©ISO 2014 — All rights reserved

Document Number: N4505

Date: 2015-05-05

Revises: N4407

Editor: Jared Hoberock
NVIDIA Corporation

jhoberock@nvidia.com

Working Draft, Technical Specification for C++
Extensions for Parallelism

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad fomatting.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4407.html
mailto:jhoberock@nvidia.com

© ISO/IEC N4505

Contents
) 1T) 3
1.1 SCOPE . . . e e 3
1.2 Normative references 3
1.3 Namespaces and headers e 3
1.4 Termsand definitions L 3
1.5 Feature-testing recommendations e e e e e 4
2 Execution policies o i i i i e 5
2.1 Ingeneral L e 5
2.2 Header <experimental/execution_policy™> Synopsis 5
2.3 Execution policy type trait e 6
2.4 Sequential execution policy e e e 6
2.5 Parallel execution policy e e e 6
2.6 Parallel+Vector execution policy e 6
2.7 Dynamic execution poliCy e e e 7
2.7.1 execution policy CONStruct/assign i e e e 7
272 execution policy ObJECt ACCESS e e e e e e 8
2.8 Execution policy objects e e 8
3 Parallel exceptions o i i i i i i e 9
3.1 Exception reporting behavior L 9
3.2 Header <experimental/exception list> Synopsis v v v it 9
4 Parallel algorithms 0 0 i i it e 11
4.1 Ingeneral L e 11
4.1.1 Requirements on user-provided function objects 11
4.1.2 Effect of execution policies on algorithm execution 11
4.1.3 ExecutionPolicy algorithm overloads 13
42 Definitions 13
4.3 Non-Numeric Parallel Algorithms 14
4.3.1 Header <experimental/algorithm> synopsis 14
432 Foreach. e 14
4.4 Numeric Parallel Algorithms 15
4.4.1 Header <experimental/numeric> Synopsis v v vt e e 15
442 Reduce 18
443 Exclusivescan 19
444 Inclusivescan 19
445 Transformreduce 20
44.6 Transformexclusivescan. L 21
447 Transforminclusive scan e e e e 22

© ISO/IEC N4505

1 General [parallel.general]

1.1 Scope [parallel.general.scope]

This Technical Specification describes requirements for implementations of an interface that computer programs written
in the C++ programming language may use to invoke algorithms with parallel execution. The algorithms described by this
Technical Specification are realizable across a broad class of computer architectures.

This Technical Specification is non-normative. Some of the functionality described by this Technical Specification may
be considered for standardization in a future version of C++, but it is not currently part of any C++ standard. Some of the
functionality in this Technical Specification may never be standardized, and other functionality may be standardized in a
substantially changed form.

The goal of this Technical Specification is to build widespread existing practice for parallelism in the C++ standard
algorithms library. It gives advice on extensions to those vendors who wish to provide them.

1.2 Normative references [parallel.general.references]

The following referenced document is indispensable for the application of this document. For dated references, only the
edition cited applies. For undated references, the latest edition of the referenced document (including any amendments)
applies.

— ISO/IEC 14882:—1, Programming Languages — C++
ISO/IEC 14882:— is herein called the C++ Standard. The library described in ISO/IEC 14882:— clauses 17-30 is herein

called the C++ Standard Library. The C++ Standard Library components described in ISO/IEC 14882:— clauses 25,
26.7 and 20.7.2 are herein called the C++ Standard Algorithms Library.

Unless otherwise specified, the whole of the C++ Standard's Library introduction (C++14 §17) is included into this
Technical Specification by reference.

1.3 Namespaces and headers [parallel.general.namespaces]

Since the extensions described in this Technical Specification are experimental and not part of the C++ Standard Library,
they should not be declared directly within namespace std. Unless otherwise specified, all components described in this
Technical Specification are declared in namespace std: :experimental: :parallel::vl.

[Note: Once standardized, the components described by this Technical Specification are expected to be promoted to
namespace std. — end note |

Unless otherwise specified, references to such entities described in this Technical Specification are assumed to be
qualified with std: :experimental::parallel::v1, and references to entities described in the C++ Standard Library are
assumed to be qualified with sta: :.

Extensions that are expected to eventually be added to an existing header <meow> are provided inside the
<experimental/meow> header, which shall include the standard contents of <meow> as if by

#include <meow>

1.4 Terms and definitions [parallel.general.defns]

For the purposes of this document, the terms and definitions given in the C++ Standard and the following apply.
. To be published. Section references are relative to N3937.

§1.4 3

http://www.open-std.org/jtc1/sc22/wg21/prot/14882fdis/n3937.pdf

© ISO/IEC N4505

A parallel algorithm is a function template described by this Technical Specification declared in namespace
std::experimental::parallel::v1 with a formal template parameter named ExecutionPolicy.

Parallel algorithms access objects indirectly accessible via their arguments by invoking the following functions:

— All operations of the categories of the iterators that the algorithm is instantiated with.

— Functions on those sequence elements that are required by its specification.

— User-provided function objects to be applied during the execution of the algorithm, if required by the
specification.

— Operations on those function objects required by the specification. [Note: See clause 25.1 of C++ Standard
Algorithms Library. — end note |

These functions are herein called element access functions.
[Example: The sort function may invoke the following element access functions:
— Methods of the random-access iterator of the actual template argument, as per 24.2.7, as implied by the name of
the template parameters RandomAccessIterator.
— The swap function on the elements of the sequence (as per 25.4.1.1 [sort]/2).
— The user-provided compare function object.

— end example |

1.5 [parallel.general.features]

Feature-testing recommendations

An implementation that provides support for this Technical Specification shall define the feature test macro(s) in Table 1.

Table 1 — Feature Test Macro(s)
Name Value Header

<experimental/algorithm>

))) <experimental/exception list>
cpp lib experimental parallel algorithm 201505) o
- - - - - <experimental/execution policy>

<experimental/numeric>

§1.5 4

© ISO/IEC N4505

2 Execution policies [parallel.execpol]

2.1 In general [parallel.execpol.general]

This clause describes classes that are execution policy types. An object of an execution policy type indicates the kinds of
parallelism allowed in the execution of an algorithm and expresses the consequent requirements on the element access
functions.

[Example:

std: :vector<int> v =

// standard sequential sort
std::sort (v.begin(), v.end()):;

using namespace std::experimental::parallel;

// explicitly sequential sort
sort (seq, v.begin(), v.end()):;

// permitting parallel execution
sort (par, v.begin(), v.end()):;

// permitting vectorization as well
sort (par_vec, v.begin(), v.end());

// sort with dynamically-selected execution
size t threshold =

execution policy exec = seq;

if (v.size () > threshold)

{

exec = par;

sort (exec, v.begin(), v.end()):;
— end example |

[Note: Because different parallel architectures may require idiosyncratic parameters for efficient execution,
implementations of the Standard Library may provide additional execution policies to those described in this Technical
Specification as extensions. — end note |

2.2 Header <experimental/execution_ policy> Synopsis [parallel.execpol.synopsis]

namespace std {

namespace experimental {

namespace parallel {

inline namespace vl {
// 2.3, Execution policy type trait
template<class T> struct is execution policy;

template<class T> constexpr bool is execution policy v = is execution policy<T>:

§2.2 5

:value;

© ISO/IEC N4505

// 2.4, Sequential execution policy
class sequential execution policy;

// 2.5, Parallel execution policy
class parallel execution policy;

// 2.6, Parallel+Vector execution policy
class parallel vector execution policy;

// 2.7, Dynamic execution policy
class execution policy;

e o e

2.3 Execution policy type trait [parallel.execpol.type]

template<class T> struct is execution policy { see below };

is_execution policy can be used to detect parallel execution policies for the purpose of excluding function signatures
from otherwise ambiguous overload resolution participation.

is_execution policy<T> shall be a UnaryTypeTrait with a BaseCharacteristic of true type if T is the type of a standard
or implementation-defined execution policy, otherwise false type.

[Note: This provision reserves the privilege of creating non-standard execution policies to the library implementation.
— end note |

The behavior of a program that adds specializations for is_execution policy is undefined.

2.4 Sequential execution policy [parallel.execpol.seq]

class sequential execution policy{ unspecified };

The class sequential execution policy iS an execution policy type used as a unique type to disambiguate parallel
algorithm overloading and require that a parallel algorithm's execution may not be parallelized.

2.5 Parallel execution policy [parallel.execpol.par]|

class parallel execution policy{ unspecified };

The class parallel execution policy is an execution policy type used as a unique type to disambiguate parallel
algorithm overloading and indicate that a parallel algorithm's execution may be parallelized.

2.6 Parallel+Vector execution policy [parallel.execpol.vec]

class parallel vector execution policy{ unspecified };

The class class parallel vector execution policy is an execution policy type used as a unique type to disambiguate
parallel algorithm overloading and indicate that a parallel algorithm's execution may be vectorized and parallelized.

§2.6 6

© ISO/IEC N4505

2.7 Dynamic execution policy [parallel.execpol.dynamic]

class execution policy
{
public:
// 2.7.1, execution policy construct/assign
template<class T> execution policy(const T& exec);
template<class T> execution policyé& operator=(const T& exec);

// 2.7.2, execution policy object access

const type info& type() const noexcept;

template<class T> T* get () noexcept;

template<class T> const T* get() const noexcept;
bi

I The class execution policy is a container for execution policy objects. execution policy allows dynamic control over

standard algorithm execution.
[Example:
std::vector<float> sort me =

using namespace std::experimental::parallel;
execution policy exec = seq;

if (sort me.size() > threshold)
{

exec = std::par;

std::sort (exec, std::begin(sort me), std::end(sort me));
— end example |

Objects of type execution policy shall be constructible and assignable from objects of type T for which

is_execution policy<T>::value IS true.

2.7.1 execution_policy construct/assign [parallel.execpol.con]

1 template<class T> execution policy(const T& exec);

2 Effects: Constructs an execution policy object with a copy of exec's state.

3 Remarks: This constructor shall not participate in overload resolution unless is_execution policy<T>::value i$
true.

4 template<class T> execution policyé& operator=(const T& exec);

5 Effects: Assigns a copy of exec's state to *this.

6 Returns: *this.

§2.7.1 7

© ISO/IEC N4505

2.7.2 execution_policy object access [parallel.execpol.access]|

const type info& type() const noexcept;

2 Returns: typeid(T), such that T is the type of the execution policy object contained by *this.

template<class T> T* get () noexcept;
template<class T> const T* get() const noexcept;

4 Returns: If target _type() == typeid(T), a pointer to the stored execution policy object; otherwise a null pointer.

5 Requires: is_execution policy<T>::value iS true.

2.8 Execution policy objects [parallel.execpol.objects]
constexpr sequential execution policy seqf};
constexpr parallel execution policy par{};

constexpr parallel vector execution policy par vec{};

The header <experimental/execution policy> declares a global object associated with each type of execution policy
defined by this Technical Specification.

§2.8 8

© ISO/IEC N4505

3 Parallel exceptions [parallel.exceptions]

3.1 Exception reporting behavior [parallel.exceptions.behavior]

During the execution of a standard parallel algorithm, if temporary memory resources are required and none are available,
the algorithm throws a std: :bad alloc exception.

During the execution of a standard parallel algorithm, if the invocation of an element access function exits viaterminates
with an uncaught exception, the behavior of the program is determined by the type of execution policy used to invoke the
algorithm:

— If the execution policy object is of type class parallel vector execution policy, std::terminate shall be
called.

— If the execution policy object is of type sequential execution policy O parallel execution policy, the
execution of the algorithm exits viaterminates-with an exeeption—t+st exception. The exception shall be an
exception list containing allAH uncaught exceptions thrown during the invocations of element access

functions, or optionally the uncaught exception if there was only oneshall-be-contained-inthe-exeeption—tist.

[Note: For example, vocd 4
Wwhen for each is executed sequentially, if an invocation of the user-provided function ob]ect throws an

exception, for_each can ex1t V1a the uncaught exceptlon, or throw an exceptlon 1ist containing the original
exception. enly A nta ; . - — end note |

[Note: These guarantees imply that, unless the algorithm has failed to allocate memory and exits viaterminated
with std: :bad_alloc, all exceptions thrown during the execution of the algorithm are communicated to the
caller. It is unspecified whether an algorithm implementation will "forge ahead" after encountering and
capturing a user exception. — end note |

[Note: The algorithm may exit viaterminate-with the std: :bad_alloc exception even if one or more user-
provided function objects have exited viaterminated-with an exception. For example, this can happen when an
algorithm fails to allocate memory while creating or adding elements to the exception 1ist object.
— end note |

— If the execution policy object is of any other type, the behavior is implementation-defined.

3.2 Header <experimental/exception_list> Synopsis [parallel.exceptions.synopsis]

namespace std {
namespace experimental {
namespace parallel {
inline namespace vl {

class exception list : public exception

{
public:
typedef unspecified iterator;

size t size() const noexcept;
iterator begin () const noexcept;

iterator end() const noexcept;

const char* what () const noexcept override;

§3.2 9

© ISO/IEC

e o e

The class exception list owns a sequence of exception ptr objects. The parallel algorithms may use the
exception list to communicate uncaught exceptions encountered during parallel execution to the caller of the
algorithm.

The type exception list::iterator shall fulfill the requirements of ForwardIterator.

size_t size() const noexcept;

4 Returns: The number of exception ptr objects contained within the exception 1ist.

5 Complexity: Constant time.

iterator begin() const noexcept;

7 Returns: An iterator referring to the first exception ptr object contained within the exception 1list.

iterator end() const noexcept;

9 Returns: An iterator that is past the end of the owned sequence.

const char* what () const noexcept override;

I Returns: An implementation-defined NTBS.

§3.2

N4505

10

© ISO/IEC N4505

4 Parallel algorithms [parallel.alg]

4.1 In general [parallel.alg.general]

This clause describes components that C++ programs may use to perform operations on containers and other sequences in
parallel.

4.1.1 Requirements on user-provided function objects [parallel.alg.general.user]

Function objects passed into parallel algorithms as objects of type BinaryPredicate, Compare, and BinaryOperation
shall not directly or indirectly modify objects via their arguments.

4.1.2 Effect of execution policies on algorithm execution [parallel.alg.general.exec]

Parallel algorithms have template parameters named ExecutionPolicy which describe the manner in which the execution
of these algorithms may be parallelized and the manner in which they apply the element access functions.

The invocations of element access functions in parallel algorithms invoked with an execution policy object of type
sequential execution policy execute in sequential order in the calling thread.

The invocations of element access functions in parallel algorithms invoked with an execution policy object of type
parallel execution policy are permitted to execute in an unordered fashion in either the invoking thread or in a thread
implicitly created by the library to support parallel algorithm execution. Any such invocations executing in the same
thread are indeterminately sequenced with respect to each other. [Note: It is the caller's responsibility to ensure
correctness, for example that the invocation does not introduce data races or deadlocks. — end note]

[Example:

using namespace std::experimental::parallel;

int a[] = {0,1};

std::vector<int> v;

for each(par, std::begin(a), std::end(a), [&] (int 1) {
v.push back (i*2+1);

)

The program above has a data race because of the unsynchronized access to the container v. — end example]
[Example:

using namespace std::experimental::parallel;

std::atomic<int> x = 0;

int all = {1,2};

for each(par, std::begin(a), std::end(a), [&] (int n) {
x.fetch add(l, std::memory order relaxed);
// spin wait for another iteration to change the value of x
while (x.load(std::memory order relaxed) == 1) { }

1)

The above example depends on the order of execution of the iterations, and is therefore undefined (may deadlock).
— end example |

[Example:

using namespace std::experimental::parallel;
int x=0;

§4.1.2 11

© ISO/IEC N4505

std: :mutex m;

int a[] = {1,2};

for each(par, std::begin(a), std::end(a), [&] (int) {
m.lock () ;
+4+x;
m.unlock () ;

1)

The above example synchronizes access to object x ensuring that it is incremented correctly. — end example]

The invocations of element access functions in parallel algorithms invoked with an execution policy of type
parallel vector execution policy are permitted to execute in an unordered fashion in unspecified threads, and
unsequenced with respect to one another within each thread. [Note: This means that multiple function object invocations
may be interleaved on a single thread. — end note |

[Note: This overrides the usual guarantee from the C++ standard, Section 1.9 [intro.execution] that function executions
do not interleave with one another. — end note |

Since parallel vector execution policy allows the execution of element access functions to be interleaved on a
single thread, synchronization, including the use of mutexes, risks deadlock. Thus the synchronization with
parallel vector execution policy is restricted as follows:

A standard library function is vectorization-unsafe if it is specified to synchronize with another function invocation, or
another function invocation is specified to synchronize with it, and if it is not a memory allocation or deallocation
function. Vectorization-unsafe standard library functions may not be invoked by user code called from
parallel vector execution policy algorithms.

[Note: Implementations must ensure that internal synchronization inside standard library routines does not induce
deadlock. — end note |

[Example:

using namespace std::experimental::parallel;

int x=0;

std::mutex m;

int al] = {1,2};

for each(par vec, std::begin(a), std::end(a), [&] (int) {
m.lock () ;
++x;
m.unlock () ;

)

The above program is invalid because the applications of the function object are not guaranteed to run on different
threads. — end example]

[Note: The application of the function object may result in two consecutive calls to m.1ock on the same thread, which
may deadlock. — end note]

[Note: The semantics of the parallel execution policy Or the parallel vector execution policy invocation allow
the implementation to fall back to sequential execution if the system cannot parallelize an algorithm invocation due to
lack of resources. — end note |

Algorithms invoked with an execution policy object of type execution policy execute internally as if invoked with the
contained execution policy object.

The semantics of parallel algorithms invoked with an execution policy object of implementation-defined type are
implementation-defined.

§4.1.2 12

© ISO/IEC N4505

4.1.3 ExecutionPolicy algorithm overloads [parallel.alg.overloads]

The Parallel Algorithms Library provides overloads for each of the algorithms named in Table 1, corresponding to the
algorithms with the same name in the C++ Standard Algorithms Library. For each algorithm in Table 2, if there are
overloads for corresponding algorithms with the same name in the C++ Standard Algorithms Library, the overloads shall
have an additional template type parameter named ExecutionPolicy, which shall be the first template parameter. In
addition, each such overload shall have the new function parameter as the first function parameter of type
ExecutionPolicyé&é.

Unless otherwise specified, the semantics of ExecutionPolicy algorithm overloads are identical to their overloads
without.

Parallel algorithms shall not participate in overload resolution unless
is_execution policy<decay t<ExecutionPolicy>>::value IS true.

Table 2 — Table of parallel algorithms

adjacent difference adjacent_ find all of any of

copy copy_if copy_n count

count if equal exclusive scan fill

fill n find find end find first of
find if find if not for_each for _each n
generate generate n includes inclusive scan
inner product inplace merge is_heap is_heap until

is_partitioned
max_element

mismatch

partial sort

reduce

remove if

replace if
rotate_copy

set intersection
stable partition
transform exclusive scan
uninitialized copy n

unique copy

is_sorted

merge

move

partial sort copy

remove

replace

reverse

search
set_symmetric_difference
stable_sort

transform inclusive scan

uninitialized fill

is sorted until
min element
none_of
partition
remove_copy
replace_copy
reverse_copy
search_n

set union
swap_ranges

transform reduce

lexicographical compare
minmax element
nth_element

partition copy

remove copy_ if

replace copy if

rotate

set difference

sort

transform

uninitialized copy

uninitialized fill n unique

(N1 \8)

[Note: Not all algorithms in the Standard Library have counterparts in Table 2. — end note]

4.2 Definitions [parallel.alg.defns]
Define GENERALIZED SUM(op, al, ..., aN) as follows:

— alwhennis1

— Op(GENERALIZED SUM(op, bl, ..., bK), GENERALIZED SUM(op, bM, ..., bN)) where

— bl, ..., bNmay beany permutation of a1, ..., anand

— 1 < K+1 = M < N.

Define GENERALIZED NONCOMMUTATIVE SUM(op, al, ..., aN) as follows:

— alwhennis1
— op (GENERALIZED NONCOMMUTATIVE SUM(op,
., aN) where1 < ¥+1 = M < N.

al, ..., aK), GENERALIZED NONCOMMUTATIVE SUM(op, aM,

§4.2 13

© ISO/IEC N4505

4.3 Non-Numeric Parallel Algorithms [parallel.alg.ops]

4.3.1 Header <experimental/algorithm> Synopsis [parallel.alg.ops.synopsis]

namespace std {
namespace experimental {
namespace parallel {
inline namespace vl {
template<class ExecutionPolicy,
class InputlIterator, class Function>
void for each(ExecutionPolicyé&& exec,
Inputlterator first, InputlIterator last,
Function f£f);
template<class Inputlterator, class Size, class Function>
InputIterator for each n(Inputlterator first, Size n,
Function f£f);
template<class ExecutionPolicy,
class InputlIterator, class Size, class Function>
InputIterator for each n(ExecutionPolicyé&& exec,
InputIterator first, Size n,
Function f£f);

—— e o e

4.3.2 For each [parallel.alg.foreach]

1 template<class ExecutionPolicy,
class Inputlterator, class Function>
void for each (ExecutionPolicyé&& exec,
InputIterator first, InputlIterator last,
Function f);

2 Effects: Applies f to the result of dereferencing every iterator in the range [first, last). [Note: If the type of
first satisfies the requirements of a mutable iterator, £ may apply nonconstant functions through the dereferenced
iterator. — end note |

3 Complexity: Applies £ exactly 1ast - first times.
4 Remarks: If £ returns a result, the result is ignored.

Notes: Unlike its sequential form, the parallel overload of for eacn does not return a copy of its Function
parameter, since parallelization may not permit efficient state accumulation.

Requires: Unlike its sequential form, the parallel overload of for each requires Function to meet the requirements
of copyConstructible.

§43.2 14

© ISO/IEC N4505

7 template<class Inputlterator, class Size, class Function>

InputlIterator for each n(Inputlterator first, Size n,
Function £f);

Requires: Function shall meet the requirements of MoveConstructible [Nofe: Function need not meet the
requirements of copyConstructible. — end note |

Effects: Applies £ to the result of dereferencing every iterator in the range [first, first + n), starting from first
and proceeding to first + n - 1. [Note: If the type of first satisfies the requirements of a mutable iterator, £ may
apply nonconstant functions through the dereferenced iterator. — end note |

Returns: first + n for non-negative values of n and first for negative values.

Remarks: 1f £ returns a result, the result is ignored.

12 template<class ExecutionPolicy,

13

14

15

class Inputlterator, class Size, class Function>
InputlIterator for each n(ExecutionPolicy && exec,
InputIterator first, Size n,
Function f);
Effects: Applies £ to the result of dereferencing every iterator in the range [first, first + n), starting from first
and proceeding to first + n - 1.[Note: If the type of first satisfies the requirements of a mutable iterator, £ may
apply nonconstant functions through the dereferenced iterator. — end note |

Returns: first + n for non-negative values of n and first for negative values.
Remarks: 1f £ returns a result, the result is ignored.

Notes: Unlike its sequential form, the parallel overload of for each n requires Function to meet the requirements
of copyConstructible.

4.4 Numeric Parallel Algorithms [parallel.alg.numeric]|

4.4.1 Header <experimental/numeric> Synopsis [parallel.alg.numeric.synopsis]

namespace std {
namespace experimental {
namespace parallel {
inline namespace vl {

template<class Inputlterator>
typename iterator traits<Inputlterator>::value type
reduce (Inputlterator first, Inputlterator last);
template<class ExecutionPolicy,
class InputlIterator>
typename iterator traits<Inputlterator>::value type
reduce (ExecutionPolicyé&s& exec,
Inputlterator first, Inputlterator last);
template<class Inputlterator, class T>
T reduce (Inputlterator first, Inputlterator last, T init);
template<class ExecutionPolicy,
class Inputlterator, class T>
T reduce (ExecutionPolicyé&& exec,
Inputlterator first, Inputlterator last, T init);
template<class Inputlterator, class T, class BinaryOperation>

§4.4.1 15

© ISO/IEC N4505

T reduce (Inputlterator first, Inputlterator last, T init,
BinaryOperation binary op);
template<class ExecutionPolicy, class Inputlterator, class T, class BinaryOperation>
T reduce (ExecutionPolicy&& exec,
InputIterator first, InputlIterator last, T init,
BinaryOperation binary op);

template<class Inputlterator, class OutputlIterator,
class T>
OutputIterator
exclusive scan(Inputlterator first, Inputlterator last,
OutputIterator result,
T init);
template<class ExecutionPolicy,
class InputlIterator, class OutputlIterator,
class T>
OutputIterator
exclusive scan(ExecutionPolicyé&é& exec,
InputIterator first, InputlIterator last,
OutputIterator result,
T init);
template<class Inputlterator, class OutputlIterator,
class T, class BinaryOperation>
OutputIterator
exclusive scan(Inputlterator first, Inputlterator last,
OutputIterator result,
T init, BinaryOperation binary op);
template<class ExecutionPolicy,
class InputlIterator, class OutputlIterator,
class T, class BinaryOperation>
OutputIterator
exclusive scan(ExecutionPolicyé&é& exec,
InputIterator first, InputlIterator last,
OutputIterator result,
T init, BinaryOperation binary op);

template<class Inputlterator, class OutputIterator>
OutputIterator
inclusive scan(Inputlterator first, Inputlterator last,
OutputIterator result);
template<class ExecutionPolicy,
class InputlIterator, class OutputlIterator>
OutputIterator
inclusive scan (ExecutionPolicyé&é& exec,
InputIterator first, InputlIterator last,
OutputIterator result);
template<class Inputlterator, class OutputlIterator,
class BinaryOperation>
OutputIterator
inclusive scan(Inputlterator first, Inputlterator last,
OutputIterator result,
BinaryOperation binary op);

§4.4.1 16

© ISO/IEC

template<class ExecutionPolicy,
class InputlIterator, class OutputlIterator,
class BinaryOperation>
OutputIterator
inclusive scan (ExecutionPolicyé&é& exec,
InputIterator first, InputlIterator last,
OutputIterator result,
BinaryOperation binary op);
template<class Inputlterator, class OutputlIterator,
class BinaryOperation, class T>
OutputIterator
inclusive scan(Inputlterator first, Inputlterator last,
OutputIterator result,
BinaryOperation binary op, T init);
template<class ExecutionPolicy,
class InputlIterator, class OutputlIterator,
class BinaryOperation, class T>
OutputIterator
inclusive scan (ExecutionPolicyé&é& exec,
InputIterator first, InputlIterator last,
OutputIterator result,
BinaryOperation binary op, T init);

template<class InputlIterator, class UnaryOperation,
class T, class BinaryOperation>
T transform reduce(Inputlterator first, Inputlterator last,
UnaryOperation unary op,
T init, BinaryOperation binary op);
template<class ExecutionPolicy,
class InputlIterator, class UnaryOperation,
class T, class BinaryOperation>
T transform reduce (ExecutionPolicyé&& exec,
InputIterator first, InputlIterator last,
UnaryOperation unary op,
T init, BinaryOperation binary op);

template<class Inputlterator, class OutputlIterator,
class UnaryOperation, class T, class BinaryOperation>
OutputIterator
transform exclusive scan(Inputlterator first, Inputlterator last,
OutputIterator result,
UnaryOperation unary op,
T init, BinaryOperation binary op);
template<class ExecutionPolicy,
class InputlIterator, class OutputlIterator,
class UnaryOperation, class T, class BinaryOperation>
OutputIterator
transform exclusive scan(ExecutionPolicyé&& exec,
InputIterator first, InputlIterator last,
OutputIterator result,
UnaryOperation unary op,
T init, BinaryOperation binary op);

§4.4.1

N4505

17

© ISO/IEC N4505

template<class Inputlterator, class OutputlIterator,
class UnaryOperation, class BinaryOperation>
OutputIterator
transform inclusive scan(Inputlterator first, Inputlterator last,
OutputIterator result,
UnaryOperation unary op,
BinaryOperation binary op);
template<class ExecutionPolicy,
class InputlIterator, class OutputlIterator,
class UnaryOperation, class BinaryOperation>
OutputIterator
transform inclusive scan(ExecutionPolicyé&& exec,
InputIterator first, InputlIterator last,
OutputIterator result,
UnaryOperation unary op,
BinaryOperation binary op);

template<class Inputlterator, class OutputlIterator,
class UnaryOperation, class BinaryOperation, class T>
OutputIterator
transform inclusive scan(Inputlterator first, Inputlterator last,
OutputIterator result,
UnaryOperation unary op,
BinaryOperation binary op, T init);
template<class ExecutionPolicy,
class InputlIterator, class OutputlIterator,
class UnaryOperation, class BinaryOperation, class T>
OutputIterator
transform inclusive scan(ExecutionPolicyé&& exec,
InputIterator first, InputlIterator last,
OutputIterator result,
UnaryOperation unary op,
BinaryOperation binary op, T init);

e o e

4.4.2 Reduce [parallel.alg.reduce]

1 template<class InputlIterator>
typename iterator traits<Inputlterator>::value type
reduce (InputIterator first, Inputlterator last);

2<Eﬁ%cm: Same as reduce (first, last, typename iterator traits<Inputlterator>::value type{}).

3 template<class Inputlterator, class T>
T reduce (Inputlterator first, Inputlterator last, T init);

4 Eﬁ%cm: Same as reduce (first, last, init, plus<>()).

§4.42 18

© ISO/IEC N4505

5 template<class Inputlterator, class T, class BinaryOperation>
T reduce (Inputlterator first, Inputlterator last, T init,
BinaryOperation binary op);

6 Returns: GENERALIZED SUM(binary op, init, *first, ..., *(first + (last - first) - 1)).
7 Requires: binary_op shall not invalidate iterators or subranges, nor modify elements in the range [first, last).
8 Complexity: O(1ast - first) applications of binary op.

9 Notes: The primary difference between reduce and accumulate is that the behavior of reduce may be non-
deterministic for non-associative or non-commutative binary op.

4.4.3 Exclusive scan [parallel.alg.exclusive.scan]

1 template<class Inputlterator, class Outputlterator, class T>
OutputIterator exclusive scan(Inputlterator first, InputlIterator last,
OutputIterator result,
T init);

2 Eﬁ%cm: SaHK:aSexclusive_scan(first, last, result, init, plus<>()).
3 template<class Inputlterator, class Outputlterator, class T, class BinaryOperation>
OutputIterator exclusive scan(Inputlterator first, InputIterator last,

OutputlIterator result,
T init, BinaryOperation binary op);

4 Effects: Assigns through each iterator i in [result, result + (last - first)) the value of
GENERALIZED NONCOMMUTATIVE SUM(binary op, init, *first, ..., *(first + (i - result) - 1)).

5 Returns: The end of the resulting range beginning at result.

6 Requires: binary op shall not invalidate iterators or subranges, nor modify elements in the ranges [first, last) or

[result, result + (last - first)).
7 Complexity: O(1ast - first) applications of binary op.

8 Notes: The difference between exclusive scan and inclusive scan is that exclusive scan excludes the ith input
element from the ith sum. If binary op is not mathematically associative, the behavior of exclusive scan may be
non-deterministic.

4.4.4 Inclusive scan [parallel.alg.inclusive.scan]

1 template<class Inputlterator, class OutputIterator>
OutputIterator inclusive scan(Inputlterator first, InputIterator last,
OutputIterator result);

2 Eﬁécm: Same as inclusive scan(first, last, result, plus<>()).

§4.44 19

© ISO/IEC N4505

3 template<class InputlIterator, class Outputlterator, class BinaryOperation>
OutputIterator inclusive scan(Inputlterator first, InputIterator last,
OutputlIterator result,
BinaryOperation binary op);
template<class InputlIterator, class OutputlIterator, class BinaryOperation>
OutputIterator inclusive scan(Inputlterator first, InputIterator last,
OutputlIterator result,
BinaryOperation binary op, T init);

4 Effects: Assigns through each iterator i in [result,result + (last - first)) the value of

GENERALIZED NONCOMMUTATIVE SUM(binary op, *first, ..., *(first + (i - result))) Or
GENERALIZED NONCOMMUTATIVE SUM(binary op, init, *first, ..., *(first + (i - result))) ifinit1is
provided.

5 Returns: The end of the resulting range beginning at result.

6 Requires: binary op shall not invalidate iterators or subranges, nor modify elements in the ranges [first, last) or

[result, result + (last - first)).
7 Complexity: O(1ast - first) applications of binary op.

8 Notes: The difference between exclusive scan and inclusive scan is that inclusive scan includes the ith input
element in the ith sum. If binary op is not mathematically associative, the behavior of inclusive scan may be
non-deterministic.

4.4.5 Transform reduce [parallel.alg.transform.reduce]

1 template<class Inputlterator, class UnaryFunction, class T, class BinaryOperation>
T transform reduce (Inputlterator first, Inputlterator last,
UnaryOperation unary op, T init, BinaryOperation binary op);

Returns:
GENERALIZED SUM(binary op, init, unary op(*first), ..., unary op(* (first + (last - first) -
1))).

3 Requires: Neither unary op nor binary op shall invalidate subranges, or modify elements in the range
[first, last)

4 Complexity: O(last - first) applications each of unary op and binary op.

5 Notes: transform reduce does not apply unary op to init.

§4.4.5 20

© ISO/IEC N4505

4.4.6 Transform exclusive scan [parallel.alg.transform.exclusive.scan]

1 template<class Inputlterator, class Outputlterator,
class UnaryOperation,
class T, class BinaryOperation>
OutputIterator transform exclusive scan(Inputlterator first, Inputlterator last,
OutputlIterator result,
UnaryOperation unary_ op,
T init, BinaryOperation binary op);
2 Effects: Assigns through each iterator i in [result, result + (last - first)) the value of
GENERALIZED NONCOMMUTATIVE SUM(binary op, init, unary op(*first), ..., unary op(* (first + (i

- result) - 1))).
3 Returns: The end of the resulting range beginning at result.

4 Requires: Neither unary op nor binary op shall invalidate iterators or subranges, or modify elements in the ranges
[first,last) Or [result,result + (last - first)).

3 Complexity: O(1ast - first) applications each of unary op and binary op.

6 Notes: The difference between transform exclusive scan and transform inclusive scan is that
transform_exclusive scan excludes the ith input element from the ith sum. If binary op is not mathematically
associative, the behavior of transform exclusive scan may be non-deterministic. transform exclusive scan
does not apply unary opto init.

§4.4.6 21

© ISO/IEC N4505

4.4.7 Transform inclusive scan [parallel.alg.transform.inclusive.scan]

1 template<class Inputlterator, class Outputlterator,
class UnaryOperation,
class BinaryOperation>
OutputIterator transform inclusive scan(Inputlterator first, Inputlterator last,
OutputlIterator result,
UnaryOperation unary_ op,
BinaryOperation binary op);
template<class InputIterator, class OutputlIterator,
class UnaryOperation,
class BinaryOperation, class T>
OutputIterator transform inclusive scan(Inputlterator first, Inputlterator last,
OutputlIterator result,
UnaryOperation unary_ op,
BinaryOperation binary op, T init);

2 Effects: Assigns through each iterator i in [result, result + (last - first)) the value of

GENERALIZED NONCOMMUTATIVE SUM(binary op, unary op(*first), ..., unary op(*(first + (i -
result)))) Or

GENERALIZED NONCOMMUTATIVE SUM(binary op, init, unary op(*first), ..., unary op(* (first + (i
- result)))) if init is provided.

3 Returns: The end of the resulting range beginning at result.

4 Requires: Neither unary op nor binary op shall invalidate iterators or subranges, or modify elements in the ranges
[first,last) Or [result,result + (last - first)).

5 Complexity: O(1ast - first) applications each of unary op and binary op.

6 Notes: The difference between transform exclusive scan and transform inclusive scan is that
transform inclusive scan includes the ith input element from the ith sum. If binary op is not mathematically
associative, the behavior of transform inclusive scan may be non-deterministic. transform inclusive scan
does not apply unary op to init.

§4.4.7 22

	Working Draft, Technical Specification for C++ Extensions for Parallelism
	Contents
	1 General
	1.1 Scope
	1.2 Normative references
	1.3 Namespaces and headers
	1.4 Terms and definitions
	Feature-testing recommendations

	2 Execution policies
	2.1 In general
	2.2 Header <experimental/execution_policy> synopsis
	2.3 Execution policy type trait
	2.4 Sequential execution policy
	2.5 Parallel execution policy
	2.6 Parallel+Vector execution policy
	2.7 Dynamic execution policy
	2.7.1 execution_policy construct/assign
	2.7.2 execution_policy object access

	2.8 Execution policy objects

	3 Parallel exceptions
	3.1 Exception reporting behavior
	3.2 Header <experimental/exception_list> synopsis

	4 Parallel algorithms
	4.1 In general
	4.1.1 Requirements on user-provided function objects
	4.1.2 Effect of execution policies on algorithm execution
	4.1.3 ExecutionPolicy algorithm overloads

	4.2 Definitions
	4.3 Non-Numeric Parallel Algorithms
	4.3.1 Header <experimental/algorithm> synopsis
	4.3.2 For each

	4.4 Numeric Parallel Algorithms
	4.4.1 Header <experimental/numeric> synopsis
	4.4.2 Reduce
	4.4.3 Exclusive scan
	4.4.4 Inclusive scan
	4.4.5 Transform reduce
	4.4.6 Transform exclusive scan
	4.4.7 Transform inclusive scan

