
Number: P2327R0
Title: De-deprecating volatile compound operations
Project: ISO JTC1/SC22/WG21: Programming Language C++
Audience: SG14, SG1, SG22, EWG, WG21
Date: 2021-04-15
Authors: Paul M. Bendixen <paulbendixen@gmail.com>
Contributors: Jens Maurer

Arthur O’Dwyer
Ben Saks

Email: paulbendixen@gmail.com
Reply to: Paul M. Bendixen

Revision history

1 Introduction

The C++ 20 standard deprecated many functionalities of the volatile keyword. This was due to
P1152[Bastien, 2019]. The reasoning is given in the R0 version of the paper[Bastien, 2018].

The deprecation was not received too well in the embedded world as volatile is commonly used
for communicating with peripheral devices in microcontrollers[Ooijen, 2020].

The purpose of this paper is to show what parts of the deprecation that are critical to the
embedded domain, and hopefully find a solution that satisfies the embedded community without
sacrificing the work of P1152.

2 Problem statement

2.1 Background

One of the great advantages of C++ is its closeness to the machine on which it operates. This
enables C++ to be used in very constrained devices such as microcontrollers without any oper-
ating system. These systems often operate by manipulating memory mapped registers often only
touching a single bit.

While there are multiple ways to manipulate single bits in a memory location the most idiomatic
way is something along the lines of the following:

// In vendor s u p p l i e d hardware a b s t r a c t i o n l a y e r
struct ADC {

volat i le uint8_t CTRL;
volat i le uint8_t VALUE;
. . .

} ;
#define ADC_CTRL_ENABLE (1 << 3)

// in user code
ADC1−>CTRL |= ADC_CTRL_ENABLE; // S ta r t the ADC
. . .

1

mailto:paulbendixen@gmail.com

ADC1−>CTRL &= ~ADC_CTRL_ENABLE; // Stop the ADC

This is further amplified by the fact that vendors supply macros or inline functions for setting or
clearing bits utilizing this idiom, or may use it in provided code generators, as shown in the following
example from a library for the Energy Micro (now Silicon Labs) series of ARM microcontrollers:

// Copyright 2012 Energy Micro EMLib from em_i2c . h
__STATIC_INLINE void I2C_IntDisable (I2C_TypeDef ∗ i2c , uint32_t f l a g s)
{

i2c−>IEN &= ~(f l a g s) ;
}

It is clear from the previous example that this idiomatic usage of compound operations clashes
with the deprecation of compound operations on volatile. The vendors of these libraries are
almost always the chip vendors themselves and they will, based on experience from adapting C++
toolchains, not be likely to update their header files. The argument against compound operations
on volatile variables is that it leads the programmer to believe that the operation itself becomes
compounded and therefore atomic. While this is possible (https://godbolt.org/z/q5bn5K) it
depends on the platform and the compiler.

Now since there on some platforms can be a read, modify, write cycle it is possible that an
interrupt would happen in between the read and the write, however most embedded code that uses
this idiom needs to take care of this by being right by construction i.e. not bit-twiddeling variables
that are used in the interrupt service routines (ISRs). The problem being that there is currently
no way to do this in a guaranteed atomic manner (see also [Craig, 2020, section 3.4.1]).

2.2 Scope

So what is the impact of deprecating compound operations on volatile? A search of some of the
more widely used embedded libraries show that while its use is not massive, it is in some way in
almost all hardware libraries for embedded systems available today.

The numbers below are done by using UNIX grep1 to find usages of either |= or &= on
variables with a code style usually associated with volatile members in the code bases of the
respective libraries. While this method isn’t foolproof it does give an indicator of the problem.

Library compound operations
Silabs Gecko SDK 293
AVR libc 2.0 205
Raspberry pi Pico SDK 13

Table 1: Occurrences of compound operations on variables typically associated with volatile

This illustrates the major point, not only is there a lot of code already written out there
working as expected but the usage of this idiom also prevents adopters of C++ to use the C
libraries provided with their toolchains.

Furthermore, one of the most common ways to gradually change from C to C++ is by keeping
the same code and compile it with a C++ compiler. (See e.g. [von Tessin, 2019, from 27:46]). This
procedure involves modifying the code to be correct in C++ and would possibly involve moving
compound volatile statements to non-compound statements. However the prevalence of this idiom

1The search was done using the command
grep -re "[A-Z_0-9]\+\(\[.*\]\)*[]\+[&|]=" –include *.h .

2

https://godbolt.org/z/q5bn5K

in C headers would prevent this low cost approach and would require a larger up front investment
creating new headers to replace the vendor supplied ones.

The idea that businesses will be willing to spend the effort to update existing codebases that
become defunct because of this changes seems unlikely, rather it seems likely that they will mandate
using no newer versions.

2.3 Error potential

One of the arguments for deprecation in [Bastien, 2018] is the potential for error for programmers
unaccustomed to using volatile. However removal of the compound operators will also risk the
introduction of errors such as in the following.

UART1−>UCSR0B |= (1<<UCSZ01) ; // (1)
UART1−>UCSR0B = UART1−>UCSR0B | (1<<UCSZ01) ; // (2)
UART2−>UCSR0B = UART1−>UCSR0B | (1<<UCSZ01) ; // (3)

The code in (1) is the original code, setting a bit in a mapped register. In (2) the code is
transformed to the style that is suggested as a replacement. (3) describes a possible error scenario,
where the device is changed to another, but due to the code duplication of the updated style, an
error has slipped in and the value of the old device is read.

An error such as the above will not necessarily be caught in code review, and will possibly not
even be found in immediate testing if UART1 happens to have the correct setting during testing,
such code is also notoriously hard to unittest. As such the deprecation will trade errors where
volatile is erroneously used to express atomicity for hard to discover and hard to detect errors due
to duplication.

2.4 Didn’t we just go over this?

While the proposal to deprecate was heard in committee meetings, the main focus was on problems
arising with multi-threaded code (SG1) and with EWG, neither of these groups can be expected
to be familiar with the inner workings on microcontrollers.

3 Possible solutions

3.1 The simple

The simplest possible change that could possibly work would be to remove the text added to
paragraph [expr.ass] point 6 as this would allow compound statements on volatile variables.

The behavior of an expression of the form E1 op= E2 is equivalent to E1 = E1 op
E2 except that E1 is evaluated only once. Such expressions are deprecated if E1 has
volatile-qualified type; see [depr.volatile.type]. For += and -=, E1 shall either have
arithmetic type or be a pointer to a possibly cv-qualified completely-defined object
type. In all other cases, E1 shall have arithmetic type.

Since this brings in non-simple assignments to volatile-qualified operands, the previous para-
graph should be modified:

A simpleAn assignment whose left operand is of a volatile-qualified type is deprecated
([depr.volatile.type]) unless the (possibly parenthesized) assignment is a discarded-
value expression or an unevaluated operand.

3

The examples in [depr.volatile.type] should be updated

brach io saur += neck ; //− deprecated
brach io saur += neck ; //+ OK

3.2 The compromise

As the compound operations are mainly used to flip bits, a compromise could be to only
de-deprecate the use of binary compound operations (|= &= ˆ= and possibly »= «=) as these
are the ones that are useful for this purpose. In the examination of the libraries += and -= did not
occur, but they might in commercial / closed source libraries.

This would require new wording to be put in.
Built-in operators [over.built] point 25 would be affected in that only half the points would be

affected.

4 Impact

The changes proposed by this paper would affect the current proposal P2139[Meredith, 2020].

5 Thanks

Thanks to Jens Maurer for the suggestion on the compromise solution.
Thanks to Wouter Van Ooijen for starting this discussion.
Thanks to the entire SG14 group for feedback on initial drafts.

Bibliography

[Bastien, 2018] Bastien, J. (2018). P1152r0 deprecating volatile. Technical Report P1152R0, ISO.
Retrieved at wg21.link/P1152R0.

[Bastien, 2019] Bastien, J. (2019). P1152r0 deprecating volatile. Technical Report P1152R4, ISO.
Retrieved at wg21.link/P1152R4.

[Craig, 2020] Craig, B. (2020). P2268r0 freestanding roadmap. Retrieved at wg21.link/P2268R0.

[Meredith, 2020] Meredith, A. (2020). P2139 reviewing deprecated facilities of c++20 for c++23.
Technical Report P2139, ISO. Retrieved at wg21.link/P2139.

[Ooijen, 2020] Ooijen, W. V. (2020). Compound assignment to volatile must be un-
deprecated. https://www.reddit.com/r/cpp/comments/jswz3z/compound_assignment_to_

volatile_must_be/.

[von Tessin, 2019] von Tessin, M. (2019). C++ in deeply embedded systems. EmBo++ presenta-
tion https://youtu.be/nuwOJ-xUhFU.

4

wg21.link/P1152R0
wg21.link/P1152R4
wg21.link/P2268R0
wg21.link/P2139
https://www.reddit.com/r/cpp/comments/jswz3z/compound_assignment_to_volatile_must_be/
https://www.reddit.com/r/cpp/comments/jswz3z/compound_assignment_to_volatile_must_be/
https://youtu.be/nuwOJ-xUhFU

	Introduction
	Problem statement
	Background
	Scope
	Error potential
	Didn't we just go over this?

	Possible solutions
	The simple
	The compromise

	Impact
	Thanks
	Bibliography

