Proposal for C2y
WG14

Document Number: N3809

Author: Abdulmalek Almkainzi <aalmkainzi@gmail.com>
Title: Unselected _Generic branches should be ignored
Proposal category: New Features

Target Audience: General Developers

Abstract:
This paper proposes a solution to the problem of unselected branches in _Generic expressions still
needing to be valid expressions.

Table of Contents

PIOT AT eeeiiiiiiiiiiiiiiieietetet et ee e e e ararerereaaeerarasarsrasssasasssssasasssasssssssssasssssasasssssssssasssssssssssasasssssssasssssssssssasnrares
Introduction and RAtIONALE.............coeeeuviiiieiiiriee ettt ceetre e eeeaee e e eeeateeeeeeraeeeeesaseeeeeesaseeeeessseeeeesnneeean
|20 10] 010 LT | TR SO RRURPRRPRRR
Prop0Sed WOTAING......ccveeiiieiiiiiiieiieeiiteste sttt ettt s e e st e e bt e st e s teesatesbeessbesssaesssesssaesssesssaenssessseesssesnsens
| 00011 7= 1 [0) o T PSSR PPUTPPPPPPPPPPPPPRS
RELBIOIICES.veeeeeteiee ettt ettt ettt e eeete et e eettaeeeeeeaaeeeeeesaseeeeesaeeeeeassaseeeeassseeeeassseeeeessssseeenssseesenssreeeeanns

Prior Art

The proposal N3785 [1] aims to solve the same problem as this one. This paper demonstrates an
alternative approach, which can work even when using a type as the controlling operand in a _Generic
expression. Also, it is generally easier to understand (as it is how most people thought _Generic
originally worked [2] [3]).

The TCC compiler already implements _Generic the way this paper proposes [4].

Introduction and Rationale

A common problem when using _Generic is that all branches must be valid expressions, even if
unselected. For example:

struct MyString {
char *chars;
size_t len;

3,

#define string_length(s) \
_Genexric(s, \

char*: strlen(s), \
struct MyString: s.len \

)

The macro “string_length” may looks simple enough, but it actually will never work. This is
because if "s” is "char*" then the second branch’s expression is not valid, and if it’s a “struct
MyString then the first branch’s expression is not valid.

Achieving the desired behavior requires using a technique often called “type coercion” or “contrav”.
The way it works is, instead of using s directly, turn it into the current branch’s type if it isn’t already
of that type:

#define coerce_type(s, T) \
_Generic(s, T: s, default: (T){})

#define string_length(s) \

_Genexric(s, \

char*: strlen(coerce_type(s, char*)), \

struct MyString: coerce_type(s, struct MyString).len \
)

Godbolt link.

https://godbolt.org/z/PqP77WW8M
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3785.htm

Proposal

This paper proposes that unselected _Generic branches should be parsed as outer-balanced-token-
sequence, which are identical to balanced-token-sequence, but without commas. Balanced-token-
sequence is defined in the standard as:

balanced-token-sequence:
balanced-token
balanced-token-sequence balanced-token

balanced-token:
(balanced-token-sequence-opt)
[balanced-token-sequence-opt]
{ balanced-token-sequence-opt }
any token other than a parenthesis, a bracket, or a brace

The proposed outer-balanced-token-sequence would produce outer-balanced-token instead of balanced-
token. The difference being that outer-balanced-token cannot have a comma outside of parenthesis, a
brackets, or braces.

The one _Generic branch that matches the type of the operand would be parsed as an assignment-
expression, while every other branch would be parsed as outer-balanced-token-sequence.

With that, the previous example that needed "coerce_type" to work doesn’t need it anymore, because
unselected branches are allowed to be invalid expressions:

#define string_length(s) \
_Generic(s, \

char*: strlen(s), \

struct MyString: s.len \

)

This macro would work as expected. If a “‘char*" is passed, then "s.1len" is parsed as an outer-
balanced-token-sequence. And if a “struct MyString is passed, then “strlen(s)" is parsed as
outer-balanced-token-sequence.

Proposed Wording

Two new productions for "generic-association’:

(6.5.2.1) generic-association:
type-name : assignment-expression
default : assignment-expression
type-name : outer-balanced-token-sequence
default : outer-balanced-token-sequence

outer-balanced-token-sequence:
outer-balanced-token
outer-balanced-token-sequence outer-balanced-token

outer-balanced-token:
(balanced-token-sequence-opt)
[balanced-token-sequence-opt]
{ balanced-token-sequence-opt }
any token other than a parenthesis, a bracket, a brace, or a comma

Limitations

In this proposal, _Generic branches can contain errors which are not caught by the compiler, unlike
N3785 , which still requires that all branches must be valid expressions. This may lead to mistakes
going unnoticed. The upside is that it will make usage of _Generic simpler overall.

References

[1]: N3785: Expression Evaluation and Access in _Generic

[2]: Problem with Generic : i/C Programming
[3]: Workarounds for C11 Generic

[4]: https://godbolt.org/z/E6rGPdhx7

https://godbolt.org/z/E6rGPdhx7
https://www.chiark.greenend.org.uk/~sgtatham/quasiblog/c11-generic/
https://www.reddit.com/r/C_Programming/comments/vx276r/problem_with_generic/
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3785.htm

	Prior Art
	Introduction and Rationale
	Proposal
	Proposed Wording
	Limitations
	References

