
NetTS, ASIO and Sender Library Design Comparison
Draft Proposal

Document #: P2471R0
Date: 2021-10-06
Project: Programming Language C++
Audience: LEWG Library Evolution

SG1 Concurrency and Parallelism
SG4 Networking

Reply-to: Kirk Shoop
<kirk.shoop@gmail.com>

Contents
1 Changes 1

2 Introduction 1

3 Notes 2

4 Tables 2
4.1 Asynchronous Operation design . 2
4.2 Initiating function design . 3
4.3 Algorithm design . 4
4.4 Associated values design . 5
4.5 Executor design . 6
4.6 Execution Context design . 7

5 References 8

1 Changes
— first revision

2 Introduction
I have never seen the library designs of these libraries compared. This paper started as an email to the LEWG
reflector. I was asked to make it a paper.

I used the following papers to fill in these tables:

— [N4771] “Working Draft, C++ Extensions for Networking”
— [P1322R3] “Networking TS enhancement to enable custom I/O executors”
— [P0958R3] “Networking TS changes to support proposed Executors TS”
— [P1943R0] “Networking TS changes to improve completion token flexibility and performance”
— [P2444R0] “The Asio asynchronous model”
— [P0443R14] “A Unified Executors Proposal for C++”
— [P2300R2] “std::execution”

I also searched in the ASIO repo

1

mailto:kirk.shoop@gmail.com

Corrections are welcome, especially for the ASIO and NetTS portions. I wish they had built something like this
already.

I split these out into vertical tables because horizontal scrolling sucks.

The library designs compared in tables below are:

— Asynchronous Operation design
— Initiating function design
— Algorithm design
— Associated Values design
— Executor design
— Execution context design

Within each section are three tables:

— [N4771] as it currently stands.
— [ASIO] as it currently stands.
— [P2300R2] as it currently stands

3 Notes
The theme that revealed itself to me while compiling these is that ASIO & NetTS use traits and partial-
specialization vs. Sender/Receiver use concepts and CPOs.

There are other disparities in specific places, but the approach to library design traits/concepts and specializa-
tion/CPOs are the repeated differentiators I saw.

Another thing that these tables revealed is all the changes in the ASIO design in the last 2-3 years (after
sender/receiver was proposed).

4 Tables
4.1 Asynchronous Operation design

Table 1: NetTS - (N4771 is missing P1322, P0958, P1943, P2444)
13.2.7 Requirements on asynchronous operations

concept completion_token:
async_result<

completion_token,
signature>

::completion_handler_type;

async_result<
completion_token,
signature>

::return_type;

concept signature:
(ErrorsAndValues...) -> void;

concept completion_handler_type:
constructible<

completion_handler_type,
completion_token>;

invocable<
completion_handler_type,
signature>;

concept result_type:
constructible<

result_type,
completion_handler_type>;

2

Table 2: ASIO - (ASIO has P1322, P0958, P1943, P2444)

concept completion_token:
async_result<

completion_token,
signature...>

::initiate(
initiation,
completion_token,
Args...) -> Result;

concept signature:
(ErrorsAndValues...) -> void;

concept initiation:
(completion_handler, Args...) -> Result;

concept completion_handler:
constructible<

completion_handler,
completion_token>;

invocable<
completion_handler,
signature>...;

Table 3: Sender/Receiver - (P2300)

concept sender:
connect(sender, receiver) -> operation_state;

concept operation_state:
start(operation_state) -> void;

concept receiver:
set_value(receiver, Values...) -> void;
set_error(receiver, Error) -> void;
set_done(receiver) -> void;

4.2 Initiating function design

3

Table 4: NetTS - (N4771 is missing P1322, P0958, P1943, P2444)
13.2.7 Requirements on asynchronous operations

Any function that takes a completion_token as the last
argument, and returns:

(..., completion_token)
-> decltype(async_result<

completion_token,
signature>::result_type(

async_result<
completion_token,
signature>

::completion_handler_type(
completion_token)));

Table 5: ASIO - (ASIO has P1322, P0958, P1943, P2444)

Any function that takes a completion_token as the last
argument, and returns the result of:

(..., completion_token)
-> decltype(async_result<

completion_token,
signature...>

::initiate(
initiation,
completion_token,
Args...));

Table 6: Sender/Receiver - (P2300)

Any function returning a sender

(...) -> sender;

4.3 Algorithm design

4

Table 7: NetTS - (N4771 is missing P1322, P0958, P1943, P2444)

Unspecified, but without async_initiate the only option
I know of is:

concept algorithm:
(completion_token) -> completion_token;

Happy to be corrected.

Table 8: ASIO - (ASIO has P1322, P0958, P1943, P2444)

Includes the above and:

Any specific completion_token can define a new
composable_type and return that.

The deferred completion_token is an example of this.

One of the infinite possible shapes for that new
composable_type could be:

concept algorithm
(composable_type) -> composable_type;

concept composable_type:
(completion_token) -> Result;

Table 9: Sender/Receiver - (P2300)

concept algorithm:
(sender) -> sender

4.4 Associated values design

5

Table 10: NetTS - (N4771 is missing P1322, P0958, P1943, P2444)
13.2.2 Executor requirements

concept associated_executor:
associated_executor<Source, Default>::type;
associated_executor<Source, Default>

::get(source, default) -> executor; // static

concept associated_allocator:
associated_allocator<Source, Default>::type;
associated_allocator<Source, Default>

::get(source, default) -> allocator; // static

Table 11: ASIO - (ASIO has P1322, P0958, P1943, P2444)

Includes the above and:

concept associated_cancellation_slot:
associated_cancellation_slot<Source, Default>::type;
associated_cancellation_slot<Source, Default>

::get(source, default) -> cancellation_slot; // static

Table 12: Sender/Receiver - (P2300)

concept scheduler_provider:
get_scheduler(scheduler_provider) -> scheduler;

concept allocator_provider:
get_allocator(allocator_provider) -> allocator;

concept stop_token_provider:
get_stop_token(stop_token_provider) -> stop_token;

4.5 Executor design

6

Table 13: NetTS - (N4771 is missing P1322, P0958, P1943, P2444)
13.2.2 Executor requirements

concept executor:
executor::context() -> execution_context;
executor::on_work_started() -> void;
executor::on_work_finished() -> void;
executor::dispatch(()->void, Allocator) -> void;
executor::post(()->void, Allocator) -> void;
executor::defer(()->void, Allocator) -> void;

Table 14: ASIO - (ASIO has P1322, P0958, P1943, P2444)

concept executor:
execute(executor, ()->void) -> void;

Table 15: Sender/Receiver - (P2300)

concept scheduler:
schedule(scheduler) -> sender;

4.6 Execution Context design

Table 16: NetTS - (N4771 is missing P1322, P0958, P1943, P2444)
13.2.3 Execution context requirements

concept execution_context:
execution_context::executor_type;
execution_context::get_executor()

-> execution_context::executor_type;

Table 17: ASIO - (ASIO has P1322, P0958, P1943, P2444)

concept execution_context:
no-requirements

7

Table 18: Sender/Receiver - (P2300)

concept execution_context:
no-requirements

5 References
[ASIO] Christopher Kohlhoff. ASIO github.

https://github.com/chriskohlhoff/asio

[N4771] Jonathan Wakely. 2018-10-08. Working Draft, C++ Extensions for Networking.
https://wg21.link/n4771

[P0443R14] Jared Hoberock, Michael Garland, Chris Kohlhoff, Chris Mysen, H. Carter Edwards, Gordon Brown,
D. S. Hollman. 2020-09-15. A Unified Executors Proposal for C++.
https://wg21.link/p0443r14

[P0958R3] Christopher Kohlhoff. 2021-03-15. Networking TS changes to support proposed Executors TS.
https://wg21.link/p0958r3

[P1322R3] Christopher Kohlhoff. 2021-02-15. Networking TS enhancement to enable custom I/O executors.
https://wg21.link/p1322r3

[P1943R0] Christopher Kohlhoff. 2019-10-07. Networking TS changes to improve completion token flexibility
and performance.
https://wg21.link/p1943r0

[P2300R2] Michał Dominiak, Lewis Baker, Lee Howes, Kirk Shoop, Michael Garland, Eric Niebler, and Bryce
Adelstein Lelbach. std::execution.
https://wiki.edg.com/pub/Wg21telecons2021/LibraryEvolutionWorkingGroup/P2300R2.html

[P2444R0] Christopher Kohlhoff. 2021-09-15. The Asio asynchronous model.
https://wg21.link/p2444r0

8

https://github.com/chriskohlhoff/asio
https://wg21.link/n4771
https://wg21.link/p0443r14
https://wg21.link/p0958r3
https://wg21.link/p1322r3
https://wg21.link/p1943r0
https://wiki.edg.com/pub/Wg21telecons2021/LibraryEvolutionWorkingGroup/P2300R2.html
https://wg21.link/p2444r0

	Changes
	Introduction
	Notes
	Tables
	Asynchronous Operation design
	Initiating function design
	Algorithm design
	Associated values design
	Executor design
	Execution Context design

	References

