Document number: P2548R0O

Date: 2022-07-12

Project: Programming Language C++

Audience: LEWG

Reply-to: Michael Florian Hava® <mfh.cpp@gmail.com>

copyable function

Abstract

This paper proposes a replacement for function in the form of a copyable variant of move_only func-
tion.

Tony Table
Before Proposed
auto lambda{[&]() /*const*/ { .. }}; auto lambda{[&]() /*const*/ { .. }};
function<void(void)> func{lambda}; & |copyable_function<void(void)> funce{lambda}; V4
const auto & ref{func}; const auto & refe{funce};
func(); « [funce(); V4
ref(); & |ref@(); //operator() is NOT const! X
copyable_function<void(void) const> funcl{lambda}; V4
const auto & refl{funcl};
funcl(); V4
refl(); //operator() is const! v
auto lambda{[&]() mutable { .. }}; auto lambda{[&]() mutable { .. }};
function<void(void)> func{lambda}; & |copyable_function<void(void)> func{lambda}; 4
const auto & ref{func}; const auto & ref{func};
func(); & [func(); 4
ref(); //operator() is const! I?V ref(); //operator() is NOT const! p~4
//this is the infamous constness-bug
copyable function<void(void) const> tmp{lambda}; X

Revisions
RO: Initial version

Motivation

C++11 added function, a type-erased function wrapper that can represent any copyable callable
matching the function signatures R(Args. ..). Since its introduction there have been identified several
issues — including the infamous constness-bug — with its design (see [N4159]).

P0288R9] introduced move_only function, a move-only type-erased callable wrapper. In addition to
dropping the copyable requirement, move _only function extends the supported signature to
R(Args...) conste, (&|8&&)op noexceptop and forwards all qualifiers to its call operator, introduces
a strong non-empty precondition for invocation instead of throwing bad_function call and drops
the dependency to typeid/RTTI.

L RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at

1

mailto:mfh.cpp@gmail.com
http://wg21.link/N4159
https://wg21.link/P0288R9
michael.hava@risc-software.at

Concurrently, [P0792R10] introduced function_ref, a type-erased non-owning reference to any call-
able matching a function signature in the form of R(Args...) constq, noexcepto,. Like
move_only function, it forwards the noexcept-qualifier to its call operator. As function_ref acts
like a reference, it does not support ref-qualifiers and does not forward the const-qualifier to its call
operator.

As a result, function is now the only type-erased function wrapper not supporting any form of quali-
fiers in its signature. Whilst amending function with support for ref/noexcept-qualifiers would be a
straightforward extension, the same is not true for the const-qualifier due to the long-standing con-
stness-bug. Without proper support for the const-qualifier, function would still be inconsistent with
its closest relative.

Therefore, this paper proposes to introduce a replacement to function in the form of copya-
ble function, a class that closely mirrors the design of move_only function and adds copyability as
an additional affordance.

Design space

The main goal of this paper is consistency between the move-only and copyable type-erased function
wrappers. Therefore, we follow the design of move_only function very closely and only introduce
three extensions:

1. Adding a copy constructor
2. Adding a copy assignment operator
3. Requiring callables to be copyable

Open Questions

Conversion to move_only _function
Given that copyable_function is a strict superset of move_only_ function, should it provide conver-
sion operators to move_only function?

Deprecation of function
As copyable function aims to supersede function, should the latter (including bad_func-
tion_call) be moved to Annex D with the adoption of this paper?

Impact on the Standard
This proposal is a pure library addition.

Implementation Experience
The proposed design has been implemented at https://github.com/MFHava/P2548.

Proposed Wording
Wording is relative to [N4910]. Additions are presented like this, removals like -

[version.syn]
In [version.syn], add:

| #define cpp lib copyable function YYYYMML //also in <functional>

Adjust the placeholder value as needed to denote this proposal’s date of adoption.

http://wg21.link/P0792R10
https://github.com/MFHava/P2548
http://wg21.link/N4910

[functional.syn]
In [functional.syn], in the synopsis, add the proposed class template:

// 22.10.17, polymorphic function wrappers
class bad_function_call;

template<class> class function; // not defined
template<class R, class... ArgTypes> class function<R(ArgTypes...)>;

// 22.10.17.3.8, specialized algorithms
template<class R, class... ArgTypes>
void swap(function<R(ArgTypes...)>&, function<R(ArgTypes...)>&) noexcept;

// 22.10.17.3.7, null pointer comparison operator functions
template<class R, class... ArgTypes>
bool operator==(const function<R(ArgTypes...)>&, nullptr_t) noexcept;

// 22.10.17.4, move only wrapper
template<class... S> class move_only_function; // not defined
template<class R, class... ArgTypes>
class move_only_function<R(ArgTypes...) cv ref noexcept(noex)>; // see below

// 22.10.18, searchers
template<class ForwardIterator, class BinaryPredicate = equal_to<>>
class default_searcher;

[func.wrap]
In [func.wrap], insert the following section at the end of Polymorphic function wrappers:

ki

il

Acknowledgements

Thanks to RISC Software GmbH for supporting this work. Thanks to Peter Kulczycki for proof reading
and discussions.

https://www.risc-software.at/

