
Doc. No.: J16/97-0090R1= WG21/N1128R1
Date: November 14, 1997
Project: Programming Language C++
Reply to: Bill Gibbons <bill@gibbons.org>

Greg Colvin <greg@imrgold.com>

Fixing auto_ptr.

The auto_ptr specified in CD-2 has proved unpopular and dangerous, primarily because the const
arguments to its copy operations make it easy to inadvertently damage an auto_ptr via a const reference,
and because the non-owning pointer left behind by a copy is an open invitation to dangling references. The
auto_ptr& arguments to the copy constructor and assignment operator were not const in the CD-1 auto_ptr,
but were made const to allow auto_ptr values to be passed to and returned from functions. The C++
language now allows a more effective solution.

We propose to restore the CD-1 auto_ptr semantics by:
- removing const from the arguments to all copy operations and from the release() function;
- restoring the pointer-zeroing effect of release();
- restoring the reset() function; and
- adding conversion functions and a private auxiliary class to allow auto_ptr rvalues to convert to lvalues.

Draft text to replace 20.4.5 follows.

20.4.5 Template class auto_ptr

1 Template auto_ptr holds a pointer to an object obtained via new and deletes that object when it itself is
destroyed (such as when leaving block scope 6.7).

2 Template auto_ptr_ref holds a reference to an auto_ptr. It is used by the auto_ptr conversions to allow
auto_ptr objects to be passed to and returned from functions.

namespace std {
 template<class X> class auto_ptr {
 template<class Y> struct auto_ptr_ref {};
 public:
 typedef X element_type;

 // 20.4.5.1 construct/copy/destroy:
 explicit auto_ptr(X* p=0) throw();
 auto_ptr(auto_ptr&) throw();
 template<class Y> auto_ptr(auto_ptr<Y>&) throw();
 auto_ptr& operator=(auto_ptr&) throw()
 template<class Y> auto_ptr& operator=(auto_ptr<Y>&) throw();
 ~auto_ptr() throw();

 // 20.4.5.2 members:
 X& operator*() const throw();
 X* operator->() const throw();
 X* get() const throw();
 X* release() throw();
 void reset(X* p=0) throw();

 // 20.4.5.3 conversions:
 auto_ptr(auto_ptr_ref<X>) throw();
 template<class Y> operator auto_ptr_ref <Y>() throw();
 template<class Y> operator auto_ptr<Y>() throw();
 };
}

3 The auto_ptr provides a semantics of strict ownership. An auto_ptr owns the object it holds a pointer to.
Copying an auto_ptr copies the pointer and transfers ownership to the destination. If more than one
auto_ptr owns the same object at the same time the behavior of the program is undefined.

 20.4.5.1 auto_ptr constructors

 explicit auto_ptr(X* p =0) throw();

1 Postconditions: *this holds the pointer p.

 auto_ptr(auto_ptr& a) throw();

2 Effects: Calls a.release().
3 Postconditions: *this holds the pointer returned from a.release().

 template<class Y> auto_ptr(auto_ptr<Y>& a) throw();

4 Requires: Y* can be implicitly converted to X*.
5 Effects: Calls a.release().
6 Postconditions: *this holds the pointer returned from a.release().

 auto_ptr& operator=(auto_ptr& a) throw();

7 Requires: The expression delete get() is well formed.
8 Effects: reset(a.release()).
9 Returns: *this.

 template<class Y> auto_ptr& operator=(auto_ptr<Y>& a) throw();

10 Requires: Y* can be implicitly converted to X*. The expression delete get() is well formed.
11 Effects: reset(a.release()).
12 Returns: *this.

 ~auto_ptr() throw();

13 Requires: The expression delete get() is well formed.
14 Effects: delete get().

20.4.5.2 auto_ptr members

 X& operator*() const throw();

1 Requires: get() != 0
2 Returns: *get()

 X* operator->() const throw();

3 Requires: get() != 0
4 Returns: get()

 X* get() const throw();

5 Returns: The pointer *this holds.

 X* release() throw();

6 Returns: get()
7 Postconditions: *this holds the null pointer.

 void reset(X* p=0) throw();

8 Effects: If get() != p then delete get().
9 Postconditions: *this holds the pointer p.

20.4.5.3 auto_ptr conversions

 auto_ptr(auto_ptr_ref<X> r) throw();

1 Effects: Calls p->release() for the auto_ptr p that r holds.
2 Postconditions: *this holds the pointer returned from release().

 template<class Y> operator auto_ptr_ref <Y>() throw();

3 Returns: An auto_ptr_ref<Y> that holds *this.

 template<class Y> operator auto_ptr<Y>() throw();

4 Effects: Calls release().
5 Returns: An auto_ptr<Y> that holds the pointer returned from release().

Analysis of Conversion operations

There are four cases to consider: direct-initialization and copy-initialization (8.5/14) for both same-type
initialization and base-from-derived initialization.

(1) Direct-initialization, same type, e.g.

 auto_ptr<int> source();

 auto_ptr<int> p(source());

This is considered a direct call to a constructor of auto_ptr<int>,using overload resolution. There is only
one viable constructor:

 auto_ptr<int>::auto_ptr(auto_ptr_ref<int>)

which is callable using the conversion

 auto_ptr<int>::operator auto_ptr_ref<int>()

which should be selected when operator overloading tries to convert type auto_ptr<int> to
auto_ptr_ref<int>.

Overload resolution succeeds. No additional copying is allowed, so the copy constructor need not be
callable.

(2) Copy-initialization, same type, e.g.

 auto_ptr<int> source();
 void sink(auto_ptr<int>);

 main() {
 sink(source());
 }

According to 8.5/14:

If the initialization is direct-initialization, or if it is copy-initialization where the cv-unqualified version of the
source type is the same class as, or a derived class of, the class of the destination, constructors are
considered...

So this case is handled the same as the direct-initialization case.

(3) Direct-initialization, base-from-derived, e.g.

 struct Base {};
 struct Derived : Base {};
 auto_ptr<Derived> source();

 auto_ptr<Base> p(source());

This is similar to (1); in this case, the viable constructor is:

 auto_ptr<Base>::auto_ptr(auto_ptr_ref<Base>)

which is callable using the conversion

 auto_ptr<Derived>::operator auto_ptr_ref<Base>()

which should be selected when operator overloading tries to convert type auto_ptr<Derived> to
auto_ptr_ref<Base>.

Overload resolution succeeds. No additional copying is allowed, so the copy constructor need not be
callable.

(4) Copy-initialization, base-from-derived, e.g.

 struct Base {};
 struct Derived : Base {};
 auto_ptr<Derived> source();
 void sink(auto_ptr<Base>);

 main() {
 sink(source());
 }

This case is not similar to (2), because the sentence quoted above from 8.5/14 does not apply. So there
must be a conversion function (operator or constructor) from the argument type to the parameter type,
and it will be used to initialize a temporary variable. Note that this initialization process does not involve
use of a copy constructor:

The user-defined conversion so selected is called to convert the initializer expression into a temporary,
whose type is the type returned by the call of the user-defined conversion function, with the cv-qualifiers
of the destination type.

The parameter type is auto_ptr<Base>, so there must be a conversion from auto_ptr<Derived> to
auto_ptr<Base>. The constructor

 auto_ptr<Base>::auto_ptr<Derived>(auto_ptr<Derived> &)

does not work because the argument is an rvalue. But the conversion function

 auto_ptr<Derived>::operator auto_ptr<Base>()

does work. The result of calling this conversion function is a temporary - no copy constructor is needed.

Once the temporary has been created, the draft says:

The object being initialized is then direct-initialized from the temporary according to the rules above.

This direct-initialization is case (1) which works.

At no time in any of these four cases is the implementation allowed to make an unnecessary copy of an
auto_ptr object. Therefore it does not matter that the copy constructor does not work on rvalues.

