Text Formatting
Revision History
Changes since R2
- Add section Argument visitation with an example of how to use the visitation API to implement dynamic format specifiers.
- Rename
visit
tovisit_format_arg
to distinguish fromvariant
'svisit
. - Merge [format.syntax] into [format.functions].
- Remove the restriction that
'\0'
cannot be used as a fill character. - Replace Postconditions with Ensures.
Changes since R1
- Add the
format_to_n
function taking an output iterator and a size. - Add a note that compile-time processing of format strings applies to user-defined types with custom parsers to section Compile-time processing of format strings.
- Rename
count
toformatted_size
. - Drop nested namespace
fmt
. - Add
format
prefix or infix to class and function names to avoid potential name collision after removing the nested namespace. - Improve wording.
- Replace the requirement of implementing a formatter via ostream insertion operator if the latter is provided with a note that it can be implemented in such way.
- Expand the Acknowledgements section and remove "Reply to".
Changes since R0
- Add section Compile-time processing of format strings.
- Separate parsing and formatting in the extension API replacing
format_value
function template with class templateformatter
to allow compile-time processing of format strings. - Change return type of
format_to
andvformat_to
toOutputIterator
in synopsis. - Remove sections Null-terminated string view and Format string, and
replace
basic_cstring_view
withbasic_string_view
. - Add a link to the implementation in Introduction.
- Add a note regarding time formatting and compatibility with D0355 "Extending <chrono> to Calendars and Time Zones" [16] to section Extensibility.
- Rename
basic_args
tobasic_format_args
. - Rename
is_numeric
tois_arithmetic
. - Add the
count
function that counts the number of characters and use it to define output ranges. - Remove
basic_buffer
and section Formatting buffer and replace buffers with output iterators. - Add Appendix A: Benchmarks.
- Explain the purpose of the type-erased API in more details in the Binary footprint section.
- Add Appendix B: Binary code comparison.
- Add formatting function overloads for
wchar_t
strings.
Introduction
Even with proliferation of graphical and voice user interfaces, text remains one of the main ways for humans to interact with computer programs and programming languages provide a variety of methods to perform text formatting. The first thing we do when learning a new programming language is often write a "Hello, World!" program that performs simple formatted output.
C++ has not one but two standard APIs for producing formatted output, the
printf
family of functions inherited from C and the I/O streams
library (iostreams).
While iostreams are usually the recommended way of producing formatted
output in C++ for safety and extensibility reasons, printf
offers
some advantages, such as an arguably more natural function call API, the
separation of formatted message and arguments, possibly with argument reordering
as a POSIX extension, and often more compact source and binary code.
This paper proposes a new text formatting library that can be used as a
safe and extensible alternative to the printf
family of functions.
It is intended to complement the existing C++ I/O streams library and reuse
some of its infrastructure such as overloaded insertion operators for
user-defined types.
Example:
string message = format("The answer is {}.", 42);
A full implementation of this proposal is available at
https://github.com/fmtlib/fmt/tree/std.
Design
Format string syntax
Variations of the printf
format string syntax are arguably the most
popular among the programming languages and C++ itself inherits printf
from C [1]. The advantage of the printf
syntax is
that many programmers are familiar with it. However, in its current form it has
a number of issues:
- Many format specifiers like
hh
,h
,l
,j
, etc. are used only to convey type information. They are redundant in type-safe formatting and would unnecessarily complicate specification and parsing. - There is no standard way to extend the syntax for user-defined types.
- There are subtle differences between different implementations. For example, POSIX positional arguments [2] are not supported on some systems [6].
- Using
'%'
in a custom format specifier poses difficulties, e.g. forput_time
-like time formatting.
Although it is possible to address these issues while maintaining resemblance
to the original printf
format, this will still break compatibility
and can potentially be more confusing to users than introducing a different
syntax.
Therefore we propose a new syntax based on the ones used in Python
[3], the .NET family of languages [4],
and Rust [5]. This syntax employs '{'
and
'}'
as replacement field delimiters instead of '%'
and it is described in detail in
[format.functions]. Some advantages of the
proposal are:
- A consistent and easy to parse mini-language focused on formatting rather than conveying type information
- Extensibility and support for custom format strings for user-defined types
- Positional arguments
- Support for both locale-specific and locale-independent formatting (see Locale support)
- Formatting improvements such as better alignment control, fill character, and binary representation
The syntax is expressive enough to enable translation, possibly automated,
of most printf
format strings. The correspondence between
printf
and the new syntax is given in the following table:
printf | new |
---|---|
- | < |
+ | + |
space | space |
# | # |
0 | 0 |
hh | unused |
h | unused |
l | unused |
ll | unused |
j | unused |
z | unused |
t | unused |
L | unused |
c | c (optional) |
s | s (optional) |
d | d (optional) |
i | d (optional) |
o | o |
x | x |
X | X |
u | d (optional) |
f | f |
F | F |
e | e |
E | E |
a | a |
A | A |
g | g (optional) |
G | G |
n | unused |
p | p (optional) |
Width and precision are represented similarly in printf
and the
proposed syntax with the only difference that runtime value is specified by
'*'
in the former and '{}'
in the latter, possibly
with the index of the argument inside the braces:
printf("%*s", 10, "foo");
format("{:{}}", "foo", 10);
As can be seen from the table above, most of the specifiers remain the same
which simplifies migration from printf
. A notable difference is
in the alignment specification. The proposed syntax allows left, center,
and right alignment represented by '<'
, '^'
,
and '>'
respectively which is more expressive than the
corresponding printf
syntax. The latter only supports left and
right alignment.
The following example uses center alignment and '*'
as a fill
character:
format("{:*^30}", "centered");
resulting in "***********centered***********"
.
The same formatting cannot be easily achieved with printf
.
In addition to positional arguments, the grammar can be easily extended to support named arguments.
Extensibility
Both the format string syntax and the API are designed with extensibility in mind. The mini-language can be extended for user-defined types and users can provide functions that implement parsing, possibly at compile time, and formatting for such types.
The general syntax of a replacement field in a format string is
replacement-field ::= '{' [arg-id] [':' format-spec] '}'
where format-spec
is predefined for built-in types, but can be
customized for user-defined types. For example, the syntax can be extended
for put_time
-like date and time formatting
time_t t = time(nullptr);
string date = format("The date is {0:%Y-%m-%d}.", *localtime(&t));
by providing a specialization of formatter
for tm
:
template<>
struct formatter<tm> {
constexpr parse_context::iterator parse(parse_context& ctx);
template<class FormatContext>
typename FormatContext::iterator format(const tm& tm, FormatContext& ctx);
};
The formatter<tm>::parse
function parses the
format-spec
portion of the format string corresponding to the
current argument and formatter<tm>::format
formats the value
and writes the output via the iterator ctx.begin()
.
Note that date and time formatting is not covered by this proposal but formatting facilities provided by D0355 "Extending <chrono> to Calendars and Time Zones" [16] can be easily implemented using this extension API.
An implementation of formatter<T>::format
can use ostream
insertion operator<<
for user-defined type T
if
available.
The extension API is based on specialization instead of the argument-dependent
lookup, because the parse
function doesn't take the object to be
formatted as an argument and therefore some other way of parameterizing it on
the argument type T
such as introducing a dummy argument has to be
used, e.g.
constexpr auto parse(type<T>, parse_context& ctx);
Safety
Formatting functions rely on variadic templates instead of the mechanism
provided by <cstdarg>
. The type information is captured
automatically and passed to formatters guaranteeing type safety and making
many of the printf
specifiers redundant (see
Format String Syntax). Memory management is automatic to prevent
buffer overflow errors common to printf
.
Locale support
As pointed out in P0067 "Elementary string conversions"[17] there is a number of use cases that do not require internationalization support, but do require high throughput when produced by a server. These include various text-based interchange formats such as JSON or XML. The need for locale-independent functions for conversions between integers and strings and between floating-point numbers and strings has also been highlighted in N4412: Shortcomings of iostreams. Therefore a user should be able to easily control whether to use locales or not during formatting.
We follow Python's approach [3] and designate a separate format
specifier 'n'
for locale-aware numeric formatting. It applies to
all integral and floating-point types. All other specifiers produce output
unaffected by locale settings. This can also have positive effect on performance
because locale-independent formatting can be implemented more efficiently.
Positional arguments
An important feature for localization is the ability to rearrange formatting arguments as the word order may vary in different languages [7]. For example:
printf("String `%s' has %d characters\n", string, length(string)));
A possible German translation of the format string might be:
"%2$d Zeichen lang ist die Zeichenkette `%1$s'\n"
using POSIX positional arguments [2]. Unfortunately these positional specifiers are not portable [6]. The C++ I/O streams don't support such rearranging of arguments by design because they are interleaved with the portions of the literal string:
cout << "String `" << string << "' has " << length(string) << " characters\n";
The current proposal allows both positional and automatically numbered arguments, for example:
format("String `{}' has {} characters\n", string, length(string)));
with the German translation of the format string being:
"{1} Zeichen lang ist die Zeichenkette `{0}'\n"
Performance
The formatting library has been designed with performance in mind. It tries to minimize the number of virtual function calls and dynamic memory allocations done per formatting operation. In particular, if formatting output can fit into a fixed-size array allocated on stack, it should be possible to avoid both of them altogether by using a suitable API.
The format_to
function takes an arbitrary output iterator and, for
performance reasons, can be specialized for random-access and contiguous
iterators as shown in the reference implementation [14].
The locale-independent formatting can also be implemented more efficiently than the locale-aware one. However, the main goal for the former is to support specific use cases (see Locale support) rather than to improve performance.
See Appendix A: Benchmarks for a small performance comparison of the reference implementation of this proposal versus the standard formatting facilities.
Binary footprint
In order to minimize binary code size each formatting function that uses
variadic templates can be implemented as a small inline wrapper around its
non-variadic counterpart. This wrapper creates a basic_format_args
object, representing an array of type-erased argument references, with
make_format_args
and calls the non-variadic function to do the actual
work. For example, the format
variadic function calls
vformat
:
string vformat(string_view fmt, format_args args);
template<class... Args>
inline string format(string_view fmt, const Args&... args) {
return vformat(fmt, make_format_args(args...));
}
basic_format_args
can be implemented as an array of tagged unions.
If the number of arguments is small then the tags that indicate the arguments
types can be combined and passed into a formatting function as a single integer.
This single integer representing all argument types is computed at compile time
and only needs to be stored, resulting in smaller binary code.
Given a reasonable optimizing compiler, this will result in a compact per-call binary code, effectively consisting of placing argument pointers (or, possibly, copies for primitive types) and packed tags on the stack and calling a formatting function. See Appendix B: Binary code comparison for a specific example.
Exposing the type-erased API rather than making it an implementation detail and
only providing variadic functions allows applying the same technique to the
user code. For example, consider a simple logging function that writes a
formatted error message to clog
:
template<class... Args>
void log_error(int code, string_view fmt, const Args&... args) {
clog << "Error " << code << ": " << format(fmt, args...);
}
The code for this function will be generated for every combination of argument types which can be undesirable. However, if we use the type-erased API, there will be only one instance of the logging function while the wrapper function can be trivially inlined:
void vlog_error(int code, string_view fmt, format_args args) {
clog << "Error " << code << ": " << vformat(fmt, args);
}
template<class... Args>
inline void log_error(int code, string_view fmt, const Args&... args) {
vlog_error(code, fmt, make_format_args(args...));
}
The current design allows users to easily switch between the two approaches.
Compile-time processing of format strings
It is possible to parse format strings at compile time with
constexpr
functions which has been demonstrated in the reference
implementation [14] and in [18].
Unfortunately a satisfactory API cannot be provided using existing C++17
features. Ideally we would like to use a function call API similar to the one
proposed in this paper:
template<class String, class... Args>
string format(String fmt, const Args&... args);
where String
is some type representing a compile-time format
string, for example
struct MyString {
static constexpr string_view value() { return string_view("{}", 2); }
};
However, requiring a user to create a new type either manually or via a macro for every format string is not acceptable. P0424R1 "Reconsidering literal operator templates for strings" [15] provides a solution to this problem based on user-defined literal operators. If this or other similar proposal for compile-time strings is accepted into the standard, it should be easy to provide additional formatting APIs that make use of this feature. Obviously runtime checks will still be needed in cases where the format string is not known at compile time, but as shown in Appendix A: Benchmarks even with runtime parsing performance can be on par with or better than that of existing methods.
Compile-time processing of format strings can work with a user-defined type
T
if the formatter<T>::parse
function is
constexpr
.
Argument visitation
The argument visitation API can be used to implement dynamic format specifiers, for example, width and precision passed as additional formatting arguments as opposed to being encoded in the format string itself:
int width = 10;
int precision = 3;
auto s = format("{0:{1}.{2}f}", 12.345678, width, precision);
// s == " 12.346"
An example of a user-defined formatter with dynamic width:
struct Answer {};
template<>
struct formatter<Answer> {
int width_arg_index = 0;
// Parses dynamic width in the format "{<digit>}".
auto parse(parse_context& parse_ctx) {
auto iter = parse_ctx.begin();
auto get_char = [&]() { return iter != parse_ctx.end() ? *iter : 0; };
if (get_char() != '{')
return iter;
++iter;
char c = get_char();
if (!std::isdigit(c) || (++iter, get_char()) != '}')
throw format_error("invalid format");
width_arg_index = c - '0';
return ++iter;
}
auto format(Answer, format_context& format_ctx) {
auto arg = format_ctx.args().get(width_arg_index);
int width = visit_format_arg([](auto value) -> int {
if constexpr (!std::is_integral_v<decltype(value)>)
throw format_error("width is not integral");
else if (value < 0 || value > std::numeric_limits<int>::max())
throw format_error("invalid width");
else
return value;
}, arg);
return format_to(format_ctx.out(), "{:{}}", 42, width);
}
};
std::string s = format("{0:{1}}", Answer(), 10);
// s == " 42"
In many cases formatting can be delegated to standard formatters which makes manual handling of dynamic specifiers unneccessary, but the latter is still important for more complex cases.
This API can also be used to implement a custom formatting engine, such as
the one compatible with the printf
syntax, to provide some of the
benefits of the current proposal to the legacy code.
Impact on existing code
The proposed formatting API is defined in the new header
<format>
and should have no impact on existing code.
Proposed wording
Add a new section in 19 [utilities].Formatting utilities [format]
Header <format>
synopsis [format.syn]
namespace std {
// [format.error], class format_error
class format_error;
// [format.formatter], formatter
template<class charT> class basic_parse_context;
using parse_context = basic_parse_context<char>;
using wparse_context = basic_parse_context<wchar_t>;
template<class OutputIterator, class charT> class basic_format_context;
using format_context = basic_format_context<unspecified, char>;
using wformat_context = basic_format_context<unspecified, wchar_t>;
template<class T, class charT = char> struct formatter;
// [format.arguments], arguments
template<class Context> class basic_format_arg;
template<class Visitor, class Context>
see below visit_format_arg(Visitor&& vis, basic_format_arg<Context> arg);
template<class Context, class... Args> using format_arg_store = unspecified;
template<class Context> class basic_format_args;
using format_args = basic_format_args<format_context>;
using wformat_args = basic_format_args<wformat_context>;
template<class OutputIterator, class charT>
using format_args_t = basic_format_args<basic_format_context<OutputIterator, charT>>;
template<class Context, class... Args>
format_arg_store<Context, Args...> make_format_args(const Args&... args);
template<class... Args>
format_arg_store<format_context, Args...> make_format_args(const Args&... args);
template<class... Args>
format_arg_store<wformat_context, Args...> make_wformat_args(const Args&... args);
// [format.functions], formatting functions
template<class... Args>
string format(string_view fmt, const Args&... args);
template<class... Args>
wstring format(wstring_view fmt, const Args&... args);
string vformat(string_view fmt, format_args args);
wstring vformat(wstring_view fmt, wformat_args args);
template<class OutputIterator, class... Args>
OutputIterator format_to(OutputIterator out, string_view fmt,
const Args&... args);
template<class OutputIterator, class... Args>
OutputIterator format_to(OutputIterator out, wstring_view fmt,
const Args&... args);
template<class OutputIterator>
OutputIterator vformat_to(OutputIterator out, string_view fmt,
format_args_t<OutputIterator, char> args);
template<class OutputIterator>
OutputIterator vformat_to(OutputIterator out, wstring_view fmt,
format_args_t<OutputIterator, wchar_t> args);
template<class OutputIterator, class Size>
struct format_to_n_result {
OutputIterator out;
Size size;
};
template<class OutputIterator, class Size, class... Args>
format_to_n_result<OutputIterator, Size>
format_to_n(OutputIterator out, Size n, string_view fmt,
const Args&... args);
template<class OutputIterator, class Size, class... Args>
format_to_n_result<OutputIterator, Size>
format_to_n(OutputIterator out, Size n, wstring_view fmt,
const Args&... args);
template<class... Args>
size_t formatted_size(string_view fmt, const Args&... args);
template<class... Args>
size_t formatted_size(wstring_view fmt, const Args&... args);
}
Class format_error
[format.error]
namespace std {
class format_error : public runtime_error {
public:
explicit format_error(const string& what_arg);
explicit format_error(const char* what_arg);
};
}
The class format_error
defines the type of objects thrown as
exceptions to report errors from the formatting library.
format_error(const string& what_arg);
-
Effects: Constructs an object of class
format_error
.Ensures:
strcmp(what(), what_arg.c_str()) == 0
. format_error(const char* what_arg);
-
Effects: Constructs an object of class
format_error
.Ensures:
strcmp(what(), what_arg) == 0
.
Arguments [format.arguments]
Class template basic_format_arg
namespace std {
template<class Context>
class basic_format_arg {
public:
class handle;
basic_format_arg();
explicit operator bool() const noexcept;
bool is_arithmetic() const;
bool is_integral() const;
};
}
The class template basic_format_arg
describes an object that can
refer to a formatting function argument. It is parameterized on a formatting
context type (see [format.formatter]) and
can hold a value of one of the following types:
bool
charT
- any integral type other than
bool
andcharT
- any floating-point type
const charT*
basic_string_view<charT>
const void*
basic_format_arg::handle
referring to an argument of a user-defined typeT
with an enabled specialization offormatter<T>
monostate
representing an empty state, i.e. when the object does not refer to an argument
charT
is typename Context::char_type
.
The value can be accessed via the visitation interface defined in the next
section. basic_format_arg
must preserve argument values, but
does not have to distinguish between integral types other than charT
and bool
, e.g. an argument of type short
can be stored
as int
and observed as int
via the visitation
interface. Similarly, basic_format_arg
does not have to distinguish
between floating-point types.
basic_format_arg();
-
Effects: Constructs a
basic_format_arg
object that doesn't refer to an argument.Ensures:
!(*this)
. explicit operator bool() const noexcept;
-
Returns:
true
if and only if*this
refers to an argument. bool is_arithmetic() const;
-
Returns:
true
if and only if*this
refers to an argument of an arithmetic type. bool is_integral() const;
-
Returns:
true
if and only if*this
refers to an argument of an integral type.
namespace std {
template<class Context>
class basic_format_arg<Context>::handle {
public:
void format(Context& ctx) const;
};
}
The class handle
describes an object that can refer to a formatting
function argument of a user-defined type.
void format(Context& ctx) const;
-
Effects: Constructs a local variable of type
typename Context::template formatter_type<T>
(namedf
for exposition purposes), whereT
is the type of the objectobj
referred to by this handle. Executesctx.parse_context().advance_to(f.parse(ctx.parse_context()))
. Then callsctx.advance_to(f.format(obj, ctx))
. template<class Visitor, class Context> see below visit_format_arg(Visitor&& vis, basic_format_arg<Context> arg);
-
Requires: The expression in the Effects section shall be a valid expression of the same type, for all alternative value types of a formatting argument. Otherwise, the program is ill-formed.
Effects: Let
value
be the value stored inarg
. ReturnsINVOKE(std::forward
.(vis), value); Remarks: The return type is the common type of all possible
INVOKE
expressions in the Effects section. Since exact value types are implementation-defined, visitors should use type traits to handle multiple types.[ Example:
auto uint_value = visit_format_arg([](auto value) -> unsigned { if constexpr (std::is_unsigned_v<decltype(value)>) return value; return 0; }, arg);
basic_format_args() noexcept;
-
Effects: Constructs an empty
basic_format_args
object.Ensures:
!get(0)
. template<class... Args> basic_format_args(const format_arg_store<Context, Args...>& store);
-
Effects: Constructs a
basic_format_args
object that provides access to the arguments captured instore
. basic_format_arg<Context> get(size_type i) const;
-
Returns: A
basic_format_arg
object that represents an argument at indexi
ifi <
the number of arguments. Otherwise, returns an emptybasic_format_arg
object. -
template<class Context, class... Args> format_arg_store<Context, Args...> make_format_args(const Args&... args); template<class... Args> format_arg_store<format_context, Args...> make_format_args(const Args&... args);
-
Effects: The function returns a
format_arg_store
object that refers to formatting argumentsargs
. -
template<class... Args> format_arg_store<wformat_context, Args...> make_wformat_args(const Args&... args);
-
Effects: The function returns a
format_arg_store
object that refers to formatting argumentsargs
. -
template<class... Args> string format(string_view fmt, const Args&... args);
-
Returns:
vformat(fmt, make_format_args(args...))
. -
template<class... Args> wstring format(wstring_view fmt, const Args&... args);
-
Returns:
vformat(fmt, make_wformat_args(args...))
. -
string vformat(string_view fmt, format_args args); wstring vformat(wstring_view fmt, wformat_args args);
-
Effects: The function returns a
string
object constructed from the format string argumentfmt
with each replacement field substituted with the character representation of the argument it refers to, formatted according to the specification given in the field.Returns: The formatted string.
Throws:
format_error
iffmt
is not a valid format string. -
template<class OutputIterator, class... Args> OutputIterator format_to(OutputIterator out, string_view fmt, const Args&... args);
-
Returns:
vformat_to(out, fmt, make_format_args(args...))
. -
template<class OutputIterator, class... Args> OutputIterator format_to(OutputIterator out, wstring_view fmt, const Args&... args);
-
Returns:
vformat_to(out, fmt, make_wformat_args(args...))
. -
template<class OutputIterator, class... Args> OutputIterator vformat_to(OutputIterator out, string_view fmt, format_args_t<OutputIterator, char> args); template<class OutputIterator, class... Args> OutputIterator vformat_to(OutputIterator out, wstring_view fmt, format_args_t<OutputIterator, wchar_t> args);
-
Effects: The function writes to the range
[out, out + size)
, wheresize
is the output size, the format stringfmt
with each replacement field substituted with the character representation of the argument it refers to, formatted according to the specification given in the field.Returns: The end of the output range.
Throws:
format_error
iffmt
is not a valid format string. -
template<class OutputIterator, class Size, class... Args> format_to_n_result<OutputIterator, Size> format_to_n(OutputIterator out, Size n, string_view fmt, const Args&... args); template<class OutputIterator, class Size, class... Args> format_to_n_result<OutputIterator, Size> format_to_n(OutputIterator out, Size n, wstring_view fmt, const Args&... args);
-
Effects: The function writes to the range
[out, out + n)
the format stringfmt
with each replacement field substituted with the character representation of the argument it refers to, formatted according to the specification given in the field.Returns:
format_to_n_result
containing the end of the output range and the total (not truncated) output size.Throws:
format_error
iffmt
is not a valid format string. -
template<class... Args> size_t formatted_size(string_view fmt, const Args&... args); template<class... Args> size_t formatted_size(wstring_view fmt, const Args&... args);
-
Effects: The function returns the number of characters in the output of
format(fmt, args...)
without constructing the formatted string.Returns: The number of characters in the output of
format(fmt, args...)
.Throws:
format_error
iffmt
is not a valid format string. explicit constexpr basic_parse_context(basic_string_view<charT> fmt);
-
Effects: Constructs a parsing context from the format string
fmt
.Ensures:
begin() == fmt.begin()
,end() == fmt.end()
. constexpr const_iterator begin() const noexcept;
-
Returns: An iterator referring to the first character in the format string range being parsed.
constexpr const_iterator end() const noexcept;
-
Returns: An iterator referring to the position one past the last character in the format string range being parsed.
void advance_to(iterator it);
-
Effects: Advances the beginning of the parsed format string range to
it
.Requires:
end()
shall be reachable fromit
.Ensures:
begin() == it
. constexpr size_t next_arg_id();
-
Returns: The next argument identifier starting from 0. Each subsequent call to
next_arg_id
gives an identifier which is 1 greater than the one returned from the previous call for the same context object.Throws:
format_error
ifcheck_arg_id
has been called earlier which indicates mixing of automatic and manual argument indexing. constexpr void check_arg_id(size_t id);
-
Throws:
format_error
ifnext_arg_id
has been called earlier which indicates mixing of automatic and manual argument indexing. basic_parse_context<charT>& parse_context();
-
Returns: A reference to the format string parsing context.
iterator out();
-
Returns: An iterator referring to the current position in the output range.
void advance_to(iterator it);
-
Effects: Advances the current position in the output range to
it
.Ensures:
out() == it
. args_type args() const;
-
Returns: A copy of the
args_type
object that provides access to formatting arguments. - it satisfies the
CopyConstructible
andDestructible
requirements, and - the expressions shown in Table 1 are valid and have the indicated semantics.
- Syntax: for the reasons described in section
Format String Syntax this proposal
uses a new syntax instead of extending the
printf
one. This allows much simpler and easier to parse grammar, not burdened by legacy specifiers used to convey type information. For example, Boost Format has two ways to refer to an argument by index and allows but ignores some format specifiers. - API: Boost Format uses
operator%
to pass formatting arguments while this proposal uses variadic function templates. - Performance: the implementation of this proposal is several times faster that the implementation of Boost Format on tinyformat benchmarks [9], generates smaller binary code and is faster to compile.
- Leading zeros (or any other non-space padding)
- Octal/hexadecimal encoding
- Runtime width/alignment specification
- Passing format string as
string_view
instead ofconst char*
. - Using
string
instead of achar
buffer. - Preparing the array of formatting arguments.
Argument visitation
Class template basic_format_args
namespace std {
template<class Context>
class basic_format_args {
public:
using size_type = size_t;
basic_format_args() noexcept;
template<class... Args>
basic_format_args(const format_arg_store<Context, Args...>& store);
basic_format_arg<Context> get(size_type i) const;
};
}
An object of type basic_format_args
provides access to formatting
arguments. Copying a basic_format_args
object does not copy the
arguments.
Function template make_format_args
Function template make_wformat_args
Formatting functions [format.functions]
The fmt
string consists of zero or more replacement
fields, escape sequences, and ordinary multibyte characters. All
ordinary multibyte characters are copied unchanged to the output. An escape
sequence is one of {{
or }}
; it is replaced with
{
or }
respectively in the output. The syntax of
replacement fields is as follows:
replacement-field ::= '{' [arg-id] [':' format-spec] '}'
arg-id ::= integer
integer ::= digit [integer]
digit ::= '0'...'9'
The arg-id
field specifies the index of the argument in
args
whose value is to be formatted and inserted into the output
instead of the replacement field. The optional format-spec
field
specifies a non-default format for the replacement value.
If the numeric arg-id
s in a format string are 0, 1, 2, ... in
sequence, they can all be omitted (not just some) and the numbers 0, 1, 2, ...
will be automatically used in that order. Mixing automatic and manual indexing
is not allowed.
[ Example:
string s0 = format("From {} to {}", "a", "b"); // OK: automatic indexing
string s1 = format("From {1} to {0}", "a", "b"); // OK: manual indexing
string s2 = format("From {0} to {}", "a", "b"); // Error: mixing automatic and manual indexing
string s3 = format("From {} to {1}", "a", "b"); // Error: mixing automatic and manual indexing
— end example ]
The format-spec
field contains format specifications that
define how the value should be presented, including such details as field width,
alignment, padding, and decimal precision. Each type can define its own
formatting mini-language or interpretation of the
format-spec
field. The syntax of format specifications is as
follows:
format-spec ::= std-format-spec | custom-format-spec
std-format-spec ::= [[fill] align] [sign] ['#'] ['0'] [width] ['.' precision] [type]
fill ::= <a character other than '{' or '}'>
align ::= '<' | '>' | '=' | '^'
sign ::= '+' | '-' | ' '
width ::= integer | '{' arg-id '}'
precision ::= integer | '{' arg-id '}'
type ::= 'a' | 'A' | 'b' | 'B' | 'c' | 'd' | 'e' | 'E' | 'f' | 'F' |
'g' | 'G' | 'n' | 'o' | 'p' | 's' | 'x' | 'X'
where std-format-spec
defines a common formatting mini-language
supported by built-in types and strings, while custom-format-spec
is a placeholder for user-defined mini-languages. Some of the formatting options
are only supported by arithmetic types.
The fill
character can be any character other than '{'
or '}'
. The presence of a fill character is signaled by the
character following it, which must be one of the alignment options. If the
second character of format-spec
is not a valid alignment option,
then it is assumed that both the fill character and the alignment option are
absent.
The meaning of the various alignment options is as follows:
Option | Meaning |
---|---|
'<' |
Forces the field to be left-aligned within the available space. This is the default for non-arithmetic types. |
'>' |
Forces the field to be right-aligned within the available space. This is the default for arithmetic types. |
'=' |
Forces the padding to be placed after the sign (if any) but before the
digits. This is used for printing fields in the form
+000000120 . This alignment option is only valid for arithmetic
types. |
'^' |
Forces the field to be centered within the available space. |
Note that unless a minimum field width is defined, the field width will be determined by the width of the content, meaning that the alignment option has no effect.
The sign
option is only valid for arithmetic types, and can be one
of the following:
Option | Meaning |
---|---|
'+' |
Indicates that a sign should be used for both positive as well as negative numbers. |
'-' |
Indicates that a sign should be used only for negative numbers (this is the default behavior). |
space | Indicates that a leading space should be used for positive numbers, and a minus sign for negative numbers. |
The '#'
option causes the alternate form to be used for
the conversion.
This option is only valid for integer and floating-point types. For integers,
when binary, octal, or hexadecimal output is used, this option adds the respective
prefix "0b"
("0B"
), "0"
, or
"0x"
("0X"
) to the output value. Whether the prefix
is lower-case or upper-case is determined by the case of the type format
specifier. For floating-point numbers the alternate form causes the result of the
conversion to always contain a decimal-point character, even if no digits follow
it. Normally, a decimal-point character appears in the result of these
conversions only if a digit follows it.
In addition, for 'g'
and 'G'
conversions, trailing
zeros are not removed from the result.
width
is a decimal integer defining the minimum field width. If
not specified, then the field width will be determined by the content.
Preceding the width
field by a zero ('0'
) character
enables sign-aware zero-padding for arithmetic types. This is equivalent to a
fill
character of '0'
with an alignment
type of '='
.
The precision
is a decimal number indicating how many digits should
be displayed after the decimal point for a floating-point value formatted with
'f'
and 'F'
, or before and after the decimal point
for a floating-point value formatted with 'g'
or 'G'
.
For non-arithmetic types the field indicates the maximum field size - in other
words, how many characters will be used from the field content. The
precision
is not allowed for integer, character, boolean, and
pointer values.
Finally, the type
determines how the data should be presented.
The available string presentation types are:
Type | Meaning |
---|---|
's' |
String format. This is the default type for strings and may be omitted. |
none | The same as 's' . |
The available character presentation types are:
Type | Meaning |
---|---|
'c' |
Character format. This is the default type for characters and may be omitted. |
none | The same as 'c' . |
The available integer presentation types are:
Type | Meaning |
---|---|
'b' |
Binary format. Outputs the number in base 2. Using the '#'
option with this type adds the prefix "0b" to the output
value. |
'B' |
Binary format. Outputs the number in base 2. Using the '#'
option with this type adds the prefix "0B" to the output
value. |
'd' |
Decimal integer. Outputs the number in base 10. |
'o' |
Octal format. Outputs the number in base 8. Using the '#' option with this type adds the prefix "0" to the output value. |
'x' |
Hex format. Outputs the number in base 16, using lower-case letters for the
digits above 9. Using the '#' option with this type adds the
prefix "0x" to the output value. |
'X' |
Hex format. Outputs the number in base 16, using upper-case letters for the
digits above 9. Using the '#' option with this type adds the
prefix "0X" to the output value. |
'n' |
Number. This is the same as 'd' except that it uses the
current locale to insert the appropriate number separator characters. |
none | The same as 'd' . |
Integer presentation types can also be used with character and boolean values.
Boolean values are formatted using textual representation, either
true
or false
, if the presentation type is not
specified.
The available presentation types for floating-point values are:
Type | Meaning |
---|---|
'a' |
Hexadecimal floating point format. Prints the number in base 16 with prefix
"0x" and lower-case letters for digits above 9. Uses
'p' to indicate the exponent. |
'A' |
Same as 'a' except it uses upper-case letters for the prefix,
digits above 9 and to indicate the exponent. |
'e' |
Exponent notation. Prints the number in scientific notation using the
letter 'e' to indicate the exponent. |
'E' |
Exponent notation. Same as 'e' except it uses an upper-case
'E' as the separator character. |
'f' |
Fixed point. Displays the number as a fixed-point number. |
'F' |
Fixed point. Same as 'f' , but converts nan to
NAN and inf to INF . |
'g' |
General format. For a given precision p >= 1 , this rounds the
number to p significant digits and then formats the result in
either fixed-point format or in scientific notation, depending on its
magnitude.
A precision of 0 is treated as equivalent to a precision of
1 . |
'G' |
General format. Same as 'g' except switches to 'E'
if the number gets too large. The representations of infinity and NaN are
uppercased, too. |
'n' |
Number. This is the same as 'g' , except that it uses the
locale to insert the appropriate number separator characters. |
none | The same as 'g' . |
The available presentation types for pointers are:
Type | Meaning |
---|---|
'p' |
Pointer format. This is the default type for pointers and may be omitted. |
none | The same as 'p' . |
Formatter [format.formatter]
Class template basic_parse_context
namespace std {
template<class charT>
class basic_parse_context {
public:
using char_type = charT;
using const_iterator = typename basic_string_view<charT>::const_iterator;
using iterator = const_iterator;
explicit constexpr basic_parse_context(basic_string_view<charT> fmt);
constexpr const_iterator begin() const noexcept;
constexpr const_iterator end() const noexcept;
constexpr void advance_to(const_iterator it);
constexpr size_t next_arg_id();
constexpr void check_arg_id(size_t id);
};
}
The class template basic_parse_context
provides access the format
string range being parsed and the argument counter for automatic indexing.
Class template basic_format_context
namespace std {
template<class OutputIterator, class charT>
class basic_format_context {
public:
using iterator = OutputIterator;
using char_type = charT;
using args_type = basic_format_args<basic_format_context>;
template<class T>
using formatter_type = formatter<T>;
basic_parse_context<charT>& parse_context();
iterator out();
void advance_to(iterator it);
args_type args() const;
};
}
The class template basic_format_context
provides access to format
string parsing context, output iterator and formatting arguments.
Class template formatter
The functions defined in [format.functions] use
specializations of the class template formatter
to format individual
arguments.
Each specialization of formatter
is either enabled or disabled, as
described below. [ Note: Enabled specializations meet the
Formatter
requirements, and disabled specializations do not.
— end note ] Each header that declares the template formatter
provides enabled specializations formatter<const char*, char>
,
formatter<const wchar_t*, wchar_t>
as well as
specialiazations of formatter
for nullptr_t
,
const void*
, and all cv-unqualified arithmetic types. For any type
T
for which neither the library nor the user provides an explicit or
partial specialization of the class template formatter
,
formatter<T>
is disabled.
If the library provides an explicit or partial specialization of
formatter<T>
, that specialization is enabled except as noted
otherwise.
If F
is a disabled specialization of formatter
, these
values are false
: is_default_constructible_v<F>
,
is_copy_constructible_v<F>
,
is_move_constructible_v<F>
,
is_copy_assignable_v<F>
,
is_move_assignable_v<F>
.
An enabled specialization formatter<T>
will satisfy the
Formatter
requirements (Table 1), with T
as the
formatted argument type, the DefaultConstructible
requirements, and
the CopyAssignable
requirements.
Formatter requirements
A type F
meets the Formatter
requirements if:
Given character type charT
, output iterator type
OutputIterator
, and formatted argument type T
, in
Table 1 f
is a value of type F
, u
is an
lvalue of type T
, t
is a value of a type convertible
to (possibly const) T
, pc
is an lvalue of type
basic_parse_context<charT>
(denoted by PC
), and
fc
is an lvalue of type
basic_format_context<OutputIterator, charT>
(denoted by
FC
). pc.begin()
points to the beginning of the
format-spec
([format.syntax]) portion
of the format string. If format-spec
is empty then either
pc.begin() == pc.end()
or *pc.begin() == '}'
.
Expression | Return type | Requirement |
---|---|---|
f.parse(pc) |
PC::iterator |
Shall parse format-spec for type T , store the parsed
specifiers in *this , and return an iterator past the end of the
parsed range.
|
f.format(t, fc) |
FC::iterator |
Shall format t according to the specifiers stored in
*this , write the output to fc.out() and return an
iterator past the end of the output range.
|
f.format(u, fc) |
FC::iterator |
Shall not modify u. |
Related work
The Boost Format library [8] is an established formatting
library that uses printf
-like format string syntax with extensions.
The main differences between this library and the current proposal are:
A printf
-like Interface for the Streams Library [10]
is similar to the Boost Format library but uses variadic templates instead of
operator%
. Unfortunately it hasn't been updated since 2013 and the
same arguments about format string syntax apply to it.
The FastFormat library [11] is another well-known formatting library. Similarly to this proposal, FastFormat uses brace-delimited format specifiers, but otherwise the format string syntax is different and the library has significant limitations [12]:
Three features that have no hope of being accommodated within the current design are:
Formatting facilities of the Folly library [13] are the closest to the current proposal. Folly also uses Python-like format string syntax nearly identical to the one described here. However, the API details are quite different. The current proposal tries to address performance and code bloat issues that are largely ignored by Folly Format. For instance formatting functions in Folly Format are parameterized on all argument types while in this proposal, only the inlined wrapper functions are, which results in much smaller binary code and better compile times.
Implementation
An implementation of this proposal is available in the std
branch
of the open-source fmt library [14].
Acknowledgements
Thanks to Beman Dawes, Bengt Gustafsson, Eric Niebler, Jason McKesson, Jeffrey Yasskin, Joël Lamotte, Lee Howes, Louis Dionne, Matt Clarke, Michael Park, Sergey Ignatchenko, Thiago Macieira, Zach Laine, Zhihao Yuan and participants of the Library Evolution Working Group for their feedback, support, constructive criticism and contributions to the proposal. Special thanks to Howard Hinnant who encouraged me to write the proposal and gave useful early advice on how to go about it.
The format string syntax is based on the Python documentation [3].
References
[1]
The fprintf
function. ISO/IEC 9899:2011. 7.21.6.1.
[2]
fprintf, printf, snprintf, sprintf - print formatted output. The Open
Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition.
[3]
6.1.3. Format String Syntax. Python 3.5.2 documentation.
[4]
String.Format Method. .NET Framework Class Library.
[5]
Module std::fmt
. The Rust Standard Library.
[6]
Format Specification Syntax: printf and wprintf Functions. C++ Language and
Standard Libraries.
[7]
10.4.2 Rearranging printf Arguments. The GNU Awk User's Guide.
[8]
Boost Format library. Boost 1.63 documentation.
[9]
Speed Test. The fmt library repository.
[10]
A printf-like Interface for the Streams Library (revision 1).
[11]
The FastFormat library website.
[12]
An Introduction to Fast Format (Part 1): The State of the Art.
Overload Journal #89 - February 2009
[13]
The folly library repository.
[14]
The fmt library repository.
[15]
P0424: Reconsidering literal operator templates for strings.
[16]
D0355: Extending <chrono> to Calendars and Time Zones.
[17]
P0067: Elementary string conversions.
[18]
MPark.Format: Compile-time Checked, Type-Safe Formatting in C++14.
[19]
Google Benchmark: A microbenchmark support library.
Appendix A: Benchmarks
To demonstrate that the formatting functions described in this paper can be implemented efficiently, we compare the reference implementation [14] offormat
and format_to
to sprintf
,
ostringstream
and to_string
on the following
benchmark. This benchmark generates a set of integers with random numbers of
digits, applies each method to convert each integer into a string (either
std::string
or a char buffer depending on the API) and uses the
Google Benchmark library [19] to measure timings:
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <limits>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include <benchmark/benchmark.h>
#include <fmt/format.h>
// Returns a pair with the smallest and the largest value of integral type T
// with the given number of digits.
template<typename T>
std::pair<T, T> range(int num_digits) {
T first = std::pow(T(10), num_digits - 1);
int max_digits = std::numeric_limits<T>::digits10 + 1;
T last = num_digits < max_digits ? first * 10 - 1 :
std::numeric_limits<T>::max();
return {num_digits > 1 ? first : 0, last};
}
// Generates values of integral type T with random number of digits.
template<typename T>
std::vector<T> generate_random_data(int numbers_per_digit) {
int max_digits = std::numeric_limits<T>::digits10 + 1;
std::vector<T> data;
data.reserve(max_digits * numbers_per_digit);
for (int i = 1; i <= max_digits; ++i) {
auto r = range<T>(i);
auto value = r.first;
std::generate_n(std::back_inserter(data), numbers_per_digit, [=]() mutable {
T result = value;
value = value < r.second ? value + 1 : r.first;
return result;
});
}
std::random_shuffle(data.begin(), data.end());
return data;
}
auto data = generate_random_data<int>(1000);
void sprintf(benchmark::State &s) {
size_t result = 0;
while (s.KeepRunning()) {
for (auto i: data) {
char buffer[12];
result += std::sprintf(buffer, "%d", i);
}
}
benchmark::DoNotOptimize(result);
}
BENCHMARK(sprintf);
void ostringstream(benchmark::State &s) {
size_t result = 0;
while (s.KeepRunning()) {
for (auto i: data) {
std::ostringstream ss;
ss << i;
result += ss.str().size();
}
}
benchmark::DoNotOptimize(result);
}
BENCHMARK(ostringstream);
void to_string(benchmark::State &s) {
size_t result = 0;
while (s.KeepRunning()) {
for (auto i: data)
result += std::to_string(i).size();
}
benchmark::DoNotOptimize(result);
}
BENCHMARK(to_string);
void format(benchmark::State &s) {
size_t result = 0;
while (s.KeepRunning()) {
for (auto i: data)
result += fmt::format("{}", i).size();
}
benchmark::DoNotOptimize(result);
}
BENCHMARK(format);
void format_to(benchmark::State &s) {
size_t result = 0;
while (s.KeepRunning()) {
for (auto i: data) {
char buffer[12];
result += fmt::format_to(buffer, "{}", i) - buffer;
}
}
benchmark::DoNotOptimize(result);
}
BENCHMARK(format_to);
BENCHMARK_MAIN();
The benchmark was compiled with clang (Apple LLVM version 9.0.0
clang-900.0.39.2) with -O3 -DNDEBUG
and run on a macOS system.
Below are the results:
Run on (4 X 3100 MHz CPU s) 2018-01-27 07:12:00 Benchmark Time CPU Iterations ---------------------------------------------------- sprintf 882311 ns 881076 ns 781 ostringstream 2892035 ns 2888975 ns 242 to_string 1167422 ns 1166831 ns 610 format 675636 ns 674382 ns 1045 format_to 499376 ns 498996 ns 1263The
format
and format_to
functions show much better
performance than the other methods. The format
function that
constructs std::string
is even 30% faster than the system's version
of sprintf
that uses stack-allocated char
buffer.
format_to
with a stack-allocated buffer is ~60% faster than
sprintf
.
Appendix B: Binary code comparison
In this section we compare per-call binary code size between the reference implementation that uses techniques described in section Binary footprint and standard formatting facilities. All the code snippets are compiled with clang (Apple LLVM version 9.0.0 clang-900.0.39.2) with-O3 -DNDEBUG -c -std=c++14
and the resulted binaries are
disassembled with objdump -S
:
void consume(const char*);
void sprintf_test() {
char buffer[100];
sprintf(buffer, "The answer is %d.", 42);
consume(buffer);
}
__Z12sprintf_testv:
0: 55 pushq %rbp
1: 48 89 e5 movq %rsp, %rbp
4: 53 pushq %rbx
5: 48 83 ec 78 subq $120, %rsp
9: 48 8b 05 00 00 00 00 movq (%rip), %rax
10: 48 8b 00 movq (%rax), %rax
13: 48 89 45 f0 movq %rax, -16(%rbp)
17: 48 8d 35 37 00 00 00 leaq 55(%rip), %rsi
1e: 48 8d 5d 80 leaq -128(%rbp), %rbx
22: ba 2a 00 00 00 movl $42, %edx
27: 31 c0 xorl %eax, %eax
29: 48 89 df movq %rbx, %rdi
2c: e8 00 00 00 00 callq 0 <__Z12sprintf_testv+0x31>
31: 48 89 df movq %rbx, %rdi
34: e8 00 00 00 00 callq 0 <__Z12sprintf_testv+0x39>
39: 48 8b 05 00 00 00 00 movq (%rip), %rax
40: 48 8b 00 movq (%rax), %rax
43: 48 3b 45 f0 cmpq -16(%rbp), %rax
47: 75 07 jne 7 <__Z12sprintf_testv+0x50>
49: 48 83 c4 78 addq $120, %rsp
4d: 5b popq %rbx
4e: 5d popq %rbp
4f: c3 retq
50: e8 00 00 00 00 callq 0 <__Z12sprintf_testv+0x55>
void format_test() {
consume(format("The answer is {}.", 42).c_str());
}
__Z11format_testv:
0: 55 pushq %rbp
1: 48 89 e5 movq %rsp, %rbp
4: 53 pushq %rbx
5: 48 83 ec 28 subq $40, %rsp
9: 48 c7 45 d0 2a 00 00 00 movq $42, -48(%rbp)
11: 48 8d 35 f4 83 01 00 leaq 99316(%rip), %rsi
18: 48 8d 7d e0 leaq -32(%rbp), %rdi
1c: 4c 8d 45 d0 leaq -48(%rbp), %r8
20: ba 11 00 00 00 movl $17, %edx
25: b9 02 00 00 00 movl $2, %ecx
2a: e8 00 00 00 00 callq 0 <__Z11format_testv+0x2F>
2f: f6 45 e0 01 testb $1, -32(%rbp)
33: 48 8d 7d e1 leaq -31(%rbp), %rdi
37: 48 0f 45 7d f0 cmovneq -16(%rbp), %rdi
3c: e8 00 00 00 00 callq 0 <__Z11format_testv+0x41>
41: f6 45 e0 01 testb $1, -32(%rbp)
45: 74 09 je 9 <__Z11format_testv+0x50>
47: 48 8b 7d f0 movq -16(%rbp), %rdi
4b: e8 00 00 00 00 callq 0 <__Z11format_testv+0x50>
50: 48 83 c4 28 addq $40, %rsp
54: 5b popq %rbx
55: 5d popq %rbp
56: c3 retq
57: 48 89 c3 movq %rax, %rbx
5a: f6 45 e0 01 testb $1, -32(%rbp)
5e: 74 09 je 9 <__Z11format_testv+0x69>
60: 48 8b 7d f0 movq -16(%rbp), %rdi
64: e8 00 00 00 00 callq 0 <__Z11format_testv+0x69>
69: 48 89 df movq %rbx, %rdi
6c: e8 00 00 00 00 callq 0 <__Z11format_testv+0x71>
71: 66 66 66 66 66 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:(%rax,%rax)
void ostringstream_test() {
std::ostringstream ss;
ss << "The answer is " << 42 << ".";
consume(ss.str().c_str());
}
__Z18ostringstream_testv:
0: 55 pushq %rbp
1: 48 89 e5 movq %rsp, %rbp
4: 41 57 pushq %r15
6: 41 56 pushq %r14
8: 41 55 pushq %r13
a: 41 54 pushq %r12
c: 53 pushq %rbx
d: 48 81 ec 38 01 00 00 subq $312, %rsp
14: 4c 8d b5 18 ff ff ff leaq -232(%rbp), %r14
1b: 4c 8d a5 b0 fe ff ff leaq -336(%rbp), %r12
22: 48 8b 05 00 00 00 00 movq (%rip), %rax
29: 48 8d 48 18 leaq 24(%rax), %rcx
2d: 48 89 8d a8 fe ff ff movq %rcx, -344(%rbp)
34: 48 83 c0 40 addq $64, %rax
38: 48 89 85 18 ff ff ff movq %rax, -232(%rbp)
3f: 4c 89 f7 movq %r14, %rdi
42: 4c 89 e6 movq %r12, %rsi
45: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x4A>
4a: 48 c7 45 a0 00 00 00 00 movq $0, -96(%rbp)
52: c7 45 a8 ff ff ff ff movl $4294967295, -88(%rbp)
59: 48 8b 1d 00 00 00 00 movq (%rip), %rbx
60: 4c 8d 6b 18 leaq 24(%rbx), %r13
64: 4c 89 ad a8 fe ff ff movq %r13, -344(%rbp)
6b: 48 83 c3 40 addq $64, %rbx
6f: 48 89 9d 18 ff ff ff movq %rbx, -232(%rbp)
76: 4c 89 e7 movq %r12, %rdi
79: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x7E>
7e: 4c 8b 3d 00 00 00 00 movq (%rip), %r15
85: 49 83 c7 10 addq $16, %r15
89: 4c 89 bd b0 fe ff ff movq %r15, -336(%rbp)
90: 48 c7 85 08 ff ff ff 00 00 00 00 movq $0, -248(%rbp)
9b: 48 c7 85 00 ff ff ff 00 00 00 00 movq $0, -256(%rbp)
a6: 48 c7 85 f8 fe ff ff 00 00 00 00 movq $0, -264(%rbp)
b1: 48 c7 85 f0 fe ff ff 00 00 00 00 movq $0, -272(%rbp)
bc: c7 85 10 ff ff ff 10 00 00 00 movl $16, -240(%rbp)
c6: 0f 57 c0 xorps %xmm0, %xmm0
c9: 0f 29 45 b0 movaps %xmm0, -80(%rbp)
cd: 48 c7 45 c0 00 00 00 00 movq $0, -64(%rbp)
d5: 48 8d 75 b0 leaq -80(%rbp), %rsi
d9: 4c 89 e7 movq %r12, %rdi
dc: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0xE1>
e1: f6 45 b0 01 testb $1, -80(%rbp)
e5: 74 09 je 9 <__Z18ostringstream_testv+0xF0>
e7: 48 8b 7d c0 movq -64(%rbp), %rdi
eb: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0xF0>
f0: 48 8d 35 dd 10 00 00 leaq 4317(%rip), %rsi
f7: 48 8d bd a8 fe ff ff leaq -344(%rbp), %rdi
fe: ba 0e 00 00 00 movl $14, %edx
103: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x108>
108: be 2a 00 00 00 movl $42, %esi
10d: 48 89 c7 movq %rax, %rdi
110: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x115>
115: 48 8d 35 c7 10 00 00 leaq 4295(%rip), %rsi
11c: ba 01 00 00 00 movl $1, %edx
121: 48 89 c7 movq %rax, %rdi
124: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x129>
129: 48 8d 7d b0 leaq -80(%rbp), %rdi
12d: 4c 89 e6 movq %r12, %rsi
130: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x135>
135: f6 45 b0 01 testb $1, -80(%rbp)
139: 48 8d 7d b1 leaq -79(%rbp), %rdi
13d: 48 0f 45 7d c0 cmovneq -64(%rbp), %rdi
142: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x147>
147: f6 45 b0 01 testb $1, -80(%rbp)
14b: 74 09 je 9 <__Z18ostringstream_testv+0x156>
14d: 48 8b 7d c0 movq -64(%rbp), %rdi
151: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x156>
156: 4c 89 ad a8 fe ff ff movq %r13, -344(%rbp)
15d: 48 89 9d 18 ff ff ff movq %rbx, -232(%rbp)
164: 4c 89 bd b0 fe ff ff movq %r15, -336(%rbp)
16b: f6 85 f0 fe ff ff 01 testb $1, -272(%rbp)
172: 74 0c je 12 <__Z18ostringstream_testv+0x180>
174: 48 8b bd 00 ff ff ff movq -256(%rbp), %rdi
17b: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x180>
180: 4c 89 e7 movq %r12, %rdi
183: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x188>
188: 48 8b 35 00 00 00 00 movq (%rip), %rsi
18f: 48 83 c6 08 addq $8, %rsi
193: 48 8d bd a8 fe ff ff leaq -344(%rbp), %rdi
19a: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x19F>
19f: 4c 89 f7 movq %r14, %rdi
1a2: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x1A7>
1a7: 48 81 c4 38 01 00 00 addq $312, %rsp
1ae: 5b popq %rbx
1af: 41 5c popq %r12
1b1: 41 5d popq %r13
1b3: 41 5e popq %r14
1b5: 41 5f popq %r15
1b7: 5d popq %rbp
1b8: c3 retq
1b9: 48 89 45 d0 movq %rax, -48(%rbp)
1bd: f6 45 b0 01 testb $1, -80(%rbp)
1c1: 74 3b je 59 <__Z18ostringstream_testv+0x1FE>
1c3: 48 8b 7d c0 movq -64(%rbp), %rdi
1c7: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x1CC>
1cc: eb 30 jmp 48 <__Z18ostringstream_testv+0x1FE>
1ce: eb 2a jmp 42 <__Z18ostringstream_testv+0x1FA>
1d0: 48 89 45 d0 movq %rax, -48(%rbp)
1d4: f6 45 b0 01 testb $1, -80(%rbp)
1d8: 74 39 je 57 <__Z18ostringstream_testv+0x213>
1da: 48 8b 7d c0 movq -64(%rbp), %rdi
1de: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x1E3>
1e3: f6 85 f0 fe ff ff 01 testb $1, -272(%rbp)
1ea: 75 30 jne 48 <__Z18ostringstream_testv+0x21C>
1ec: eb 3a jmp 58 <__Z18ostringstream_testv+0x228>
1ee: 48 89 45 d0 movq %rax, -48(%rbp)
1f2: eb 3c jmp 60 <__Z18ostringstream_testv+0x230>
1f4: 48 89 45 d0 movq %rax, -48(%rbp)
1f8: eb 4d jmp 77 <__Z18ostringstream_testv+0x247>
1fa: 48 89 45 d0 movq %rax, -48(%rbp)
1fe: 4c 89 ad a8 fe ff ff movq %r13, -344(%rbp)
205: 48 89 9d 18 ff ff ff movq %rbx, -232(%rbp)
20c: 4c 89 bd b0 fe ff ff movq %r15, -336(%rbp)
213: f6 85 f0 fe ff ff 01 testb $1, -272(%rbp)
21a: 74 0c je 12 <__Z18ostringstream_testv+0x228>
21c: 48 8b bd 00 ff ff ff movq -256(%rbp), %rdi
223: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x228>
228: 4c 89 e7 movq %r12, %rdi
22b: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x230>
230: 48 8b 35 00 00 00 00 movq (%rip), %rsi
237: 48 83 c6 08 addq $8, %rsi
23b: 48 8d bd a8 fe ff ff leaq -344(%rbp), %rdi
242: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x247>
247: 4c 89 f7 movq %r14, %rdi
24a: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x24F>
24f: 48 8b 7d d0 movq -48(%rbp), %rdi
253: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x258>
258: 0f 1f 84 00 00 00 00 00 nopl (%rax,%rax)
The code generated for the format_test
function that uses the
reference implementation of the format
function described in
this proposal is several times smaller than the ostringstream
code
and only 40% larger than the one generated for sprintf
which is a
moderate price to pay for full type and memory safety.
The following factors contribute to the difference in binary code size between
format
and sprintf
:
sprintf
API:
int vraw_format(char* buffer, const char* format, format_args args);
template<typename... Args>
inline int raw_format(char* buffer, const char* format, const Args&... args) {
return vraw_format(buffer, format, make_format_args(args...));
}
void raw_format_test() {
char buffer[100];
raw_format(buffer, "The answer is {}.", 42);
}
__Z15raw_format_testv:
0: 55 pushq %rbp
1: 48 89 e5 movq %rsp, %rbp
4: 48 81 ec 80 00 00 00 subq $128, %rsp
b: 48 8b 05 00 00 00 00 movq (%rip), %rax
12: 48 8b 00 movq (%rax), %rax
15: 48 89 45 f8 movq %rax, -8(%rbp)
19: 48 c7 45 80 2a 00 00 00 movq $42, -128(%rbp)
21: 48 8d 35 24 12 00 00 leaq 4644(%rip), %rsi
28: 48 8d 7d 90 leaq -112(%rbp), %rdi
2c: 48 8d 4d 80 leaq -128(%rbp), %rcx
30: ba 02 00 00 00 movl $2, %edx
35: e8 00 00 00 00 callq 0 <__Z15raw_format_testv+0x3A>
3a: 48 8b 05 00 00 00 00 movq (%rip), %rax
41: 48 8b 00 movq (%rax), %rax
44: 48 3b 45 f8 cmpq -8(%rbp), %rax
48: 75 09 jne 9 <__Z15raw_format_testv+0x53>
4a: 48 81 c4 80 00 00 00 addq $128, %rsp
51: 5d popq %rbp
52: c3 retq
53: e8 00 00 00 00 callq 0 <__Z15raw_format_testv+0x58>
58: 0f 1f 84 00 00 00 00 00 nopl (%rax,%rax)
This shows that passing formatting arguments adds very little overhead and
is comparable with sprintf
.