Page 1 of 38

Document Number: P1160R1

Date: 2019-10-07
Project: Programming Language C++, Library Evolution Working Group
Reply-to: Attila Fehér afeher@bloomberg.net

Alisdair Meredith ameredithl @bloomberg.net

ADD TEST POLYMORPHIC MEMORY
RESOURCE TO THE STANDARD LIBRARY

RV =T £ o I 1] Ko A PRSP 2
INEFOAUCTION .ottt b ettt s b e b e b e a b e saee s b e e s bt et e s ate e ebe e bt eabeeabesabesbeebeembesmeesaeenbeenseenes 2
LAY 117 11 o o PP 3
Why is this appropriate for LEWG @tteNtION?coiiiiiiiiiiieie ettt ettt s e sbe ettt esbeebe et 3
Testing Features Do Not Belong In The Standard..........cceeeeiiiieiiiiee ettt et e e et e s enae e e snaeeenas 3
This Problem Is Better Addressed With EXternal TOOISc..cocuiiiiiiiiiiiiiiiiece e 4
We Spend Too Much Time Talking ADOUt AlIOCATONScieiiiiiiieeiiie ettt e e e e e et e e s eaea e e e sasaaeeesnteeesennes 4
X I BNCE i 4
L= | U= PP 5
EX@MPIES OF USE... ittt ettt a e bttt et e e a b e s bt e bt et e ea e e sh e e ebe e bt eabesae e bt e beeabeeabesheenbe e bt eabesatenaeeteeaee 5
Memory Leak DEtECiON (STAZEL) ...vviicuieiieeeieeiieeete e ettt ettt et eete e st e e st e e bae e saeebee e saeenbeseeseesnsaeeseesnseeaseennns 6
Wrong Alignment and Buffer Overrun Detection (STAZE2)......ccvueecueeieeeieeiieeeiteesreeseeestreeseeeeteeesaeessseesnsessnseessseess 8
Wrong Number of Bytes in Deallocate (SLAZE 3) ..cvieiieiciieeeieeiieeeiee et e et e st e s reestre e steeeteeesteeeabeesaee s enbaesaseesnreesaneens 9
SUCCESS OF Create/DESTIOY (STAEEA) ..ccveecieieeiteeiteeete et et eete et e et eeteebeebeetaesbe e beebeeasesteesbeesseensesetseateebeenteensesanesteents 9
Deallocation of Already Deallocated Pointer (StAZE4A).......ccceciuiieiiiiieeeiiie e et et e e et e e tre e e etae e e e tre e e e eentaeeeeanaeas 10
Implemented @ CopY CONSTIUCLON (STAZES) ...eeiueerueereeriiritieiteette sttt ettt sbe et et st sheesbeebe st e saee s sbeebeebeeaeesaeesaes 11
Wrong AsSiZNMENT OPEIator (STAZE6)......cotereerieiieiertie ettt ettt ste et e st e st e sbe e bt et e sbeesbeebe e sabesatesaeesbeenbesaeeans 13

Implemented a Copy AssignMmeNnt OPErator (STAZET)uecueeiieeeieeiiieeeiteesteeeteesreesteeestaeesseesbaessseessteessnreesseesseenn 15

Page 2 of 38

Self-ASSIZNMENT TEST (SLAZET7) .ueeeeeiriieeiiieie et e e ettt e et e e erre e e e stteeeseteeeesabaeeeasbaeeaesseeeassaeean ssbesesasssesensseeeanssaeaans 16
Self-AsSIENMENT FIXEA (STAZESB) ...t eeuteruiiitieitteite ettt sttt et st s bt e bt et e saeesae e s s be e besaeesaeesaeenbeenbeeateens 17
Testing Robustness Against AlI0Cation FAIlUrecouoiiiiiiiiine ettt 18
The Proposed Entities in Alphabetical Order.... ..o i e e e e s e s aree e sssseeeesbaeeennnns 20
Default RESOUICE GUANcoviiiiiiiiiieieee ettt s s bt e a e s sane s ae e e b e nesnesanesaeesnee 20

N (el=] o] A o T T =T il o To T o J PPN 21
LTy ={ g oo Ta o [= =Y o o Ly USSR 22

QLIS A AT oL U o PPN 23
TeSt RESOUICE EXCOPTION ...iuiiiiiiiii ittt e st sa e e e e s bt e e s s b e e e s enae e s sraeeseas 25
TSt RESOUICE IMIONITON ..ttt bbb e e a e ba e s b e s be e s be s sae e et 26
Proposed WOIrdING CHANEESccccuiiiiiiieeecieeeeeee et e sttt e ettt e e st e e e st e e e s ateeesabaeeeassteeesssaeaeaessseeesnsseeesanseneesnsenesannns 27
Extend 19.12.1 Header <memory_resource> SyNnopPsiS [MEMLIES.SYN] c...ueiiecuiieiiiieeeiiereeseeeeesseeeesrreeessneeesnneans 27
Add 19.12.5 Default resource guard [mem.res.defguard]oociieiciie e e e 28
RENUMDBDEE 19.12.5, 10.12.6 .uuttiiiiiiiiiiiiiiiiie ettt e e e eeebate e e e e e se bbb r e e e e e e esabaareeeesesasbaaeseeeeass s esasbbasseesesessstranseessennns 28
Insert section 19.12.8 Testing SUPPOIt [MEM.IES.EESE] .ooueriiiiiriieiieie ettt s 29
ACKNOWILZEMENTS ...ttt ettt ea e bbbt ea b e s bt e bt e b e e a b e s aeesh e e sbeeabeeaee s ebe e beeabeeabesaeesaeesbeebeeneesaeanne 38
REFEIEINCES ...ttt e st st b e e et st e s ae e s bt e n e st st s ae e e e n e e r e et ereeane s 38

VERSION HISTORY

RO: Initial draft

R1: Added new sections addressing LEWGI feedback on relevance of the subject matter
Removed special handling of 0 sized allocations

INTRODUCTION

This document proposes adding to the C++ Standard Library an instrumented polymorphic memory resource (and
its accompanying types) and an algorithm to support testing exception safety. The proposed test_resource
implements the std: :pmr: :memory resource abstract interface and can be used to track various details of
memory allocated from it. Those available statistics include the number of outstanding allocated memory blocks
(and bytes) that are currently in use, the cumulative number of blocks (and bytes) that have been allocated, and
the maximum number of blocks (and bytes) that have been in use at any one time. The test_resource can
also be configured to throw an exception after the number of allocation requests exceeds some specified limit,

Page 3 of 38

thus enabling testing of exception safety in face of allocation failures using the exception test loop
algorithm.

MOTIVATION

Testing is hard. Testing code that manages memory is harder. The polymorphic memory resource (together with
the idea of the replaceable default resource) gives us the ability to replace (or extend) the memory resource with
capabilities that allow testing and monitoring of memory management as well as testing robustness in face of
memory allocation failure.

When testing a type (or template) that manages memory resources one would like to be assisted in finding hard
bugs, such as memory leaks, double releases, use of already released memory, and exception safety issues when
an allocation fails. It is also helpful to be able to monitor memory resource usage (or a change init), such as if a
type allocates memory using the default resources when it should not have.

Having a polymorphic memory resource that supports such testing needs allows the programmer to test
(polymorphic) allocator enabled code without requiring external tools, or analyzing log files. Testing proper
memory management (and robustness in face of memory allocation failure) can be made a normal part of test
code. That, in turn, enables targeted testing of individual objects that use polymorphic memory resources, such as
using separate test_resources for different objects. What we propose also allows precise testing of local
behavior in face of allocation failure. Such validation is hard (if not impossible) to achieve with external tools.

WHY IS THIS APPROPRIATE FOR LEWG ATTENTION?

This paper was presented to LEWGI at San Diego 2018, and given several important questions to answer before the
group would consider this proposal on-topic.

TESTING FEATURES DO NOT BELONG IN THE STANDARD

First, the topic material is to support testing. There is a concern that test frameworks have no place in the
standard, as there are a variety of successful frameworks already competing in the marketplace, and wg21 has no
business approving only one.

However, the proposal under discussion is not a test framework, but rather a tool to support testing that can be
applied within any testing framework. There is not even a prototype frame as part of the proposal. Wg21 has
already clearly signaled that it does intend to support facilities that help with the full software lifecycle, by
adopting source_location in C++20, approving a stack trace library for C++23 (once it passes LWG wording
review), and instituting SG21 to finalize the work on a contracts facility, also targeting C++23.

However, this proposal is deliberately targeting Library Fundamentals 3 as the variety of information the proposed
facility could choose to track is large, and finding the optimal feature set would require feedback from a wider user
base with competing demands. See the Experience section below if still concerned that the lower bar for
experience has not been achieved.

One additional concern raised was that if we have the facility already, why do we need to add it to the standard?
Strictly speaking, we do not. We can happily use our own implementation, and make an open source version
available. However, the ability to test correct usage of memory resources turns out to be a significant enough
concern that the ability to test such usage has always been considered an integral part of the design.
Standardizing some kind of testing resource facility would greatly help in the adoption of the existing memory

Page 4 of 38

resource library. Running that exercise through a Library TS seems the best way to get the necessary feedback on
whether full adoption by the standard itself is the right answer.

THIS PROBLEM IS BETTER ADDRESSED WITH EXTERNAL TOOLS

There was a suggestion that the market already demonstrated the benefit of external tools to instrument memory
allocation, and any work in this space would better belong in SG15. It is true that global memory allocators can be
well tracked by such external tooling. However, such tools do not address the needs of stateful allocators so
easily. The concerns go beyond the global head, and into whether each object is allocating memory from the
correct resource. Testing at this level is handled much more easily within a regular testing framework than with an
external tool. Also, the proposed facility goes beyond simple testing of memory allocation, and into telemetry and
a tool to test exception safety. While it may be possible to address these concerns with a high level of
customization on external tools, it is nowhere near as simple as just plugging in an adapted memory resource that
is fit for purpose

WE SPEND TOO MUCH TIME TALKING ABOUT ALLOCATORS

There is a concern that every time we talk about allocators, we are further complicating an already complex part of
the language, and we will lose too much time educating folks about the topic under discussion. This proposal is a
pure extension, using only the simplest of extension hooks already provided by the library — we implement a class
overriding the pure virtual functions in its base class. The intent when standardizing memory resources is that
further resources could be easily added in the future, as they demonstrated their benefit. This proposal plugs
directly into that features touching nothing else. Historically, it has also been the main application of the

default resource function that was adopted in C++17. This library was not proposed earlier as we provided the
strictly minimal useful set of resources to bootstrap the library for C++, but is possibly the most widely used
resource within our own code base.

EXPERIENCE

The proposed types are not experimental. Their roots can be traces back to the one originally conceived and
developed by John Lakos at Bear Sterns (c. 1997) as part of his polymorphic memory allocator model, which itself
evolved into the PRM facility now part of C++17. They have also been in use by Bloomberg LP for nearly two
decades in testing various software components, including (but not limited to) our own Standard Library
implementation. We propose adding those types into standard C++ with just changes in the naming convention as
well as removing the use of macros in the automated allocation-failure testing.

The notable differences between the proposed facilities and Bloomberg LP’s solution are:

e The Bloomberg implementation uses macros (and not algorithms) to implement the test loop.

e Bloomberg’s polymorphic memory resource implementation (the
BloombergLP: :bslma: :Allocator protocol), unlike the standard pmr, does not support
alignment, and does not support a size parameter for the deallocate method.

Also note that while Bloomberg LP has other allocators used in testing (such as an allocator that supports
functionality similar to Electric Fence https://en.wikipedia.org/wiki/Electric_Fence) that compose with the test
memory resource; we are not proposing them for standardization at this time.

Page 5 of 38

FEATURES

The proposed test_resource type (and its accompanying types and algorithm) provide the following features:

e athread-safe implementation of the polymorphic memory resource interface

e the detection of memory leaks

e the detection of double releasing of memory

e detection of writing before or beyond the allocated memory area (boundary violation)

e overwriting memory just before deallocating it to help detect use of deleted memory

e tracking of memory use statistics (number of outstanding blocks and bytes) that are currently in use, the
cumulative number of blocks (and bytes) that have been allocated, and the maximum number of blocks
(and bytes) that have been in use at any one time)

e monitoring of memory use changes (via the test_resource_monitor type)

e temporary replacement of the default memory resource using the default resource guard

e testing (exception safety) behavior in case of memory allocation failure (when the resource throws) using
the test_allocation_ failure algorithm

EXAMPLES OF USE

This section uses a primitive little string implementation as demonstration. The string is called pstring and is
provided only for demonstration purposes. The examples of the code go in stages. As the pstring class is being
built up, and its errors removed, we demonstrate different capabilities of the test_resource, starting with the
detection of memory leaks. The exception test example uses standard pmr types. Note that in the listings that
follow, the pstring class is being tested, implemented and enhanced in stages.

The complete source code of all the examples and a reference implementation of the proposed entities can be
found in Bloomberg’s GitHub pages at https://github.com/bloomberg/p1160.

MEMORY LEAK DETECTION (STAGE1)

Page 6 of 38

As you may see in Listing 1, the first “implementation” of pstring has several shortcomings. The most obvious is

that it has no destructor so it leaks memory.

Listing 1

class pstring {
// This class is for demonstration purposes *only*.

public:
using allocator_type = std::pmr::polymorphic_allocator<>;

pstring(const char *cstr, allocator_type allocator = {});

allocator_type get _allocator() const {
return m_allocator_;

}

std::string str() const { // For sanity checks only.
return { m_buffer_, m_Llength_ };

}

private:
allocator_type m_allocator_;
size_ t m_Llength_;
char *m_buffer_;

s

inline

pstring::pstring(const char *cstr, allocator_type allocator)
: m_allocator_(allocator)
, m_Length_(std::strlen(cstr))

, m_buffer_(static_cast<char *>(m_allocator_.allocate_bytes(m_Length_, 1)))

{
}

std::strcpy(m_buffer_, cstr);

Page 7 of 38

Listing 2 shows the test code. Listing 3 shows the output of the test_resource reporting the memory leak.
We identify the test_resource using the name stagel. While in this simple example the name does not
matter, we may use several test_resources, for example an additional one for the default resource (to detect
that it is not used). Listing 4 shows the test_resource output with the verbosity on. The verbose output may
be used to debug memory management issues; although in this simple case it is not really necessary.

Listing 2

std::pmr::test_resource tpmr{ "stagel", verbose };
tpmr.set_no_abort(true);

pstring astring{ "foobar", &tpmr };

ASSERT_EQ(astring.str(), "foobar");
Listing 3
MEMORY LEAK from stagel:

Number of blocks in use =1
Number of bytes in use

Il
o

Listing 4

test resource stagel [0]: Allocated 6 bytes (aligned 1) at 00543F48.

TEST RESOURCE stagel STATE

Category Blocks Bytes
IN USE 1 6
MAX 1 6
TOTAL 1 6
MISMATCHES 0
BOUNDS ERRORS 0
PARAM. ERRORS 0

Indices of Outstanding Memory Allocations:
0
MEMORY LEAK from stagel:

Number of blocks in use =1

Number of bytes in use

Il
()]

Note that the actual format of the output is not specified by this proposal. The example output is what happens to
be produced by the Bloomberg LP example implementation of the proposed features.

Page 8 of 38

WRONG ALIGNMENT AND BUFFER OVERRUN DETECTION (STAGE2)

In Listing 5 we are adding a destructor to get rid of the memory leak and trigger the checks that are done during
deallocation. As we are deallocating with the wrong alignment (alignment 2 instead of 1) we are getting an error
message (from the test_resource) telling so. We have also allocated one-too-few bytes for the string (no
space for the closing NUL character), so we are getting a buffer overrun error as well. See Listing 6. The memory
leak is still reported because due to the errors (mismatch in the alignment on deallocate and the buffer overrun)
the test_resource did not attempt to free the memory.

Listing 5

inline
pstring::~pstring()
{

}

Listing 6

m_allocator_.deallocate_bytes(m_buffer_, m_Length_, 2);

*** Freeing segment at 00332CC8 using wrong alignment (2 wvs. 1). ***
*** Memory corrupted at 1 bytes after 6 byte segment at 00332CC8. ***
Pad area after user segment:

00332CCE: 00 bl bl bl bl bl bl bl
Header:
00332CA0: ef be ad de 06 00 00 00 01 00 00 00 cd cd cd cd
00332CBO: 00 00 00 00 00 00 00 00 48 b6 32 00 d8 fc 23 00
00332CCO0: bl bl bl bl bl bl bl bl
User segment:
00332cCcC8: 66 6f 6f 62 61 72
MEMORY LEAK from stage2:
Number of blocks in use =1
Number of bytes in use =1

Page 9 of 38

WRONG NUMBER OF BYTES IN DEALLOCATE (STAGE 3)

We fix the allocation (to allocate enough space) and the alignment in the deallocation, but we “forget” to update
the size (number of bytes) in the deallocation to match the allocation. See the changes to the code in Listing 7 and
the resulting report from the test_resource in Listing 8.

Listing 7

inline pstring::pstring(const char *cstr, allocator_type allocator)

: m_allocator_(allocator)

, m_Length_(std::strlen(cstr))

, m_buffer_(m_allocator_.allocate_object<char>(m_Length_ + 1)) {
std::strcpy(m_buffer_, cstr);

}

inline
pstring: :~pstring()
{

}

Listing 8

m_allocator_.deallocate_object(m_buffer_, m_Length_);

*** Freeing segment at 003C2D48 using wrong size (6 vs. 7). **%
Header:

003C2D20: ef be ad de 07 00 00 0O 01 00 00 0O cd cd cd cd
003C2D30: 00 00 00 OO 00 00 00 OO £8 b5 3b 00 a8 fc 22 00
003C2D40: bl bl bl bl bl bl bl bl

User segment:

003C2D48: 66 6f 6f 62 61 72

MEMORY LEAK from stage3:
Number of blocks in use =
Number of bytes in use =1

|
[y

SUCCESS OF CREATE/DESTROY (STAGE4)

In Stage 4 we fix the deallocate call to use the proper byte size and the test code runs without any errors being
reported.

Listing 9

m_allocator_.deallocate_object(m_buffer_, m_Length_+ 1);

Listing 10

std::pmr::test_resource tpmr{ "staged4", verbose };
tpmr.set_no_abort(true);

pstring astring{ "foobar", &tpmr };

ASSERT_EQ(astring.str(), "foobar");

Page 10 of 38

DEALLOCATION OF ALREADY DEALLOCATED POINTER (STAGE4A)

In Stage 4a only the test code changes. We test the copy constructor of pstring. Since we have not declared a
copy constructor, we have an implicitly defined one that leads to undefined behavior in the destructor because it
does not deep copy the string. Listing 11 shows the new test code; Listing 12 shows the verbose output that
indicates the error.

Listing 11

std::pmr::test_resource tpmr{ "staged4a", verbose };
tpmr.set_no_abort(true);

pstring astring{ "foobar", &tpmr };
pstring string2{ astring };

ASSERT_EQ(astring.str(), "foobar");
ASSERT_EQ(string2.str(), "foobar");

Listing 12
test_resource staged4a [0]: Allocated 7 bytes (aligned 1) at 00815858.
test_resource staged4a [0]: Deallocated 7 bytes (aligned 1) at 00815858.

*** Tnvalid magic number Oxdead0022 at address 00815858. ***
Header:

00815830 22 00 ad de 07 00 00 00 01 00 00 0O 00 00 00 0O
00815840: 00 00 00 OO 00 00 00 OO b0 d8 80 00 £8 £8 3b 00
00815850: bl bl bl bl bl bl bl bl

User segment:

00815858: a5 a5 a5 a5 a5 a5 a5

TEST RESOURCE staged4a STATE

Category Blocks Bytes
IN USE 0
MAX 7
TOTAL 7

BOUNDS ERRORS
PARAM. ERRORS

0
1
1
MISMATCHES 1
0
0

Page 11 of 38

IMPLEMENTED A COPY CONSTRUCTOR (STAGES)

In the Stage 5 version of pstring we have implemented a copy constructor, as seen in Listing 13. The revised
test code is in Listing 14. The verbose output of running the test is in Listing 15.

Listing 13

pstring(const pstring& other, allocator_type allocator = {});

// Additional members omitted for brevity

inline

pstring: :pstring(const pstring& other, allocator_type allocator)
: m_allocator_(allocator)

, m_Length_(other.m_Length_)

, m_buffer_(m_allocator_.allocate_object<char>(m_Length_ + 1))

{

std::strcpy(m_buffer_, other.m_buffer);
}
Listing 14

std::pmr::test_resource dpmr{ "default", verbose };
std: :pmr: :default_resource_guard dg(&dpmr);

std::pmr::test_resource tpmr{ "stage5", verbose };
tpmr.set_no_abort(true);

pstring astring{ "foobar", &tpmr };
pstring string2{ astring };

ASSERT_EQ(astring.str(), "foobar");
ASSERT_EQ(string2.str(), "foobar");

As string?2 uses the default resource we use a default resource_ guard (also introduced in this proposal)
to test its memory management activities.

Page 12 of 38

Listing 15

test resource stage5 [0]: Allocated 7 bytes (aligned 1) at 00715858.
test_resource default [0]: Allocated 7 bytes (aligned 1) at 00715898.
test_resource default [0]: Deallocated 7 bytes (aligned 1) at 00715898.
test resource stage5 [0]: Deallocated 7 bytes (aligned 1) at 00715858.

TEST RESOURCE stage5 STATE

Category Blocks Bytes
IN USE 0 0
MAX 1 7
TOTAL 1 7
MISMATCHES 0
BOUNDS ERRORS 0
PARAM. ERRORS 0

Category Blocks Bytes
IN USE 0 0
MAX 1 7
TOTAL 1 7
MISMATCHES 0
BOUNDS ERRORS 0
PARAM. ERRORS 0

Page 13 of 38

WRONG ASSIGNMENT OPERATOR (STAGE®)

In this stage we are testing a wrong copy assignment operator. Note that due to the use of
polymorphic_allocator<> (as a member) the compiler does not generate a default copy assignment
operator, so we have to implement a wrong one by hand. See Listing 17. Listing 18 is the verbose output showing
double release of the memory that is a result of memberwise copy assignment.

Listing 16

std::pmr::test_resource tpmr{ "stage5a", verbose };
tpmr.set_no_abort(true);

pstring astring{ "foobar", &tpmr };
pstring string2{ "string", &tpmr };

string2 = astring;

ASSERT_EQ(astring.str(), "foobar");
ASSERT_EQ(string2.str(), "foobar");

Listing 17
inline
pstring& pstring::operator=(const pstring& rhs)

{
m_Length_ = rhs.m_Llength_;
m_buffer_ rhs.m_buffer_;

return *this;

Page 14 of 38

Listing 18

test resource stageb5a [0]: Allocated 7 bytes (aligned 1) at 00455858.
test_resource stage5a [1]: Allocated 7 bytes (aligned 1) at 004558DS8.
test_resource stage5a [0]: Deallocated 7 bytes (aligned 1) at 00455858.
*** Tnvalid magic number Oxdead0032 at address 00455858. ***

Header:

00455830: 32 00 ad de 07 00 00 00 01 00 00 00 00 00 00 00
00455840: 00 00 00 0O 00 00 00 0O c8 d8 44 00 58 £8 3c 00
00455850 bl bl bl bl bl bl bl bl

User segment:

00455858 a5 a5 a5 a5 a5 a5 a5

TEST RESOURCE stage5a STATE

Category Blocks Bytes
IN USE 1 7
MAX 2 14
TOTAL 2 14
MISMATCHES 1
BOUNDS ERRORS 0
PARAM. ERRORS 0

Indices of Outstanding Memory Allocations:
1
MEMORY LEAK from stageba:
Number of blocks in use =1
Number of bytes in use =

|
[y

Page 15 of 38

IMPLEMENTED A COPY ASSIGNMENT OPERATOR (STAGE7)

In this stage we implement a copy assignment operator as seen in Listing 19. The verbose test output is in Listing
20. The test code is the same as Stage 6. Note that this assignment operator will still fail in case of self-
assignment, as seen in the next stage.

Listing 19

inline

pstring& pstring::operator=(const pstring& rhs)

{
char *buff = m_allocator_.allocate_object<char>(rhs.m_Length_+ 1);
m_allocator_.deallocate_object(m_buffer_, m_Length_ + 1);
m_buffer_ = buff;
std::strcpy(m_buffer_, rhs.m_buffer_);
m_Length_ = rhs.m_Length_;

return *this;

}

Listing 20

test_resource stage7 [0]: Allocated 7 bytes (aligned 1) at 003A5858.
test resource stage7 [1]: Allocated 7 bytes (aligned 1) at 003A5958.
test_resource stage7 [2]: Allocated 7 bytes (aligned 1) at 003A5918.
test_resource stage7 [1l]: Deallocated 7 bytes (aligned 1) at 003A5958.
test_resource stage7 [2]: Deallocated 7 bytes (aligned 1) at 003A5918.
test_resource stage7 [0]: Deallocated 7 bytes (aligned 1) at 003A5858.

TEST RESOURCE stage7 STATE

Category Blocks Bytes
IN USE 0 0
MAX 3 21
TOTAL 3 21
MISMATCHES 0
BOUNDS ERRORS 0
PARAM. ERRORS 0

Page 16 of 38

SELF-ASSIGNMENT TEST (STAGE7A)

Self-assignment is not handled properly in the copy assighment operator code so this test will use deallocated
memory (overwritten by the test_resource before deallocation) and therefore fail.

Listing 21

std::pmr::test_resource tpmr{ "stage6a", verbose };
tpmr.set_no_abort(true);

pstring astring{ "foobar", &tpmr };
astring = astring;

ASSERT_EQ(astring.str(), "foobar");

Listing 22

test resource stage7a [0]: Allocated 7 bytes (aligned 1) at 00575918.
test_resource stage7a [1]: Allocated 7 bytes (aligned 1) at 00575858.
test resource stage7a [0]: Deallocated 7 bytes (aligned 1) at 00575918.
astring.str() '= "foobar"

NNNNNN != foobar
test resource stage7a [1l]: Deallocated 7 bytes (aligned 1) at 00575858.

TEST RESOURCE stage7a STATE

MISMATCHES
BOUNDS ERRORS
PARAM. ERRORS

0
2
TOTAL 2 14
0
0
0

Page 17 of 38

SELF-ASSIGNMENT FIXED (STAGES)

In this last stage of pstring development we avoid self-assighment with an early return. The test code is the
same as in Stage 7a. The copy-assignment operator code is changed as seen in Listing 23. The verbose output in
Listing 24 shows that the copying did not happen (there is only one allocation/deallocation pair).

Listing 23
inline
pstring& pstring::operator=(const pstring& rhs)
{
if (this == &rhs) {
return *this; // RETURN
}

char *buff = m_allocator_.allocate_object<char>(rhs.m_Length_ + 1);
m_allocator_.deallocate_object(m_buffer_, m_Length_+ 1);
m_buffer_ = buff;

std: :strcpy(m_buffer_, rhs.m_buffer);

m_Length_ = rhs.m_Llength_;

return *this;
}

Listing 24

test_resource stage8 [0]: Allocated 7 bytes (aligned 1) at 00425858.
test_resource stage8 [0]: Deallocated 7 bytes (aligned 1) at 00425858.

TEST RESOURCE stage8 STATE

Category Blocks Bytes
IN USE 0 0
MAX 1 7
TOTAL 1 7
MISMATCHES 0
BOUNDS ERRORS 0
PARAM. ERRORS 0

Page 18 of 38

TESTING ROBUSTNESS AGAINST ALLOCATION FAILURE

Testing classes that manage elements that allocate memory is difficult. We have to verify that if any of the
allocations fail, there are no memory leaks or other mismanagement of resources. Without stateful allocators that
task would be daunting, but with polymorphic memory resources and the test_resource itis quite easy.

The <test_resource> header provides the std: :pmr: :exception_test_ loop algorithm that usesa
std: :pmr::test_resource to make sure that every allocation done by the tested code fails with an
exception once. This is done by using the allocation limit of the test_resource in a loop. We start witha 0
allocation limit and we gradually increase it (in a loop) until we get no more test exceptions thrown by allocations.
At that time the test succeeded. See Listing 25 for the example code and Listing 26 for the verbose output.

Listing 25

std::pmr::test_resource tpmr{ "exception_tester", verbose };
const char *longstr = "A very very long string that allocates memory";

std::pmr::exception_test_loop(tpmr,

[longstr](std: :pmr::memory_resource *pmrp) {
std::pmr::deque<std: :pmr::string> deq{ pmrp };
deq.emplace_back(longstr);
deq.emplace_back(longstr);

ASSERT_EQ(deq.size(), 2);
1)

Page 19 of 38

In the verbose output (Listing 26) one can observe the operation of the test loop. First, an immediate allocation
failure. Then one allocation succeeds, and because an exception is thrown it is also deallocated. Then we see the
exception_ test loop catching the exception. The process continues until all 4 allocations succeed.

Listing 26

*** exception: alloc limit = 0, last alloc size = 28, align = 4 ***
test _resource tester [1]: Allocated 28 bytes (aligned 4) at 00641018.
test resource tester [1]: Deallocated 28 bytes (aligned 4) at 00641018.

*** exception: alloc limit = 1, last alloc size = 48, align = 1 ***
test_resource tester [3]: Allocated 28 bytes (aligned 4) at 00641018.
test_resource tester [4]: Allocated 48 bytes (aligned 1) at 00641090.
test_resource tester [4]: Deallocated 48 bytes (aligned 1) at 00641090.
test resource tester [3]: Deallocated 28 bytes (aligned 4) at 00641018.

*** exception: alloc limit = 2, last alloc size = 56, align = 4 ***
test resource tester [6]: Allocated 28 bytes (aligned 4) at 00641018.
test resource tester [7]: Allocated 48 bytes (aligned 1) at 00641090.
test _resource tester [8]: Allocated 56 bytes (aligned 4) at 00641120.
test resource tester [8]: Deallocated 56 bytes (aligned 4) at 00641120.
test resource tester [7]: Deallocated 48 bytes (aligned 1) at 00641090.
test resource tester [6]: Deallocated 28 bytes (aligned 4) at 00641018.

*** exception: alloc limit = 3, last alloc size = 48, align = 1 ***
test_resource tester [10]: Allocated 28 bytes (aligned 4) at 00641018.
test resource tester [11]: Allocated 48 bytes (aligned 1) at 00641090.
test_resource tester [12]: Allocated 56 bytes (aligned 4) at 00641120.
test_resource tester [13]: Allocated 48 bytes (aligned 1) at 00644030.
test_resource tester [10]: Deallocated 28 bytes (aligned 4) at 00641018.
test_resource tester [11]: Deallocated 48 bytes (aligned 1) at 00641090.
test resource tester [13]: Deallocated 48 bytes (aligned 1) at 00644030.
test_resource tester [12]: Deallocated 56 bytes (aligned 4) at 00641120.

TEST RESOURCE tester STATE

Category Blocks Bytes
IN USE 0 0
MAX 4 180
TOTAL 10 416
MISMATCHES 0
BOUNDS ERRORS 0
PARAM. ERRORS 0

Page 20 of 38

THE PROPOSED ENTITIES IN ALPHABETICAL ORDER

In this section we are introducing the proposed elements in detail.

DEFAULT RESOURCE GUARD

The default resource guard is a simple RAIl class that supports installing a new default polymorphic memory
resource and then restoring of the original default polymorphic memory resource in its destructor. A possible
implementation is in Listing 27. Its typical use is very simple, and in the context of this proposal it usually involves
testing the use of the default allocator, like ensuring that an action that should not use the default allocator really
does not use it. See

Listing 27

namespace std::pmr {

class [[maybe_unused]] default_resource_guard {
memory_resource * _0OldResource;
public:
explicit default_resource_guard(::std::pmr::memory_resource * NewDefault) {
assert(_NewDefault != nullptr);
_0OldResource = ::std::pmr::set_default_resource(_NewDefault);

}

default_resource_guard(const default_resource_guard&) = delete;
default_resource_guard& operator=(const default_resource_guard&) = delete;

~default_resource_guard() {
::std::pmr:: set_default_resource(_OldResource);

}
s
}
Listing 28

void default_resource_use_testing()

{

std: :pmr::test_resource tr{ "object" };

std::pmr::string astring{
"A very very long string that will hopefully allocate memory",
&tr };

std::pmr::test_resource dr{ "default" };
std: :pmr::test_resource_monitor drm{ &dr };

{

std: :pmr::default_resource_guard drg{ &dr };

std::pmr::string string2{ astring, &tr };
}

ASSERT(drm.1is_total_same());

Page 21 of 38

EXCEPTION TEST LOOP

Validating the exception safety guarantees of an operation can be tedious without an automated method.
Common vocabulary for exception safety guarantees is described by David Abrahams in [Abrahams, D. (2000).
Exception-safety in Generic Components], where he also describes an automatic testing method to validate
behavior in face of exceptions in section 7 (Automated testing for exception-safety). The exception-testing
algorithm used in this proposal was developed independently by John Lakos at Bloomberg LP (c. 2002).

We propose exception_ test loop as a similar algorithm that takes advantage of the test_resource
having a configurable limit to the number of allocations before it fails by throwing an exception. This algorithm
runs a code block (e.g., a lambda, a functor, or a function pointer) in a loop, assuming memory is allocated by a
supplied test_resource. In the first iteration we set the allocation limit of the test_resource to zero (0),
which will cause the very first allocation to immediately fail (by throwing a Test Resource Exception, see Listing 32).
Ifa test_resource_exception is thrown from the code block, the algorithm increases the allocation limit of
the test_resource by one (1) and then repeats the loop. The loop ends when no
test_resource_exception is thrown.

As long as all relevant allocations inside the code block use the provided test_resource this simple algorithm
ensures that all relevant allocations in that code block will fail at least once (with an exception that inherits from
std: :bad_alloc) therefore ensuring that all failure code-paths are tested for leaks and other anomalies.

Listing 29 shows a possible implementation of this algorithm, while Listing 30 shows possible use to test deque.

Listing 29

template <class CODE_BLOCK>
void exception_test Loop(test_resource& pmrp, CODE_BLOCK codeBlock) {
for (long long exceptionCounter = 0; true; ++exceptionCounter) {
try {
pmrp.set_allocation_Limit(exceptionCounter);
codeBlock(pmrp);
pmrp.set_allocation_Limit(-1);
return;
} catch (const test_resource_exception& e) {
if (e.originating_resource() != & pmrp) {
printf("\t*** test_resource_exception”
" from unexpected test_resource %p %.*s ***\n",
e.originating_resource(),
e.originating_resource()->name().length()
e.originating_resource()->name().data());
throw;
}
else if (pmrp.is_verbose()) {
printf("\t*** test_resource_exception: limit = %11d,
"last size = %zu, align = %zu ***\n",
exceptionCounter,
e.bytes(),
e.alignment());

Page 22 of 38

Concerns to be aware of include:

o If codeBlock throws the expected test_resource_exception directly then the loop may repeat
infinitely.

o If codeBlock handles bad_alloc exceptions and does not rethrow then subsequent failure paths will
not be tested.

o The codeBlock should not manipulate external state that would affect subsequent iterations of the
loop.

Listing 30

std: :pmr::test_resource tpmr{ "tester" };
const char *longstr = "A very very long string that hopefully allocates memory";

std: :pmr::exception_test_Loop(&tpmr, [longstr](std::pmr::memory_resource& pmrp) {
std: :pmr::deque<std: :pmr::string> deq{ &pmrp };
deq.push_back(longstr);
deq.push_back(longstr);

ASSERT _EQ(deq.size(), 2);
1)

DESIGN CONSIDERATIONS

The algorithm unconditionally changes the allocation limit of the supplied test_resource. This directly follows
Bloomberg’s current experience with our macro based implementation. It is consistent with how allocators are
used in our test drivers. We have considered restoring the specific allocation limit on successful completion of the
loop, but that raises the question of what to do if exiting the loop successfully requires a higher allocation limit
than the one set on the supplied test_resource.

The algorithm loses information about the number of allocations necessary to successfully complete operation of
the code block. We have considered returning that number (exceptionCounter) but we are concerned that
such a return value might be interpreted as an error code while both zero and non-zero values are potentially
correct.

Another concern is that there is no validation of basic or strong exception safety guarantees after a test exception
is caught. We have considered supplying an additional validation block (that could contain the relevant assertions)
but have no clear experience with such an APl and in particular how to communicate information between the
tested code block and the validator. We are looking into this as a future extension with additional overloads.

Page 23 of 38

TEST RESOURCE

The test_resource is a thread-safe, instrumented memory resource that implements the standard

std: :pmr: :memory_ resource abstract interface and can be used to track various aspects of memory
allocated from it, in addition to automatically detecting a number of memory management violations that might
otherwise go unnoticed.

The available features are:

e optionally specify a name for the test_resource that will be printed in reports
e optionally specify a backing memory resource
e detection (or assisting in detection) of memory management violations
o memory leaks
o deallocating already deallocated memory
o buffer underruns
o buffer overruns
e conditionally aborting on detected memory management violations
e conditionally printing about detected memory management violations
e conditionally printing about allocations/deallocations
e failing allocation after a set allocation limit is reached (if set)
e provide statistics
o total number of allocations
total number of deallocations
total number of mismatched allocations (memory is not from this resource)
total number of bounds errors (underrun plus overrun)
total number of bad deallocate parameters (mismatch on size in bytes or alignment number)
current number of memory blocks in use
current number of bytes in use
maximum allocated number of memory blocks any given time
maximum allocated number of bytes any given time
total number of blocks allocated
total number of bytes allocated
last allocated number of bytes
last deallocated number of bytes
last allocated address

O O 0 O 0O 0O o oo O o0 o o o

last deallocated address
The interface of the test_resource can be divided into the following sections:

e constructors/destructors

e theimplementation of the std: :pmr: :memory resource interface
e the control and access interface for the settings

e access to the instrumentation values

e the status and the print function

Page 24 of 38

Listing 31

namespace std::pmr {

class test_resource : public memory_resource {
public:

1

test_resource(const test_resource&) = delete;
test_resource& operator=(const test_resource&) = delete;
test _resource();

explicit test_resource(memory_resource *pmrp);

explicit test_resource(const char *name);
test_resource(const char *name, memory_resource *pmrp);
explicit test_resource(bool verbose);

test_resource(bool verbose, memory_resource *pmrp);

test _resource(const char *name, bool verbose);
test_resource(const char *name, bool verbose, memory_resource *pmrp);
~test_resource();

[[nodiscard]] void *do_allocate(size_t bytes, size_t alignment) override;
void do_deallocate(void *p, size_t bytes, size t alignment) override;
bool do_1is _equal(const memory_resource& that) const noexcept override;

void set_allocation_Limit(long long limit) noexcept;
void set_no_abort(bool is_no_abort) noexcept;

void set_quiet(bool is_quiet) noexcept;

void set_verbose(bool is_verbose) noexcept;

long long allocation_Limit() const noexcept;

bool is_no_abort() const noexcept;

bool is_quiet() const noexcept;

bool is_verbose() const noexcept;

const char *name() const noexcept;

void *last_allocated address() const noexcept;
size_t last_allocated bytes() const noexcept;
void *last _deallocated address() const noexcept;
size_t last_deallocated bytes() const noexcept;

long long allocations() const noexcept;
long long blocks_in_use() const noexcept;
long long max_blocks() const noexcept;
long long total blocks() const noexcept;
long long bounds_errors() const noexcept;
long long bad_deallocate_params() const noexcept;
long long bytes 1in_use() const noexcept;
long long max_bytes() const noexcept;
long long total bytes() const noexcept;
long long deallocations() const noexcept;
long long mismatches() const noexcept;

void print() const noexcept;
long long status() const noexcept;

} // close namespace

Page 25 of 38

TEST RESOURCE EXCEPTION

The test_resource_exception is thrown by the test_resouce when its allocation limit is reached and
there is an attempt to allocate further memory. It is basically a special form of std: :bad_alloc that allows the
exception tester algorithm to differentiate between real out-of-memory situations from the test-induced limits.

The exception inherits from std: :bad_alloc so that when it is thrown, the same code path will be traveled
like in case of a real allocation failure. In other words: to ensure that we test the code that would run in
production, in case std: :bad_alloc is thrown by a memory resource.

Listing 32

class test_resource_exception : public ::std::bad _alloc {
test_resource *m_originating_;

size t m_size_;
size_ t m_alignment_;
public:
explicit test_resource_exception(test_resource *originating,
size t size,
size t alignment)

: m_originating_(originating)
, m_size (size)

, m_alignment_(alignment)

{

}

const char *what() const noexcept override {
return "std::pmr::test_resource_exception”;

}

test_resource *originating resource() const noexcept {
return m_originating_;

}

size_t size() const noexcept {
return m_size_;
}

size_t alignment() const noexcept {
return m_alignment_;
}
s

Page 26 of 38

TEST RESOURCE MONITOR

The test_resource_monitor works in tandem with test_resource to observe changes (or lack of
changes) in the statistics collected by a test_resource. Note that the monitored statistics are based on
number of memory blocks and do not depend on the number of bytes in those allocated blocks.

Statistic Same up down
blocks in use is in use same is in use up is in use down
max blocks is max same is max up none
total blocks is total same is_total up none
Listing 33

class test_resource_monitor {
public:
explicit test_resource_monitor(const test_resource *monitored) noexcept;
test_resource_monitor(const test resource monitor&) = delete;
test_resource_monitor& operator=(const test resource monitor&) = delete;

void reset() noexcept;

bool is_in_use_down() const noexcept;
bool is_in_use same() const noexcept;
bool is_in_use_up() const noexcept;
bool is_max_same() const noexcept;
bool is_max_up() const noexcept;

bool is_total_same() const noexcept;
bool is_total_up() const noexcept;

long long delta_blocks_in_use () const noexcept;

long long delta_max_blocks() const noexcept;

long long delta_total_blocks () const noexcept;
}s5

PROPOSED WORDING CHANGES

Page 27 of 38

The proposed wording changes are all additions, except for section renumbering, relative to N4762.
EXTEND 19.12.1 HEADER <MEMORY_RESOURCE> SYNOPSIS [MEM.RES.SYN]

Additions are marked with brown background. Changes are underlined (just section renumbering).

namespace std::pmr {
// 19.12.2, class memory resource
class memory resource;

bool operator==(const memory resource& a, const memory resource& b) noexcept;
bool operator!=(const memory resource& a, const memory resource& b) noexcept;

// 19.12.3, class template polymorphic_allocator
template<class Tp> class polymorphic_allocator;

template<class T1l, class T2>

bool operator==(const polymorphic_allocatoré& a, const polymorphic_allocator& b) noexcept;

template<class T1l, class T2>

bool operator!=(const polymorphic_allocatoré& a, const polymorphic_allocator& b) noexcept;

// 19.12.4, global memory resources

memory resource* new_delete_ resource() noexcept;

memory_ resource* null memory resource () noexcept;

memory resource* set default resource (memory resource* r) noexcept;
memory resource* get default resource() noexcept;

// 19.12.5, class default resource guard
class default_ resource guard;

// 19.12.6, pool resource classes

struct pool_options;

class synchronized pool_ resource;
class unsynchronized_pool_resource;

// 19.12.7 class monotonic_buffer resource
class monotonic_buffer resource;

// 19.12.8 testing support

class test_resource;

class test_resource exception;
class test_resource monitor;

template <class Tp>

void exception_test loop (test_resource& tr, Tp code);

Page 28 of 38

ADD 19.12.5 DEFAULT RESOURCE GUARD [MEM.RES.DEFGUARD]

19.12.5 Class default_resource_guard [mem.res.defguard]

namespace std::pmr {
class default_resource_guard {
public:
explicit default resource_guard(memory resource* r);
~default resource_guard();

default resource_guard(const default resource guardé&) = delete;

default resource_guardé& operator=(const default resource_guard&) = delete;
private:

memory resource *old default; // exposition only

};
}

1 Anobject of type default resource_guard controls the setting of the default memory resource within a block
([stmt.block]). Amemory resource is given to the guard at construction, which the guard sets as the default resource
(asif by calling set_default resource)and saves the previously set default resource. The guard object restores
the previous default resource (using set_default resource) when destroyed. The behavior of the program is
undefined if the supplied memory_ resource is destroyed before the default_resource_guard object.

explicit default_resource_ guard (memory resource* r);

2 Requires: ris notnullptr.

3 Effects: Asif by old _default = set_default resource(r);
4 Postconditions: get_default resource() == r

5 Throws: Nothing.
~default resource_guard();

6 Effects: Asifby set_default resource(old default);

7 Postconditions: get_default resource() == old default
RENUMBER 19.12.5, 19.12.6

Renumber 19.12.5 and 19.12.6 and their subsections to 19.12.6 and 19.12.7 respectively ([mem.res.pool] and subsections,
[mem.res.monotonic.buffer] and subsections).

Page 29 of 38

INSERT SECTION 19.12.8 TESTING SUPPORT [MEM.RES.TEST]

19.12.8 Testing support [mem.res.test]

1 Testing support provides several types and an algorithm to aid in testing memory handling of types using polymorphic
memory resources.

2 All attempts to catch allocator misuse are necessarily imprecise as any such issue is undefined behavior or an out-of-
contract call. [Note: The program may abort or fail catastrophically in other ways, too. — End Note] False negatives
(missed detections) are permitted for any specification below that mandates detecting an error. False positives are never
allowed.

19.12.8.1 Class test_resource [mem.res.test.res]

namespace std::pmr {
class test _resource : public memory resource {
[[nodiscard]] void* do_allocate(size_t bytes, size_t alignment) override;
void do_deallocate (void* ptr, size t bytes, size_t alignment) override;
bool do_is_equal (const memory resourceé& that) const noexcept override;

public:
test_resource() : test_resource(false, "", new_delete resource()) {}
explicit test_resource (memory resource* upstream) : test_resource(false, "", upstream) {}

explicit test_resource(string view name)
test_resource(false, name, new_delete_resource()) {}
explicit test_resource(bool verbose)
test_resource(verbose, "", new_delete_resource()) {}
test_resource(string_view name, memory resource* upstream)
test_resource(false, name, upstream) {}
test_resource (bool verbose, memory resource* upstream)
test_resource(verbose, "", upstream) {}
test_resource (bool verbose, string view name)
test_resource (verbose, name, new_delete_resource()) {}
test_resource(bool verbose, string view name, memory resource* upstream);
~test_resource() ;
test_resource(const test resource&) = delete;
test_resource& operator=(const test resource&) = delete;

void set_allocation_limit(long long limit) noexcept;
void set_no_abort(bool flag) noexcept;

void set_quiet(bool flag) noexcept;

void set_verbose (bool flag) noexcept;

long long allocation_limit() const noexcept;

bool is no_abort() const noexcept;

bool is_quiet() const noexcept;

bool is_verbose() const noexcept;

string view name () const noexcept;

memory_resource* upstream resource() const noexcept;

void *last_allocated address() const noexcept;
size_t last_allocated bytes() const noexcept;
size_t last _allocated_alignment() const noexcept;
void *last deallocated_address() const noexcept;
size_t last deallocated bytes() const noexcept;
size_t last_deallocated alignment() const noexcept;

long long allocations () const noexcept;
long long deallocations() const noexcept;

long long blocks_in use() const noexcept;
long long max_blocks() const noexcept;
long long total blocks() const noexcept;

long
long
long

long
long
long

void
bool
bool
long

long bounds_errors() const noexcept;
long bad deallocate_params() const noexcept;
long mismatches () const noexcept;

long bytes_in use() const noexcept;
long bytes max() const noexcept;
long bytes_total() const noexcept;

print () const noexcept;
has_errors() const noexcept;
has_allocations() const noexcept;
long status() const noexcept;

private:

}

};

unspecified-integer

unspecified-integer
unspecified-integer

unspecified-integer
unspecified-integer
unspecified-integer

unspecified-integer
unspecified-integer
unspecified-integer

unspecified-integer
unspecified-integer

allocations_;

allocation_limit_;
deallocations_;

blocks_in use_;
total_blocks_;

max_blocks_;

bytes_in use_;
total bytes_;

max_bytes_;

last _deallocated bytes_;
last_deallocated alignment_;
void *last_allocated address_;

1 Requires: upstream != nullptr

// exposition only

// exposition only
// exposition only

// exposition only
// exposition only
// exposition only

// exposition only
// exposition only
// exposition only

// exposition only
// exposition only
// exposition only

test_resource (bool verbose, string_view name, memory resource* upstream);

Page 30 of 38

2 Effects: Create a test_resource object that uses the specified upstream memory resource. Optionally specify

verbosity setting and a name. Initialize the remaining settings and instrumentation (as described in Postconditions).
[Note: To avoid memory allocation the name is stored as a string_wview, not deep copied. — End note] The behavior of

the program is undefined if the supplied upstream objects is destroyed before the test_resource object.

Page 31 of 38

3 Postconditions:
allocation limit() == -1
is no_abort() == false
is quiet() == false
is_verbose() == verbose
name () == name
upstream resource() == upstream
last_allocated address() == nullptr
last_allocated bytes() ==
last_allocated alignment() == 0
last deallocated address() == nullptr
last_deallocated bytes() ==
last deallocated alignment() ==

allocations () ==
deallocations() == 0
blocks_in use() == 0

blocks max() ==
blocks_total() ==
bounds_errors() ==

bad deallocate_params() ==
bytes in use() ==

bytes max() ==
bytes_total() ==

status () ==

4 Throws: Nothing
~test_resource() ;

5 Effects:If is_verbose() == true, call print. If is _quiet() == false check for and report allocations
through this test memory resource that have not been deallocated by printing to the standard output. If such leaks are
foundandif is_no_abort() == true call abort().

void* do_allocate(size_t bytes, size t alignment) override;
6 Requires: alignment !'= 0

7 Effects:Incrementallocations_. Ifallocation_limit _ is non-negative, decrement allocation_limit
and if the limit becomes negative, throw a test_resource_exception with the supplied bytes and alignment.
Otherwise allocate at least by tes using the upstream memory resource. [Note: Additional memory (larger than bytes)
may be allocated to accommodate for buffer overrun/underrun verification and a memory-block descriptor that aids in
identifying blocks allocated by a test_resource. —End note] Increment blocks_in use_ and
total blocks_. max blocks_ = max(max_blocks , blocks_in use). Increase bytes_in_use_
and total bytes_ by bytes. max bytes = max(max _bytes , bytes in use). Storethe returned
addressinto last_allocated address_.Ifis_verbose() == true print out, to the standard output,
information about the allocation.

8 Postconditions:

e last_allocated bytes() == bytes

e last allocated alignment() == alignment

Page 32 of 38

9 Returns: a pointer well-aligned for alignment and pointing to at least bytes bytes of memory provided by the
upstream memory resource

10 Throws: test resource_exception or any exception thrown by the upstream memory resource

void do_deallocate (void* ptr, size_t bytes, size_t alignment) override;

11 Effects: Increment deallocations_. A parameter erroris detected if ptr !'= nullptr and the parameters do not
match the bytes and alignment parameters provided to do_allocate (). A mismatched deallocation is detected if
ptr '= nullptr and this memory resource did not allocate that pointer. Underrun and overrun errors may be
detected if guard bytes in either side of the allocated block do not have their expected values.

12 If any error is detected, increment its corresponding counter; if is_quiet() == true immediately return to the
caller, otherwise report the errors found and is_no_abort () == false returnimmediately to the caller,
otherwise call abort.

13 If no errors were detected update last_deallocated bytes_to bytes, last deallocated alignment_
toalignment, last_deallocated address_ to ptr, decrement blocks_in_use_, and decrease
bytes_in use_by bytes. Finally deallocate the memory block using the upstream memory resource. [Note:
Implementations may overwrite the memory block before deallocation with a pattern that indicates deleted memory or
use other tactics to detect use of deleted memory. — End note] If is_verbose () == true print out the details of the
deallocation to the standard output.

bool do_is_equal (const memory resourceé& that) const noexcept override;
14 Returns: this == &that;
void set_allocation_limit(long long limit) noexcept;

15 Effects: Sets the allocation limit to the supplied 1imit. [Note: Any negative value for 1imit means there is no allocation
limit imposed by this test memory resource. — End Note]

16 Postconditions: allocation limit() == limit
void set_no_abort(bool flag) noexcept;

17 Effects: Set the no-abort behavior. [Note: If £lag is true, do not abort the program upon detecting errors. The default
value of the setting is false. — End Note]

18 Postconditions: is_no_abort () == flag
void set_quiet(bool flag) noexcept;

19 Effects: Set the quiet behavior. [Note: If £lag is true, do not report detected errors and imply is_no_abort () ==
true. The default value of the setting is false. — End Note]

20 Postconditions: is_quiet () == flag

Page 33 of 38

void set_verbose (bool flag) noexcept;

21 Effects: Set the verbose behavior. [Note: If £1lag is true, report all allocations and deallocations to the standard output.
The default value of the setting is £alse or what is specified in the constructor. — End Note]

22 Postconditions: is_verbose () == flag

long long allocation_limit() const noexcept;

23 Returns: the number of allocation requests permitted before throwing test_resource_exception or a negative value
if this test memory resource does not impose a limit on the number of allocations [Note: This value will decrement with
every calltodo_allocate. - End Note]

bool is no_abort() const noexcept;

24 Returns: the current no-abort flag

bool is_quiet() const noexcept;

25 Returns: the current quiet flag

bool is_verbose() const noexcept;

26 Returns: the current verbosity flag

string_view name () const noexcept;

27 Returns: the name supplied to this test_resource at construction

memory_ resource* upstream resource() const noexcept;

28 Returns: the pointer to the upstream memory_ resource supplied to this test_resource at construction
void *last allocated address() const noexcept;

29 Returns: the pointer to the last memory block successfully allocated by this test_resource

size_t last_allocated bytes() const noexcept;

30 Returns: the requested number of bytes of the last memory block successfully allocated by this test_resource
size_t last_allocated_alignment() const noexcept;

31 Returns: the requested alignment of the last memory block successfully allocated by this test_resource
void *last deallocated_address() const noexcept;

32 Returns: the pointer to the last memory block successfully deallocated by this test_resource

size_t last_deallocated bytes() const noexcept;

33 Returns: the requested number of bytes of the last memory block successfully deallocated by this test_resource
size t last deallocated alignment() const noexcept;

34 Returns: the requested alignment of the last memory block successfully deallocated by this test_resource

Page 34 of 38

long long allocations () const noexcept;

35 Returns: the total number of allocations requested from this test_resource [Note: This number includes failed
allocations. — End note]

long long deallocations () const noexcept;

36 Returns: the number of total deallocations requested from this test_resource [Note: This number includes failed
deallocations. — End Note]

long long blocks_in_use() const noexcept;

37 Returns: the number of memory blocks still allocated by this test_resource

long long max _blocks() const noexcept;

38 Returns: the largest number of memory blocks allocated at any given time by this test_resource
long long total_blocks() const noexcept;

39 Returns: the total number of memory blocks ever successfully allocated by this test_resource
long long bounds_errors() const noexcept;

40 Returns: the number of buffer overruns and underruns detected by this test_resource.

long long bad_deallocate_params () const noexcept;

41 Returns: the number of mismatched deallocation size and alignment parameters detected by this test_resource
long long mismatches () const noexcept;

42 Returns: the number of mismatched deallocations detected by this test _resource [Note: Mismatched deallocations
are deallocation attempts of memory blocks not obtained from this test_resource. - End Note]

long long bytes_in use() const noexcept;

43 Returns: the number of bytes currently allocated by this test_resource

long long max_bytes() const noexcept;

44 Returns: the largest number of bytes allocated at any given time by this test_resource
long long total_bytes() const noexcept;

45 Returns: the total number of bytes ever successfully allocated by this test_resource
void print() const noexcept;

46 Effects: Print a report to the standard output that contains the name of this test allocator (if not empty) and describes
the current state of this test_resource. [Note: The printout is intended for human consumption by someone
debugging a program. — End Note]

bool has_errors() const noexcept;

47 Returns: false ifmismatches () and bounds_errors()and bad deallocate_params () all return zero

and true otherwise

Page 35 of 38

bool has_allocations() const noexcept;

48 Returns: trueif blocks_in use () or bytes_in use() are non-zero and false otherwise [Note: if either is
non-zero both are non-zero. — End Note]

long long status() const noexcept;

49 Returns: 0 if this test_resource has detected no errors and it does not currently have any active allocations (no
memory leaks). The number of detected errors if there are any. -1 if there are active allocations (but no errors).

19.12.8.2 Class test_resource_exception [mem.res.test.exc]

namespace std::pmr {
class test_resource_exception : public bad_alloc {
public:
test_resource_exception(test_resource *originating, size_ t bytes, size_t align) noexcept;

const char *what() const noexcept override;

test_resource *originating_resource () const noexcept;
size_t bytes() const noexcept;
size_t alignment() const noexcept;
}i
}

test_resource_exception(size_t bytes, size_t align) noexcept;
1 Postconditions: bytes () == bytes && alignment() == align
const char *what() const noexcept override;

2 Returns: an implementation-defined NTBS.

test_resource *originating_resource () const noexcept;

3 Returns: the originating resource pointer supplied at construction
size t bytes() const noexcept;

4 Returns: the bytes supplied at construction

size t alignment() const noexcept;

5 Returns: the alignment supplied at construction

Page 36 of 38

19.12.8.3 Class test_resource_monitor [mem.res.test.mon]

namespace std::pmr {
class test_resource monitor {

public:
explicit test_resource monitor(const test_resource& monitored) noexcept;
explicit test_resource monitor (test_resource&s&) = delete;
test_resource _monitor (const test_resource monitor&) = delete;
test_resource monitor& operator=(const test_resource_ monitor&) = delete;

void reset() noexcept;

bool is_in_use_down() const noexcept;
bool is_in use_same() const noexcept;
bool is_in_use_up() const noexcept;

bool is_ max_same () const noexcept;
bool is max up() const noexcept;

bool is_total_same() const noexcept;
bool is_total_up() const noexcept;

long long in_use_change() const noexcept;
long long max_change () const noexcept;
long long total_change() const noexcept;

private:
long long initial in_use; // exposition only
long long initial max; // exposition only
long long initial_ total; // exposition only
const test resource& monitored resource; // exposition only

};
}

explicit test_resource monitor (const test_resource& monitored) noexcept;

1 Postconditions:

® s&monitored resource == &monitored

® initial_in_use == monitored.blocks_in_use()
® initial max == monitored.max blocks ()

e initial_ total == monitored.total blocks()

void reset() noexcept;

2 Postconditions:

e initial in_use == monitored resource.blocks_in_use()
e initial max == monitored_resource.max blocks()
e initial total == monitored resource.total_blocks ()

bool is_in_use_down() const noexcept;

3 Returns: monitored resource->blocks_in use() < initial_in_use
bool is_in_use same() const noexcept;

4 Returns: monitored resource->blocks_in use() == initial_in use
bool is_in use_up() const noexcept;

5 Returns: monitored resource->blocks_in use() > initial_in use

Page 37 of 38

bool is_ max same() const noexcept;

6 Returns: monitored resource->blocks max() < initial max
bool is max up() const noexcept;

7 Returns: monitored resource->blocks max() > initial max
bool is_total_same() const noexcept;

8 Returns: monitored resource->blocks total() < initial_ total
bool is_total up() const noexcept;

9 Returns: monitored resource->blocks_total() > initial total
long long in_use_change() const noexcept;

10 Returns: monitored resource->blocks_in use() - initial_in use
long long max_change() const noexcept;

11 Returns: monitored_resource->blocks max() - initial max
long long total_ change() const noexcept;

12 Returns: monitored resource->blocks total() - initial total

19.12.8.4 Function template test_resource_loop [mem.res.test.loop]

namespace std::pmr {
template <class Block >
void exception_test loop(test_resource& tr, Block code);

}

1 Requires: The code argument must be a function object callable with a single test_resource& parameter.

2 Effects: As if by
for (long long counter = 0; true; ++counter) {
try {
tr.set_allocation_limit (counter);
code (tr) ;
tr.set_allocation_limit(-1);
return;
} catch (const test_ resource_exception& e) {
if (e.originating resource() != &tr) {
reportUnexpectedException (e) ;
throw;
}
else if (tr.is_verbose()) {
reportProgress (counter, tr, e);

3 [Note: The function might never return if code throws a test_resource_exception with the originating resource
set to tr other than by calling tr.allocate . — End Note]

Page 38 of 38

ACKNOWLDGEMENTS

Thanks to John Lakos who has provided the original inspiration, implementation, and much encouragement for this proposal.

Thanks to the colleagues at Bloomberg LP who reviewed the many drafts of this proposal!

REFERENCES

Abrahams, D. (2000). Exception-safety in generic components. International Seminar on Generic Programming, Selected
Papers, Colume 1766 of Lecture Notes in Computer Science, 69-79.

Note that the exception-testing algorithm used in this proposal was developed independently by John Lakos at
Bloomberg LP (c. 2002).

Abrahams, D. (2001). Exception Safety in Generic Components
https://www.boost.org/community/exception_safety.html

Pablo Halpern, Dietmar Kiihl (2018). P0339R4 polymorphic_allocator<> as a vocabulary type
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2018/p0339r4.pdf

