-making 

metrics of its own, decided to do very little differently for code generation than 

it did without the assumptions enabled. This size-frontier pattern will resurface 

again in this compiler for both code sizes and run times. 

Object Sizes 

The generated code in our benchmark function primarily consists of two kinds 

of programmatic constructs: 

1. Comparisons and branch instructions that implement the if-else 

statements 

2. Arithmetic operations that make up the body on each of the 2(if-else depth) 

branches 

 
11 Note that the aspect ratio of this heat map is skewed to make the x axis look 
disproportionately larger than the y axis, which belies the intent that increasing by one along 
either axis essentially doubles (asymptotically) the number of source lines of input to the 
compiler. 
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The object size, which we can easily measure, also includes a fair bit of 

metadata on the contents of our translation unit, but that metadata is fixed 

and independent of the variables in our experiment. Measuring the size of just 

the generated function would exclude this fixed overhead but is not as 

implementable reliably in a portable fashion. We should expect that, when 

assumptions are enabled and when a compiler properly infers all branch 

results based on our benchmark’s assumption, exactly 0 comparisons and 

branches and only a single instance of the 2(if-else depth) bodies are generated. The 

relative code size should, therefore, approximate (asymptotically) a 1/2(if-else 

depth) ratio of object sizes (enabled/disabled) when the compiler fully exploits 

compiler-accessible assumptions. 

 
Object Sizes: Assumed ÷ Nonassumed (GCC)

 
Figure 6: This heat map represents ratios of object sizes: assumed vs nonassumed (GCC, 12.2.0, -O3). 

The shown GCC (and unshown Clang and ICX) results in Figure 6 clearly 

illustrate this expected result. As either body size and if-else depth grow, it 

soon dominates the object file format’s fixed-size overhead, and we observe a 

general trend in our results matching our expected, exponentially decreasing 

ratio of object sizes to if-else depth. 

Next, consider the heat map representation for relative object-code sizes when 

using MSVC, as shown in Figure 7. 
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Object Sizes: Assumed ÷ Nonassumed (MSVC) 

 
Figure 7: This heat map represents ratios of object sizes: assumed versus nonassumed. Gray cells 
indicate unavailable data (MSVC 19.33.31630, /O2). 

Again, MSVC shows similar results to the other platforms in the cases where 

the assumption impacted object size. For those if-else depth and body size 

configurations where we saw no change in the generated object-file size, we 

observed, at most, a negligible (±3%) difference in corresponding compile times. 

Further inspection of the generated objects showed that they are identical; the 

assumed and nonassumed object files had no differences in the cases above 

the clear threshold, which indicates that, as we pass some threshold of 

function size or complexity or both, this platform no longer attempts to reason 

about the impact of our assumption, and thus no branches are elided. 

As expected, measuring the linked task size showed the same trends we saw 

with the object file size since the other object files in our framework remained 

unchanged across builds. 

Run Times 

With compiled executables in hand, we ran each configuration several times 

and measured the amount of time each process took to run to completion. The 

median value was used to show the runtime ratios.  

Let’s begin with the results for relative run times obtained using GCC, as 

depicted in Figure 8. 
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Run Times: Assumed ÷ Nonassumed (GCC)

 
Figure 8: This heat map represents ratios of run times: assumed versus nonassumed (Cascade Lake, 

GCC 12.2.0, -O3). 

Similar results for relative run times obtained using Clang are depicted in 

Figure 9. 
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Run Times: Assumed ÷ Nonassumed (Clang) 

 
Figure 9 This heat map represents ratios of run times: assumed versus nonassumed (Cascade Lake, 
Clang 15.0.1, -O3). 

The first important takeaway is that in no case did we see a performance 

degradation on either of these platforms due to enabling our compiler-

accessible assumptions. Overall, as the if-else depth increased, we saw a 

downward trend in relative run times. As expected, an increase in body size 

diminished the improvement in run times because a more significant portion of 

run time was spent in the body (which was deliberately chosen to be immune 

to assumption-based optimization) and not in the comparisons and branches, 

which were being elided by our assumption. 

When comparing the relative run times for Clang and GCC on the same 

hardware, Clang showed a reduction of 48%, a marked improvement due to 

compiler-accessible assumptions compared to GCC, which peaked at only a 

28% reduction. Upon inspection, however, this greater relative benefit seemed 

to result from GCC’s more aggressive optimization of the unassumed build 

than Clang’s, and thus we saw less of a relative bump in the assumed build 

using GCC. 

Next, we focused on the relative run times on MSVC, depicted in Figure 10. 
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Run Times: Assumed ÷ Nonassumed (MSVC)

 
Figure 10: This heat map represents ratios of run times: assumed versus nonassumed. Gray cells 
indicate unavailable data (Shadow Cloud VM, Haswell E/EP, MSVC 19.33.31630, /O2). 

MSVC showed the same trend where the assumed build with all branches 

elided took relatively less run time (i.e., ran faster) than the nonassumed build 

as the if-else depth increased for smaller-sized programs. But, yet again, past a 

certain input-size threshold (based on the combined if-else depth and body 

size), we observed that compiler-accessible assumptions had no meaningful 

difference in runtimes.   

We know, from having inspected the pairs of executables, that they were byte-

for-byte identical; hence, we would not expect any significant difference in 

relative runtimes, and any difference that we did observe would be attributable 

solely to unrelated noise while running the benchmark. Still, meaningful 

information can be gleaned from this data. 

If we look at each of the 34 entries in question, we will find that they group 

quite normally around 1.00: 2 (0.98), 5 (0.99), 21 (1.00), 5 (1.01), and 1 (1.02). 

The mean, median, and mode are 0.9994, 1.00, and 1.00, respectively. In fact, 

this normal distribution is remarkably close to perfect, reflecting an absence of 

bias. 

Now suppose hypothetically that the executables were not identical and that 

there was some minuscule and arguably insignificant drift downward (say -

0.1%) associated with an enabled assumption. Taken over these 34 entries, we 
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expect the cumulative (negative) drift to be a measurable -0.034. Given our 

observed random cumulative drift of -0.02 (where the expected drift is zero), 

even a mere average drift of -0.01% is something we should probably be able to 

observe.  

Now consider that just one experiment involves not 34, but 8 × 14 = 112 

separate pairs of trials. In that case, we could expect a cumulative drift of .112, 

whereas we would expect the typical random cumulative to decrease in 

distance from 0.00. Hence, even an average drift of just -0.1% would have been 

well above the noise level for this particular experiment. 

Looking across the four major compilers surveyed in this paper, GCC, Clang, 

and Intel compilers exhibit increasing relative runtime performance with 

increasing if-else depth, but that relative performance advantage diminishes 

with increasing body size. MSVC also follows this trend for smaller inputs; 

however, we observed zero change in the object code size produced above a 

certain size threshold and, correspondingly, no meaningful effect on runtime 

performance. 

Hardware Performance Counter Measurements 

By comparing the trends of object size and runtime ratios, we can observe that 

most of the decrease in object sizes does not translate to faster run times, 

which matches our expectations since most of the code being eliminated from 

generated objects is dead code. As body size increased, an ever-smaller 

proportion of the code eliminated was (otherwise executed) comparisons and 

branches. 

To better understand the runtime results we observed, we reran our 

benchmarks using the perf tool on Linux to collect various CPU performance 

data (counters). These results tell an interesting story of how improved code 

generation can and cannot realize runtime performance gains. We will present 

this level of detail for GCC on Linux only, though we obtained similar results 

for Clang and ICX on the same hardware. 

Branch Instructions 

Our benchmark primarily alters generated code by removing branches and the 

resulting dead code. When executing a nonassumed build, we should expect to 

see each if-else construct (up to the depth we have configured) execute a 

test-and-branch operation. On the other hand, the assumed build should have 

all of these branches elided. Overall, according to our measurements, this 

theory generally holds. 

For example, the relative branches executed during a run of our benchmark 

with and without compile-time assumptions enabled is depicted in Figure 11. 
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Branches: Assumed ÷ Nonassumed (GCC)

 
Figure 11: This heat map represents ratios of branches executed at run time: assumed versus 
nonassumed (Cascade Lake, GCC 12.2.0, -O3). 

An interesting observation, the number of branches at an if-else depth of 0 was 

greater for the assumed build than for the unassumed one. When we inspected 

the generated code, we observed that our makeshift assumption contraption in 

GCC, implemented with an if statement followed by assignment through a 

null pointer, actually generated the comparison and branch followed by a UD2 

instruction, which indicates to the CPU that an illegal state has been reached. 

This extra branch, resulting from translating our makeshift compiler-accessible 

assumption construct to a runtime check, did not appear when we used 

__builtin_unreachable()on GCC or with the other compilers on Linux 

whether we employed a native compiler-intrinsic or our makeshift compiler-

accessible assumption construct to elide branches. 

Furthermore, these results confirm that the number of branches is 

independent of the body size, which we expected as each if-else body in our 

benchmarks is deliberately composed exclusively of sequential arithmetic 

operations. The reduction in branches correlated with the reduction in run 

time, but not completely and directly. More specifically, even with a significant 

reduction in branches, the reduction in run time was often negligible for the 

smaller cases. 
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One might reasonably posit that this lack of relative difference is due to the 

CPU’s branch predictor correctly guessing all of these branches in the 

unassumed build (thereby making their complete removal have minimal effect) 

until a sufficient if-else depth is reached.   

Instructions 

C++ programmers commonly treat the number of instructions executed as a 

primitive proxy for run time. Unsurprisingly, this assumption has limited 

utility and does not always hold, as evidenced by our benchmarks. For 

example, consider the relative measured number of instructions executed in 

our benchmark runs on GCC, as depicted in Figure 12. 

 
 

Instructions: Assumed ÷ Nonassumed (GCC)

 
Figure 12: This heat map represents ratios of executed instructions: assumed versus nonassumed 
(Cascade Lake, GCC 12.2.0, -O3). 

The reduced number of instructions executed roughly correlates to the number 

of comparisons and branches elided by our assumption. The reduction 

increases as the if-else depth increases, and the magnitude of that reduction 

decreases as the size of the body increases.    

Again, the removed instructions do not impact runtime in proportion to the 

number of instructions in the body that remain in the assumed build because 

the instructions are either branch instructions that are reliably predicted or 
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comparisons of values already in registers, both of which contribute minimally 

to run time. The relative values for executed instructions are similar to those 

for run times, suggesting that these branches and comparisons, however 

cheap, are not free. 

For the smallest cases, the same effect we saw earlier when measuring 

branches exhibits itself here when counting instructions, resulting in a small 

increase in instruction counts due to the branches and comparisons generated 

by our home-grown compiler-accessible assumption construct on GCC. These 

extra instructions were dominated by the decrease in instructions for any non- 

if-else depth. We saw no increases in the number of instructions with other 

compilers. 

Level 1 Data Cache Loads 

Interpreting memory access measurements is challenging but can often 

account for a significant portion of run time in modern CPUs. Within our 

benchmark, each operation in the body requires memory accesses to load or 

store the volatile object. For example, we measured level 1 data cache loads to 

see how many of those instructions led to actual loads from memory by the 

CPU when compiled under GCC, as depicted in Figure 13. 
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Level 1 Data Cache Loads: Assumed ÷ Nonassumed (GCC)

 
Figure 13: This heat map represents ratios of level 1 data cache loads: assumed versus nonassumed 
(Cascade Lake, GCC 12.2.0, -O3). 

Here we see a trend of decreased relative loads when our assumption elides at 

least one branch (i.e., if-else depth ≥ 1). One might reasonably posit that this 

result is due to the compiler’s enhanced ability to reorder instructions leading 

to the CPUs’ enhanced ability to pipeline consecutive function calls without 

stopping between each iteration to evaluate a series of comparisons and branch 

instructions. As we would expect, the longer the series of arithmetic 

instructions per body (increasing body size), the less relative effect reordering 

the ends of a single sequential arithmetic sequence will have. The cases where 

if-else depth is 0 further support this theory by demonstrating that there is no 

corresponding impact on memory-usage behavior when no branches are elided. 

Level 1 Data Cache Stores 

Level 1 data cache stores, which correspond to writes to memory, show a 

different result. For example, consider the relative cache stores for our 

benchmark program running on GCC, as depicted in Figure 14. 
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Level 1 Data Cache Stores: Assumed ÷ Nonassumed (GCC)

 
Figure 14: This heat map represents ratios of level 1 data cache stores: assumed versus nonassumed 
(Cascade Lake, GCC 12.2.0, -O3). 

Inspecting the actual measurements, the cases with no branches (i.e., those 

with an if-else depth of 0 or enabled assumption) showed a very stable number 

of data cache stores, around 3.2 per iteration. The cases with no branches 

roughly doubled the number of stores per iteration. Clang and ICX builds 

exhibited this same behavior. The presence of these branches, all of which 

involved comparisons on the nonvolatile function parameter v, added 

additional data cache loads was undetermined from the generated object code. 

Summary 

Overall, we observed several measurable attributes of our benchmark improve 

when we enabled assumptions. The general trends followed our expectations in 

two ways: 

1. Increasing the if-else depth showed greater improvement in most cases 

where there was any meaningful effect.  

2. Increasing body size diluted the benefits since a larger fraction of the 

implementation of our testFunction consisted of sequential code 

specifically designed not to be impacted by enabling the compiler-

accessible assumption.   
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More importantly, we can take away a few significant lessons from these 

results: Enabling compiler assumptions often led to easily observable 

improvements in generated code, such as code size or branches taken, but had 

a muted impact on run times. As we scaled higher, improvements that showed 

little to no effect in run time for smaller values of if-else depth quickly began to 

exhibit meaningful benefits, indicating that although modern hardware has 

made some operations, such as branches, very inexpensive, those operations 

are not entirely free and that practical limits apply to what compilers and 

hardware can achieve unassisted. 

CONCLUSION 

Demonstrating that compiler-accessible assumptions, such as 

__builtin_assume, reduce run time is difficult because (1) code for which 

such assumptions make no difference is common and (2) even when 

substantially different object code is generated, run times are often not 

meaningfully affected. Hence, absent objective data to the contrary, one can 

easily albeit mistakenly conclude that — due to modern CPU architectures, 

branch predictors, and ever-maturing compiler technology — no meaningful 

runtime performance benefits remain to be had from employing explicit 

assumption constructs. The justifications of these conjectures are also 

misguided. 

In this paper, we began by presenting many alternate cogent theories for why 

making explicit assumptions available to the compiler might reduce run time; 

for example, unsigned arithmetic is required to wrap, whereas signed 

arithmetic, in conjunction with explicit knowledge that the (signed) result will 

never be negative, enables the compiler to optimize, assuming the expression 

will not overflow.  

We settled for demonstrating improved runtime performance for just one 

pattern: nested if-else statements depending on predicates whose values are 

informed by explicit compiler-accessible assumption constructs. We then 

described a simple, portable, custom benchmarking framework comprising a 

general-purpose driver that calls a particular compile-time-parameterized 

family of related test functions.  

To observe whether compiler-accessible assumptions can have a meaningful 

effect on run times, we organized our family of functions on a single integer, x, 

around two compile-time integer parameters: (M) is the depth of a balanced 

tree of if-else statements whose conditions involved the value of x, and (N) is 

the power-of-two number of consecutive nonbranching statements in an 

unrelated sequential computation. A third, Boolean parameter controls 

whether the compiler is aware of the assumption that x = 1. 
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An experiment consisted of building each of 112 configurations (M ∊ [0..13] × N 

∊ [0..7]) with and without the compiler-accessible assumption enabled. 

Running the experiment allowed us to obtain the respective compile times, 

generated object-code sizes, and program run times for each combination of 

values for M and N — with and without compiler-visible assumptions enabled. 

We then graphed the ratios of each of these three respective metrics — with-to-

without assumptions enabled — as a surface in a three-dimensional heat map, 

thereby allowing us to readily and visually observe the detailed interactions 

between M, N, and the Boolean flag. We repeated this experiment across several 

platforms (e.g., Windows, Linux, and macOS) and compilers (e.g., Clang, GCC, 

MSVC), running on various hardware. 

The totality of our results for experiments across multiple compilers and 

computer architectures involving sufficiently optimized build modes revealed 

that increasing the depth of the if-else tree (M) consistently demonstrated 

meaningfully reduced run times when compiler-accessible assumptions were 

enabled. This relative reduction in run times was most pronounced (up to 48%) 

for smaller numbers (N) of consecutive nonbranching statements. Larger values 

of (N) produced proportionally smaller generated object code with assumptions 

enabled but offered minimal effect on run times. 

Importantly, throughout all of the benchmark tests we performed, there were 

no cases where we observed any meaningful increase in runtime as the result 

of enabling compiler-accessible assumptions. In those few cases (MSVC only) 

where we did observe a (spurious) increase (1-2%), it was due purely to random 

noise as the object code run in either case — with or without assumptions — 

was byte-for-byte identical. 

Now that an explicit-assumption construct — the new [[assume]] attribute — 

is part of the language, we can expect to see compilers providing these same 

benefits to code that is entirely standard-conforming and hence portable. As 

this now-portable, compiler-accessible assumption construct becomes more 

widely used, we expect to see commensurate improvements in compiler 

technology to leverage explicit-assumption information and thus continue to 

provide ever-increasing runtime performance. 
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