
NetTS, ASIO and Sender Library Design Comparison
Draft Proposal

Document #: P2471R1
Date: 2021-10-14
Project: Programming Language C++
Audience: LEWG Library Evolution

SG1 Concurrency and Parallelism
SG4 Networking

Reply-to: Kirk Shoop
<kirk.shoop@gmail.com>

Contents
1 Changes 1

1.1 R1 . 1
1.2 R0 . 2

2 Introduction 2

3 Notes 2
3.1 response to P2471R0 (unnumbered paper) . 2

3.1.1 corrections . 2
3.1.2 conveying the whole design . 3
3.1.3 convention ramifications . 3
3.1.4 heuristics for extracting an error . 3
3.1.5 what are algorithms? . 4
3.1.6 different names are not a correction . 5
3.1.7 associated values . 6
3.1.8 Executor design . 6

4 Tables 8
4.1 Asynchronous Operation design . 8
4.2 Initiating function design . 10
4.3 Algorithm design . 11
4.4 Associated values design . 12
4.5 Executor design . 13
4.6 Execution Context design . 14

5 References 15

1 Changes
1.1 R1

— added section response to P2471R0 (unnumbered paper)
— applied applicable corrections from the response paper to tables 2, 4, 5, 14, 16 & 17

1

mailto:kirk.shoop@gmail.com

1.2 R0
— first revision

2 Introduction
I have never seen the library designs of these libraries compared. This paper started as an email to the LEWG
reflector. I was asked to make it a paper.

I used the following papers to fill in these tables:

— [N4771] “Working Draft, C++ Extensions for Networking”
— [P1322R3] “Networking TS enhancement to enable custom I/O executors”
— [P0958R3] “Networking TS changes to support proposed Executors TS”
— [P1943R0] “Networking TS changes to improve completion token flexibility and performance”
— [P2444R0] “The Asio asynchronous model”
— [P0443R14] “A Unified Executors Proposal for C++”
— [P2300R2] “std::execution”

I also searched in the ASIO repo

I split these out into vertical tables because horizontal scrolling sucks.

The library designs compared in tables below are:

— Asynchronous Operation design
— Initiating function design
— Algorithm design
— Associated Values design
— Executor design
— Execution context design

Within each section are three tables:

— [N4771] as it currently stands.
— [ASIO] as it currently stands.
— [P2300R2] as it currently stands

3 Notes
The theme that revealed itself to me while compiling these is that ASIO & NetTS use traits and partial-
specialization vs. Sender/Receiver use concepts and CPOs.

There are other disparities in specific places, but the approach to library design traits/concepts and specializa-
tion/CPOs are the repeated differentiators I saw.

Another thing that these tables revealed is all the changes in the ASIO design in the last 2-3 years (after
sender/receiver was proposed).

3.1 response to P2471R0 (unnumbered paper)
This section addresses the content of [response to P2471R0] “Response to P2471: Corrected NetTS, Asio, and
Sender Library Design Comparison”

3.1.1 corrections

The corrections to Tables 2, 14, 16, and 17 are very helpful, thank you! These changes have been applied.

In tables 4 and 5, thank you for pointing out that it is convention to place the completion_token at the end.
These changes have been applied.

2

3.1.2 conveying the whole design

In table 4, the deletion of the constructor arg is not due to it being incorrect, it just removes information that is
specified in [N4771] from the table. I was attempting to make the composition of the token, handler and result
clear. This deletion seems to hide this part of the spec.

I have altered table 4 in an attempt to make this clear.

3.1.3 convention ramifications

[response to P2471R0] is missing an explanation for why the completion token was last by convention, as well
as the ramifications of putting it elsewhere. It turns out these are related.

The last arg by convention allows the function to not push arguments after the callback in the case it is a
complicated bind expression or lambda
async_..(..., ...{

...
});

The ramification of it preceding the trailing arg pack, in the case the function is a complicated expression like a
lambda, is that the pack appears after the lambda.
async_..(..., ...{

...
}, Arg...);

Allowing the initiation function to place the completion token anywhere in the arg list, makes any attempt at a
concept definition for initiation_function, at best, challenging. A concept definition may not be possible.

3.1.4 heuristics for extracting an error

Completion signatures are defined by each initiating function. each initiating function can provide an error
argument, conventionally the first argument. The type of that error is specified by each initiating function.

This arrangement allows partial completions where there is a non-success error value and valid, non-empty result
value(s).

One result of this arrangement is that error and value types have to have default states in order to support errors
to be delivered even when a valid result type cannot be constructed in this error condition, and also to support
the separation of error-only and partial completion. For an error value type this default state would be Ok or
Success (pet peeve - Ok and Success are not errors). For each value arg, the type must be constructible in an
invalid or empty state. For types that do not have an empty or invalid state something like std::optional<T>
would be used to add an empty state.

Another result of this arrangement is that completion tokens that translate from a completion signature to
something that has an error channel (like std::future, coroutines, and senders), must use a heuristic to type-
match the first arg (because there is no concept for error types to satisfy) and detect when the value of the first
argument represents an error and preferably detects when the values are all valid and non-empty (again there is
no concept for result values to detect an invalid or empty state) in order to send the error to the error channel
for non-success error values and invalid result values (error-only) and alternatively, send the error + result to
the value channel for non-success error values and valid result values (partial-completion).

Here are two possible implementations of asSender completion tokens that were supplied from ASIO. These
demonstrate in code how these heuristics create many different implementations of asSender.

[as_sender_1.cpp (gist)] implementation of a completion token that maps to the following:
as_sender:

set_value(AllValues...)
set_error(std::exception_ptr)

3

[as_sender_2.cpp (gist)] implementation of a completion token that maps to the following:
as_sender:

set_value(ResultValues...)
set_error(std::error_code)
set_error(std::exception_ptr)

This duplication for different heuristics applies to use_awaitable and use_future and any other transformation
to something that has an error channel.

I asked a question in email that was not answered in the paper.

What is the ASIO take on the heuristics needed to map a completion signature to an error channel?

3.1.5 what are algorithms?

The changes to table 7 miss the mark completely.

In [P2444R0] composition is done by composing completion tokens lazily.

Example of lazy composition:
algoC(..., algoB(..., algoA(..., async_..(..., composition token),
...{

...
})));

[P2444R0] & [N4771] support eager composition of completion tokens prior to calling the initiation function.

Example of eager composition:
async_..(..., algoA(..., algoB(..., algoC(..., ...{

...
}))));

[response to P2471R0] redefines algorithm to mean something completely different from the definition in this
paper. The redefinition is that any async initiating function can be an algorithm if it is implemented in terms
of other initiating functions. I agree that this is a kind of algorithm, but there is no visible surface that can
be used to create a concept. The fact that a initiating function is a composition of other initiating functions
is an implementation detail and that implementation can change without affecting the initiating function’s user
facing surface or usage.

Trying to classify some async initiating functions as algorithms based on non-visible implementation details that
change over time does not appear to me to be a useful classification and is certainly not what this paper intends
an algorithm concept to represent.

In this paper, an algorithm is something that wraps an existing async operation in a new async operation
and can apply changes to the initiation and the completion of the existing async operation.

Both of the composition models in ASIO (lazy and eager) compose completion tokens. The only way to hook
the initiation and completion of an async initiation function is to pass in a completion token

[N4771] cannot represent a lazy async operation and that is why it’s only option is to wrap the completion token
prior to calling the initiating function.

deferred composes lazily by packaging the values needed to initiate the initiating function that deferred
was passed to, and producing a new initiating function that only takes a completion token. Each algorithm
takes 0 or more initiating functions that each only take a completion token. The algorithm produces a new
initiating function that only takes a completion token to allow the composition of another algorithm. Eventually
a terminating completion token (use_future, a callback function - these are terminating) is passed to the
initiating function returned by the last algorithm composed into the expression and that actually forwards to

4

all the intervening packaged initiation functions until the original packaged initiating function is initiated and
the final result is produced.

After defining algorithm one way (any initiating function that composes other async initiating functions), [re-
sponse to P2471R0] adds another definition for algorithm - this time as a concept. The algorithm concept defined
is algorithm_over_packaged_operations.
concept packaged_operation:

(completion_token) -> Result;

concept algorithm_over_packaged_operations:
(packaged_operation..., completion_token) -> Result;

note I made one minor name change that seemed like a typo packaged_ops... -> packaged_operation...

algorithm_over_packaged_operations constrains the set of initiating functions that can be an algorithm to
initiating functions that take zero or more packaged_operations followed by a completion token. This is an
improvement, it means that async_read does not satisfy the concept of an algorithm and that matches my
expectations. The concept does require lazy composition.

The pack is odd in that it means that different algorithms have a variable number of expected arguments - from
0 to Inf.. I am curious how this composition would work. Perhaps this is only intended to work when using
lispy composition and is not supported with piping composition? I have supported this kind of thing before but
it ends up splitting the first arg out of things like when_all to appear before the pipe and then have the rest as
args to when_all after the pipe.

packaged_operation and algorithm_over_packaged_operations do not constrain the Result. This has the
consequence that functions that return void, or an awaitable, or a sender would satisfy the concepts here,
even though they terminated the composition of packaged_operations. Another option would be to change
this concept to be specific to terminating the composition and use a different concept for an algorithm that
constrains the result. Example:
concept packaged_operation:

(completion_token) -> Result;

concept algorithm_over_packaged_operations:
(packaged_operation..., completion_token) -> packaged_operation;

concept terminating_packaged_operation:
!algorithm_over_packaged_operations;
(packaged_operation..., completion_token) -> Result;

Keeping the completion_token as the last argument in an algorithm_over_packaged_operations limits these
algorithms to a fixed number of packaged_operation arguments. The pack works fine for the concept not for an
algorithm that wants to satisfy the concept. If an algorithm wanted to support a pack of packaged_operation
arguments, then the completion_token argument must come before the pack. Any algorithm that did move
the completion_token in front of the pack would not satisfy the concept as expressed. The solution is simple,
but will probably incur unintended consequences in usage. Here is a solution:
concept packaged_operation:

(completion_token) -> Result;

concept algorithm_over_packaged_operations:
(completion_token, packaged_operation...) -> Result;

3.1.6 different names are not a correction

The changes to 8 also miss the mark completely, but in a different way.

5

[response to P2471R0] defines packaged_operation. This is great. This is not the only allowed composition
model. Anyone can build their own completion token to initiate a different composition model and that compo-
sition model has no requirements to be compatible with the packaged_operation.

This is exactly the world the table in this paper depicted. As specific examples, use_awaitable and use_sender
produce different composition models. ASIO itself supplies use_awaitable. In order for algorithms that satisfy
algorithm_over_packaged_operations to compose with sender/receiver algorithms there would have to be
preferably lossless conversion from packaged_operation to sender and sender to packaged_operation. The
heuristics for extracting an error from a completion signature would prevent that conversion from being automatic.
the user would have to be involved in deciding how to pack and extract the error and done signals into completion
signatures.

Another thing left out of this section is that packaged_operation requires the lazy composition with argument
moves that matches the sender/receiver model, but without the operation_state that allows the user to store
the type in its own allocation or nest it in its own operation_state. There is a way for the user to supply
storage for ASIO completion tokens, but there is a reason that code that does this has not been shown. There
are three steps:

1. query for the size that will be allocated before calling the initiating function
2. create an allocator for that size in an existing allocation
3. associate that allocator with the completion handler for the initiating function

It would be useful to see the claim that no-alloc is possible in ASIO, be presented along with code that shows
how to implement these steps.

3.1.7 associated values

The discussion of Associated values in [response to P2471R0] is incorrect. Sender/Receiver also allows defaults
to be used, it, like everything else, is expressed as an algorithm. This algorithm is not specified in [P2300R2]
and anyone can write it until it is added.

This algo to default a value would compose thusly
api() | with_default_query_value(get_allocator, allocator) | then...

this could be aliased to with_default_allocator(allocator)

3.1.8 Executor design

3.1.8.1 addressing stack exhaustion

Yes, default rescheduling each operation and default not rescheduling each operation, is a poor trade off. IMO
both options are poor. The one good option that I know of that can prevent stack exhaustion is first-class
tail-recursion in library or language (Lewis and I are experimenting with this in library, the current prototype
runs repeat_effect(just()) without stack exhaustion and without allocations and without scheduling and
with cancellation - to the tune of about 1.6ns per repeat on my 2014 macbook pro - basically take this with a
bag of salt for now).

ASIO has chosen to require that every async operation must schedule the completion on a scheduler (every read,
every write, etc..). It is hard for me to have a sense of how many allocations and context switches that adds as
a default.

sender/receiver has not decided to require that the completion be scheduled. If we did add that requirement to
sender/receiver, then sender/receiver would still suffer from inline_scheduler being specified to an operation
that completes synchronously, just as ASIO suffers from inline_executor today.

This is why I consider tail-call the only good solution. Scheduling solutions are all inferior (give thanks to Lewis
for this shift in my understanding :)).

6

3.1.8.2 eager is required for performance

The only thing that I know of, that sender/receiver cannot currently represent with full fidelity, that the ASIO de-
sign does support is the option to eagerly start an operation before an api returns to the caller. The eager model
in ASIO requires all composition to occur in the completion token before the api is called. Eager implementations,
that allow attaching a continuation later, require allocation and synchronization overhead that would reverse the
stated performance advantage. Using deferred is lazy composition and will behave exactly as sender does. The
main resistance to using something like std::execution::ensure_started(async_read(socket, buffer));
is the enormous cost of moving the socket and buffer handles into the sender and then allocating the
operation_state and moving them again into the operation_state and linking that operation_state into
the io queue without allocations vs. allocating an item in an io queue and depositing the args directly into that
allocation. So same allocations and linking overhead, with an extra move of the args to the operation_state.

In three years of asking we have never been presented with code and a benchmark showing that the difference is
measurable. I did produce a [benchmark for eager and lazy] that showed no significant difference and presented
it to the executor paper’s authors in September 2019 (two years ago). Again, no alternative benchmark was ever
provided to show the problem that was claimed.

3.1.8.3 set_done/set_error force users to call them

as done_as_error() and done_as_value() indicate, it is not required for a cancelled operation to complete
with set_done(). This is a recurring problem where the existence of a signal is characterized as a restriction on
the implementor. This is C++. We don’t do that. Just like you have the choice to return an optional<T> from
a function if you might not be able to satisfy the post-conditions that are required to construct T, you have the
option of calling set_done() instead of set_value().

This is the same for set_error(). The un-nuanced statement is that - if you would not throw it, don’t pass
it to set_error(). As for all function design questions there is nuance here because set_error itself has no
overhead of exception machinery, unless the error is std::exception_ptr or the sender is co_awaited, which
would convert set_error to an exception.

One way to think of the receiver concept is as a representation of a function result of the type
expected<optional<variant<tuple<Vs...>...>>, variant<error_type...>> without the overhead of
packing and unpacking all the states in one value type.

— set_error maps to expected<, variant<Es...>> by being an overload set of functions that take one
argument (variant<>)

— set_done maps to optional<>
— set_value maps to variant<tuple<Vs...>...> by being an overload set of functions (variant<>) where

each function has a different set of arguments (tuple<>)

Essentially a receiver implements in library, expected<>, optional<>, variant<>, and tuple<> using pure
language features. In other words, a receiver is as if all those types were built into the language.

3.1.8.4 which is a strict superset?

Neither ASIO or sender/receiver is a strict superset of the other. ASIO has eager initiation and sender/receiver
has set_error and set_done with no heuristics to tease them out of an argument list (when arguments are
present, ASIO executors can’t pass arguments to the callback function - execute does not take a completion
token - yet).

After years of communicating sender/receiver design and explaining what was missing from the ASIO design,
ASIO has recently adopted many, but not all, of the sender/receiver features that were missing including lazy,
overloaded completion functions, and cancellation.

All these were redesigned from scratch in ASIO over the past couple of years, with the stated goal of preventing
major code changes for existing ASIO users. This goal does not feel like a goal that I would share as a member
of the committee. It would depend heavily on what restrictions that goal imposed on the library design.

7

In addition to the compatibility for existing ASIO users, and the invention of a new cancellation type
(cancellation_slot)instead of reusing stop_token from C++20.

The ASIO design relies on

— traits
— partial-specialization
— concrete types
— unspecified virtual interfaces between concrete types
— base classes

The sender/receiver design relies on

— concepts
— CPOs

IMO the question isn’t which design is a subset or super-set, or if there is a way to adapt between different
largely overlapping (after the recent changes in ASIO to increase the overlap) sets of functionality with vastly
different designs.

IMO the question is which design approach is a good fit for the std library in 2021.

The implementation and functionality in ASIO is first class. I am in awe of ASIOs utility and history and
success. It is only the surface, if LEWG agrees with the feedback we have provided to ASIO for several years
now, that would change to a design that fits in the standard library in 2021.

[P1322R3] proposes to add support for the standard library vendor to write multiple io context implementations,
because Microsoft asked for a way to do this. [P1322R3] has not been applied to the NetTS yet. [P1322R3] does
not allow users to write their own io context object that will work with std::socket as provided by the standard
library they use, unless the user implements the unspecified virtual interface defined by each specific standard
library implementation to interoperate with that specific standard libraries implementation of std::socket.

In contrast, a NetTS based on concepts and CPOs allows anyone to create types that can be used with each
other. A socket type modeling a specified socket concept on epoll can be used with a different socket type
modeling the same socket concept on uring. One socket type might be provided in a std library and the other
socket type might be portably written by the user using only specified concepts.

3.1.8.5 Design changes

IMO a transform of the existing io_context, socket, etc.. design to one based on concepts and CPOs vs traits
and types and unspecified interfaces would be straightforward (not trivial) and the result much cleaner. Some
examples:

— Many of the member functions on the types today are in terms of other more fundamental functions.
Moving those to CPOs and excluding them from the concepts makes writing your own sockets and
io_context much less code.

— I would expect that the NetTS paper would shrink dramatically, because so many of the types become
implementation details and do not need to be described (like services and base classes, etc..).

— I would expect a small header that maps the concepts to the types in ASIO would make ASIO a valid
implementation of the redesigned NetTS.

I would be excited to finally be allowed to cooperate with the NetTS authors to change the surface without
changing the implementation and functionality. IMO even eager is on the table, once actual code benchmarks
are provided that demonstrate a measurable problem that is convincing to the committee - see (eager is required
for performance).

4 Tables
4.1 Asynchronous Operation design

8

Table 1: NetTS - (N4771 is missing P1322, P0958, P1943, P2444)
13.2.7 Requirements on asynchronous operations

concept completion_token:
async_result<

completion_token,
signature>

::completion_handler_type;

async_result<
completion_token,
signature>

::return_type;

concept signature:
(ErrorsAndValues...) -> void;

concept completion_handler_type:
constructible<

completion_handler_type,
completion_token>;

invocable<
completion_handler_type,
signature>;

concept result_type:
constructible<

result_type,
completion_handler_type>;

Table 2: ASIO - (ASIO has P1322, P0958, P1943, P2444)

concept completion_token:
async_result<

completion_token,
signature...>

::initiate(
initiation,
completion_token,
Args...) -> Result;

concept signature:
(ErrorsAndValues...) -> void;

concept initiation:
(completion_handler, Args...) -> void;

concept completion_handler:
invocable<

completion_handler,
signature>...;

Table 3: Sender/Receiver - (P2300)

concept sender:
connect(sender, receiver) -> operation_state;

concept operation_state:
start(operation_state) -> void;

concept receiver:
set_value(receiver, Values...) -> void;
set_error(receiver, Error) -> void;
set_done(receiver) -> void;

9

4.2 Initiating function design

Table 4: NetTS - (N4771 is missing P1322, P0958, P1943, P2444)
13.2.7 Requirements on asynchronous operations

Any function that takes a completion_token, by convention, asthe last
argument, and returns:

(..., completion_token)
-> decltype(async_result<

completion_token,
signature>::result_type

// for clarity on compostion
// result_type(
// async_result<
// completion_token,
// signature>
// ::completion_handler_type(
// completion_token))

);

Since completion token placement is a convention, one could alsoput
the completion token in front of a variadic argument list.
The ramifications of this are addressed inconvention ramifications

Table 5: ASIO - (ASIO has P1322, P0958, P1943, P2444)

Any function that takes a completion_token, by convention, asthe last
argument, and returns the result of:

(..., completion_token)
-> decltype(async_result<

completion_token,
signature...>

::initiate(
initiation,
completion_token,
Args...));

Since completion token placement is a convention, one could alsoput
the completion token in front of a variadic argument list.
The ramifications of this are addressed inconvention ramifications

10

Table 6: Sender/Receiver - (P2300)

Any function returning a sender

(...) -> sender;

4.3 Algorithm design

Table 7: NetTS - (N4771 is missing P1322, P0958, P1943, P2444)

Unspecified, but without async_initiate the only option
I know of is eager composition of completion tokens before
calling the initiating function:

concept algorithm:
(completion_token) -> completion_token;

11

Table 8: ASIO - (ASIO has P1322, P0958, P1943, P2444)

Includes the above and:

Any specific completion_token can define a new
composable_type and return that.

The deferred completion token (July 2021) isan example of this.
Other examples include the use_awaitable anduse_sender completion tokens.

One of the infinite possible shapes for that new
composable_type could be:

concept algorithm
(composable_type) -> composable_type;

concept composable_type:
(completion_token) -> Result;

The shape defined in P2471R0response is another alternative

concept packaged_operation:
(completion_token) -> Result;

Algorithms over packaged asynchronous operations may look like:

concept algorithm_over_packaged_operations:
(packaged_operation..., completion_token) -> Result;

Table 9: Sender/Receiver - (P2300)

concept algorithm:
(sender) -> sender

4.4 Associated values design

12

Table 10: NetTS - (N4771 is missing P1322, P0958, P1943, P2444)
13.2.2 Executor requirements

concept associated_executor:
associated_executor<Source, Default>::type;
associated_executor<Source, Default>

::get(source, default) -> executor; // static

concept associated_allocator:
associated_allocator<Source, Default>::type;
associated_allocator<Source, Default>

::get(source, default) -> allocator; // static

Table 11: ASIO - (ASIO has P1322, P0958, P1943, P2444)

Includes the above and:

concept associated_cancellation_slot:
associated_cancellation_slot<Source, Default>::type;
associated_cancellation_slot<Source, Default>

::get(source, default) -> cancellation_slot; // static

Table 12: Sender/Receiver - (P2300)

concept scheduler_provider:
get_scheduler(scheduler_provider) -> scheduler;

concept allocator_provider:
get_allocator(allocator_provider) -> allocator;

concept stop_token_provider:
get_stop_token(stop_token_provider) -> stop_token;

4.5 Executor design

13

Table 13: NetTS - (N4771 is missing P1322, P0958, P1943, P2444)
13.2.2 Executor requirements

concept executor:
executor::context() -> execution_context;
executor::on_work_started() -> void;
executor::on_work_finished() -> void;
executor::dispatch(()->void, Allocator) -> void;
executor::post(()->void, Allocator) -> void;
executor::defer(()->void, Allocator) -> void;

Table 14: ASIO - (ASIO has P1322, P0958, P1943, P2444)

concept executor:
execute(executor, ()->void) -> void;

Uses properties to support the functionality from the tableabove

Table 15: Sender/Receiver - (P2300)

concept scheduler:
schedule(scheduler) -> sender;

4.6 Execution Context design

Table 16: NetTS - (N4771 is missing P1322, P0958, P1943, P2444)
13.2.3 Execution context requirements

concept execution_context:
is_base_of<net::execution_context, execution_context>;
execution_context::executor_type;
execution_context::get_executor()

-> execution_context::executor_type;

14

Table 17: ASIO - (ASIO has P1322, P0958, P1943, P2444)

concept execution_context:
is_base_of<net::execution_context, execution_context>;
execution_context::executor_type;
execution_context::get_executor()

-> execution_context::executor_type;

Table 18: Sender/Receiver - (P2300)

concept execution_context:
no-requirements

5 References
[ASIO] Christopher Kohlhoff. ASIO source (github).

https://github.com/chriskohlhoff/asio

[as_sender_1.cpp (gist)] Christopher Kohlhoff. as_sender_1.cpp.
https://gist.github.com/chriskohlhoff/cb8b4719890e7769cc759f73eacb3496

[as_sender_2.cpp (gist)] Christopher Kohlhoff. as_sender_2.cpp.
https://gist.github.com/chriskohlhoff/c1da9c5f9d2adcb2b94d27beb0880739

[benchmark for eager and lazy] Kirk Shoop. benchmark for eager and lazy.
https://quick-bench.com/q/NXMiRTZso1fPUiptmvRSPUutuPQ

[N4771] Jonathan Wakely. 2018-10-08. Working Draft, C++ Extensions for Networking.
https://wg21.link/n4771

[P0443R14] Jared Hoberock, Michael Garland, Chris Kohlhoff, Chris Mysen, H. Carter Edwards, Gordon Brown,
D. S. Hollman. 2020-09-15. A Unified Executors Proposal for C++.
https://wg21.link/p0443r14

[P0958R3] Christopher Kohlhoff. 2021-03-15. Networking TS changes to support proposed Executors TS.
https://wg21.link/p0958r3

[P1322R3] Christopher Kohlhoff. 2021-02-15. Networking TS enhancement to enable custom I/O executors.
https://wg21.link/p1322r3

[P1943R0] Christopher Kohlhoff. 2019-10-07. Networking TS changes to improve completion token flexibility
and performance.
https://wg21.link/p1943r0

[P2300R2] Michał Dominiak, Lewis Baker, Lee Howes, Kirk Shoop, Michael Garland, Eric Niebler, and Bryce
Adelstein Lelbach. std::execution.
https://isocpp.org/files/papers/P2300R2

[P2444R0] Christopher Kohlhoff. 2021-09-15. The Asio asynchronous model.
https://wg21.link/p2444r0

15

https://github.com/chriskohlhoff/asio
https://gist.github.com/chriskohlhoff/cb8b4719890e7769cc759f73eacb3496
https://gist.github.com/chriskohlhoff/c1da9c5f9d2adcb2b94d27beb0880739
https://quick-bench.com/q/NXMiRTZso1fPUiptmvRSPUutuPQ
https://wg21.link/n4771
https://wg21.link/p0443r14
https://wg21.link/p0958r3
https://wg21.link/p1322r3
https://wg21.link/p1943r0
https://isocpp.org/files/papers/P2300R2
https://wg21.link/p2444r0

[response to P2471R0] Jamie Allsop, Christopher Kohlhoff, and Klemens Morgenstern. Response to P2471:
Corrected NetTS, Asio, and Sender Library Design Comparison.
https://wiki.edg.com/pub/Wg21telecons2021/LibraryEvolutionWorkingGroup/Response_to_P2471.pdf

16

https://wiki.edg.com/pub/Wg21telecons2021/LibraryEvolutionWorkingGroup/Response_to_P2471.pdf

	Changes
	R1
	R0

	Introduction
	Notes
	response to P2471R0 (unnumbered paper)
	corrections
	conveying the whole design
	convention ramifications
	heuristics for extracting an error
	what are algorithms?
	different names are not a correction
	associated values
	Executor design

	Tables
	Asynchronous Operation design
	Initiating function design
	Algorithm design
	Associated values design
	Executor design
	Execution Context design

	References

