
Only [[assume]] conditional-expressions
Document No. P2507 R0 Date 2021-12-15
Reply To Peter Brett pbrett@cadence.com Audience: EWG

Introduction
It is currently proposed in P1774R5 “Portable assumptions” that the attribute should

accept an assignment-expression [1]. However, there is no evidence that it is useful to assume any

expression that is not a conditional-expression.

Design
Currently, P1774R5 requires the argument of the assume attribute to be an assignment-expression

contextually-convertible to bool. An assignment-expression can be:

• yield-expression: an assume attribute is not a function suspension context

• throw-expression: never contextually convertible to bool

• conditional-expression

• logical-or-expression assignment-operator initializer-clause

The motivation and design for the assume attribute does not include any examples of assuming a

logical-or-expression assignment-operator initializer-clause sequence, even when discussing

examples of side-effect corner cases that need to be avoided.

Every motivating use-case that the author is aware of, both in P1774R5 and elsewhere, assumes a

conditional-expression. This, along with the contextual conversion to bool, strongly suggests that

conditional-expression is the best model of “things that can be assumed.”

Note that:

1. Related compiler intrinsics such as MSVC/icc’s or clang’s

accept an assignment-expression.

2. The and statements each accept an expression in their condition.

By changing from assignment-expression to conditional-expression, we can:

• ensure that typos like are not silently accepted by conforming

implementations

• continue to permit as an escape hatch (primary-expression)

• leave open the door to expanding the range of accepted expressions in the future

If we do not narrow the grammar before appears in the IS, then it will not be

possible to do so in the future.

Proposed wording

Editing notes
All wording is relative to P1774R5 [1].

mailto:pbrett@cadence.com?subject=Re:%20P1892R0%20Extended%20locale-specific%20presentation%20specifiers%20for%20std::format

P2507 R0

2

Assumption attribute [dcl.attr.assume]

Update ¶1:
The attribute-token may be applied to a null statement; such a statement is an

assumption. An attribute-argument-clause shall be present and shall have the form:

(assignmentconditional-expression)

Constant expressions [expr.const]

Update ¶5:
If E satisfies the constraints of a core constant expression, but evaluation of E would

evaluate an operation that has undefined behavior as specified in [library] through [thread]

of this document, a statement with an assumption ([dcl.attr.assume]) whose converted

assignmentconditional-expression would not evaluate to true, or an invocation of the

va_start macro ([cstdarg.syn]), it is unspecified whether e is a core constant expression.

Update ¶6:
For the purposes of determining whether an expression E is a core constant expression, the

evaluation of a call to a member function of std::allocator<T> as defined in

[allocator.members], where T is a literal type, does not disqualify E from being a core

constant expression, even if the actual evaluation of such a call would otherwise fail the

requirements for a core constant expression. Similarly, the evaluation of a call to

std::construct_at or std::ranges::construct_at does not disqualify E from being a core

constant expression unless the first argument, of type T*, does not point to storage

allocated with std::allocator<T> or to an object whose lifetime began within the evaluation

of E, or the evaluation of the underlying constructor call disqualifies E from being a core

constant expression. Further, a statement with an assumption ([dcl.attr.assume]) whose

converted assignmentconditional -expression is itself not a core constant expression does

not disqualify E from being a core constant expression.

References

[1] T. Doumler, “D1774R5 Portable Assumptions,” 15 Dec 2021. [Online]. Available:

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p1774r4.pdf.

