DRAFT
Technical
Specification

ISO/DIS TS 25755

Programming Languages — C — defer, a mechanism
for general purpose, lexical scope-based undo

This document has not been edited by the ISO Central Secretariat.

Reference Number
ISO/DIS TS 25755 : Working Draft N3734
Project Editor: JeanHeyd Meneide (wgl4@soasis.org)

ISO/ TC22/SC22
Secretariat: JISC

Voting begins on: n/a

Voting terminates on: n/a

THIS DOCUMENT IS A DRAFT CIRCULATED
FOR COMMENTS AND APPROVAL. IT IS
THEREFORE SUBJECT TO CHANGE AND
MAY NOT BE REFERRED TO AS A
TECHNICAL SPECIFICATION UNTIL
PUBLISHED AS SUCH.

IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL,
TECHNOLOGICAL, COMMERCIAL AND USER
PURPOSES, DRAFT TECHNICAL
SPECIFICATIONS MAY ON OCCASION HAVE
TO BE CONSIDERED IN THE LIGHT OF
THEIR POTENTIAL TO BECOME STANDARDS
TO WHICH REFERENCE MAY BE MADE IN
NATIONAL REGULATIONS.

RECIPIENTS OF THIS DRAFT ARE INVITED
TO SUBMIT, WITH THEIR COMMENTS,
NOTIFICATION OF ANY RELEVANT PATENT
RIGHTS OF WHICH THEY ARE AWARE AND
TO PROVIDE SUPPORTING
DOCUMENTATION.

© ISO 2025

ISO/DIS TS25755(en)

i\, COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2025

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or
utilized otherwise in any form or by any means, electronic or mechanical, including photocopying,
or posting on the internet or an intranet, without prior written permission. Permission can be
requested from either ISO at the address below or ISO’s member body in the country of the
requester.

ISO copyright office

Case postale 56 « CH-1211 Geneva 20
Tel. + 41 22 749 01 11

Fax + 41 22 749 09 47

E-mail copyright@iso.org

Web www.iso.org

Published in Switzerland

© ISO 2025 — All rights reserved.
ii

tel:+41227490111
tel:+41227490947
mailto:copyright@iso.org
https://www.iso.org

ISO/DIS TS25755(en)

Content
FOT@WOId ..ottt ittt ittt ettt eeteeeneeeneeeneeeneeenseenseenseeneeenseessesnsenneenns iv
) 53100 Y L0 a5 1 + AR v
1 T 1 6
2 JAV[039 1 BN 0 A A=) U = s [=1 S 6
3 Terms and defInItionsvunt ittt ittt eteeeneeeneenneesseesseesneesncenneans 6
4 @075 07 51 s -1 4 Lt <3 6
LSO 255 7 5 o0 3 4§04 (<) o X S 6
5.0, GEneTal oo 6
5.2. Program terminationooeuuiiinitinit it e 6
6 B 5 7 6
6.1 GEneral ..o 6
6.2 KeYyWOIAS ..ottt 6
6.3, SEAlEIMEIIES .. it 7
6.4, Defer StAtEIMENES . o .ottt ettt e e 7
6.5. Predefined mMacCro NAMESvutnt ettt e e e e e e 15
7S U5 1) o P 16
7.1. The thrd create function i i 16
7.2. Defer mechanism <stddefer.n> 16
' T 1= < 17

© ISO 2025 — All rights reserved.
iii

ISO/DIS TS25755(en)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical
Commission) form the specialized system for worldwide standardization. National bodies that are
members of ISO or IEC participate in the development of International Standards through technical
committees established by the respective organization to deal with particular fields of technical
activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for
the different types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives or www.iec.ch/
members_experts/refdocs).

ISO and IEC draw attention to the possibility that the implementation of this document may involve
the use of (a) patent(s). ISO and IEC take no position concerning the evidence, validity or
applicability of any claimed patent rights in respect thereof. As of the date of publication of this
document, ISO and IEC had not received notice of (a) patent(s) which may be required to implement
this document. However, implementers are cautioned that this may not represent the latest
information, which may be obtained from the patent database available at www.iso.org/patents and
patents.iec.ch. ISO and IEC shall not be held responsible for identifying any or all such patent rights.

Any trade name used in this document is information given for the convenience of users and does
not constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO’s adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see www.iso.
org/iso/foreword.html. In the IEC, see www.iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology,
Subcommittee SC 22, Programming languages, their environments and system software interfaces.

Any feedback or questions on this document should be directed to the user’s national standards
body. A complete listing of these bodies can be found at www.iso.org/members.html and www.iec.
ch/national-committees.

© ISO 2025 — All rights reserved.
v

https://www.iso.org/directives
https://www.iec.ch/members_experts/refdocs
https://www.iec.ch/members_experts/refdocs
https://www.iso.org/patents
https://patents.iec.ch
https://www.iso.org/iso/foreword.html
https://www.iso.org/iso/foreword.html
https://www.iec.ch/understanding-standards
https://www.iso.org/members.html
https://www.iec.ch/national-committees
https://www.iec.ch/national-committees

ISO/DIS TS25755(en)

Introduction

The advent of resource leaks in programs created with ISO/IEC 9899 — Programming Languages,
C has necessitated the need for better ways of tracking and automatically releasing resources in a
given scope. This document provides a feature to address this need in a reliable, translation-time,
opt-in manner for implementations to furnish to programmers.

This document is divided into four major subdivisions:

— preliminary elements (Clauses 1-4);

— the characteristics of environments that translate and execute C programs (Clause 5);
— the language syntax, constraints, and semantics (Clause 6);

— the library facilities (Clause 7).

In any given subsequent clause or subclause, there are section delineations in bold to describe the
semantics, restrictions, and behaviors of programs for this language and potentially the use of its
library clauses in this document:

— Syntax
which pertains to the spelling and organization of the language and library;
— Constraints
which detail and enumerate various requirements for the correct interpretation of the
language and library, typically during translation;
— Semantics
which explain the behavior of language features and similar constructs;
— Description
which explain the behavior of library usage and similar constructs;
— Returns
which describes the effects of constructs provided back to a user of the library;
— Recommended practice
which provides guidance and important considerations for implementers of this document.

Examples are provided to illustrate possible forms of the constructions described. Footnotes are
provided to emphasize consequences of the rules described in that subclause or elsewhere in this
document. References are used to refer to other related subclauses. Recommendations are provided
to give advice or guidance to implementers.

References internal to claues and subclauses in this document are specified by a stable tag that
beings with a “[*, followed by a list of letters, numbers, hyphens, and periods, and is terminated with
a final “]”. There is no structure or hierarchy to the name between the left and right square brackets
of the stable tags. Clauses and subclauses in other documents uses section numbers or other
appropriate reference nomenclature.

© ISO 2025 — All rights reserved.
v

ISO/DIS TS25755(en)

1. Scope [scope]

This Technical Specification specifies a series of extensions of the programming language C,
specified by the international standard ISO/IEC 9899:2024.

Each clause in this Technical Specification deals with a specific topic. The first sub-clauses of
clauses 4 through 7 contain a technical description of the features of the topic and what is
necessary for an implementation to achieve conformance through extensions or additions to ISO/
IEC 9899:2024.

2. Normative References [normrefs]

The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any amendments)
applies.

ISO/IEC 9899:2024, Programming languages — C

3. Terms and definitions [defn]
For the purposes of this document, the terms and definitions of ISO/IEC 9899:2024 apply.

4. Conformance [conf]

The requirements from ISO/IEC 9899:2024, clause 4 apply without any additional requirements in
this document.

5. Environment [env]

5.1. General [env-general]
The requirements from ISO/IEC 9899:2024, clause 5 apply along with the following additional

requirements to support the _Defer feature.

5.2. Program termination [prog.term]

Semantics

If the return type of the main function is a type compatible with int, a return from the initial call
to the main function is equivalent to calling the exit function with the value returned by the main
function as its argument after all defer statements that are in scope for the main function have
been executed.

6. Language [lang]

6.1. General [lang-general]
The requirements from ISO/IEC 9899:2024, clause 6 apply along with the following additional
requirements to support the _Defer feature.

6.2. Keywords [keywords]

In addition to the keywords in ISO/IEC 9899:2024 §6.4.2, an implementation shall additionally
recognize _Defer as a keyword.

© ISO 2025 — All rights reserved.
6

ISO/DIS TS25755(en)
Recommended practice

Implementations are encouraged to provide an additional keyword defer as an alternative spelling
for the _Defer keyword. It should have all the significance of the _Defer keyword described in
this document.

6.3. Statements [statements]

In addition to the statements in ISO/IEC 9899:2024 §6.8, implementations shall allow the unlabeled
statement grammar production to produce a defer statement which contains a deferred block. A
deferred block is also considered a block just like a primary block or a secondary block.

Syntax

unlabeled-statement:
expression-statement
attribute-specifier-sequence.,: primary-block
attribute-specifier-sequence.,: jump-statement
attribute-specifier-sequence.y: defer-statement

deferred-block:
unlabeled-statement

6.4. Defer statements [defer]

Syntax

defer-statement:
_Defer deferred-block

Description

Let D be a defer statement, S be the deferred block of D, and E be the enclosing block of D. The
scope of D is the same as an identifier declared and completed immediately after the end of S.

Constraints

Jumps by means of:

— goto or switch shall not jump into any defer statement;

— goto or switch shall not jump from outside the scope of a defer statement D to inside that
scope;

— and, return, break, continue or goto shall not exit S.

Semantics

When execution reaches a defer statement D and its scope is entered, its S is not immediately
executed during sequential execution of the program. Instead, for the duration of the scope of D,
S is executed upon:

— the termination of the block E and/or the scope of D (such as from reaching its end);
— or, any exit from E and/or the scope of D through return, goto, break, or continue.

© ISO 2025 — All rights reserved.
7

10

11

12

ISO/DIS TS25755(en)

The execution is done just before leaving the enclosing block E and/or the scope of D. In particular
return expressions (and conversion to return values) are calculated before executing S.

Multiple defer statements execute their S in the reverse order they appeared in E. Within a single
defer statement D, if D contains one or more defer statements D,,;, of its own, then the S,,;, of the
Dy, are also executed in reverse order at the termination and/or exit of E,, and/or Dy,’s scope,
recursively, according to the rules of this subclause.

If a non-local jump is used in D’s scope but before the execution of the S of D:

— if execution leaves D’s scope, S is not executed;
— otherwise, if control returns to a point in E and causes D to be reached more than once, the
effect is the same as reaching D only once.

NOTE 1 The “execution” of a defer statement only enures that S is run on any exit from that
scope. There is no observable side effect to repeat from reaching D, as the manifestation of any
of the effects of S happen if and only if the scope of D is exited or terminated after reaching D, as
previously specified. “Tracking” of reached defer statements at execution time is not necessary:
if the non-local jump leaves the scope it is not executed (forgotten); and, if its reached again it
behaves as it would during normal execution.

If a non-local jump is executed from S and control leaves S, the behavior is undefined.
If a non-local jump is executed outside of any D and:

— it jumps into any S;
— or, it jumps outside any D’s scope to inside that D’s scope;

the behavior is undefined.

If E has any defer statements D that have been reached and their S have not yet executed, but
the program is terminated or leaves the scope of D through any means not specified previously,
including but not limited to:

— a function with the Noreturn function specifier, or a function annotated with the noreturn
or Noreturn attribute, is called;
— or, any signal SIGABRT, SIGINT, or SIGTERM occurs;

then any such S are not run, unless otherwise specified by the implementation. Any other D that have
not been reached do not have their S run.

NOTE 2 The execution of deferred statements upon non-local jumps (i.e., longjmp and setjmp
described in ISO/IEC 9899:2024 §7.13) or program termination is a technique sometimes known as
“unwinding” or “stack unwinding”, and some implementations perform it. See also ISO/IEC 14882
Programming languages — C++ [except.ctor].

EXAMPLE 1 Defer statements cannot be jumped over.

#include <stdio.h>

int f() {
goto target; // constraint violation
_Defer { fputs(" meow", stdout); }

target:
fputs("cat says", stdout);
return 1;

}

© ISO 2025 — All rights reserved.
8

ISO/DIS TS25755(en)

int g() {
// print "cat says" to standard output
return fputs("cat says", stdout);
_Defer { fputs(" meow", stdout); } // okay: no constraint violation,
// not executed

}
int h() {
goto target;
{
// okay: no constraint violation
_Defer { fputs(" meow", stdout); }
}
target:
fputs("cat says", stdout);
return 1; // prints "cat says" to standard output
}
int i() {
{
_Defer { fputs("cat says", stdout); }
// okay: no constraint violation
goto target;
}
target:
fputs(" meow", stdout);
return 1; // prints "cat says meow" to standard output
}
int j() {
_Defer {
goto target; // constraint violation
fputs(" meow", stdout);
}
target:
fputs("cat says", stdout);
return 1;
}
int k() {
_Defer {
return 5; // constraint violation
fputs(" meow", stdout);
b
fputs("cat says", stdout);
return 1;
}
int 1() {
_Defer {
target:
fputs(" meow", stdout);
}

goto target; // constraint violation

© ISO 2025 — All rights reserved.
9

ISO/DIS TS25755(en)

fputs("cat says", stdout);

return 1;
}
int m() {
goto target; // okay: no constraint violation
{
target:
_Defer { fputs("cat says", stdout); }
}
fputs(" meow", stdout);
return 1; // prints "cat says meow" to standard output
}
int n() {
goto target; // constraint violation
{
_Defer { fputs(" meow", stdout); }
target:
}
fputs("cat says", stdout);
return 1;
}
int o() {
{
_Defer fputs("cat says", stdout);
goto target;
}
target:;
fputs(" meow", stdout);
return 1; // prints "cat says meow"
}
int p() {
{
goto target;
_Defer fputs(" meow", stdout);
}
target:;
fputs("cat says", stdout);
return 1; // prints "cat says"
}
int q() {
{
_Defer { fputs(" meow", stdout); }
target:
}
goto target; // constraint violation
fputs("cat says", stdout);
return 1;
}
int r() {

© ISO 2025 — All rights reserved.
10

ISO/DIS TS25755(en)

{
target:
_Defer { fputs("cat says", stdout); }
}
goto target; // ok
fputs (" meow\n", stdout);
return 1; // prints "cat says" repeatedly

}
int s() {
{
target:
_Defer { fputs("cat says", stdout); }
goto target; // ok
}
// never reached
fputs(" meow", stdout);
return 1; // prints "cat says" repeatedly
}
int t() {
int count = 0;
{
target:
_Defer { fputs("cat says ", stdout); }
++count;
if (count <= 2) {
goto target; // ok
}
}
fputs("meow", stdout);
return 1; // prints "cat says cat says cat says meow"
}
int u() {
int count = 0;
{
_Defer { fputs("cat says", stdout); }
target:
if (count < 5) {
++count;
goto target; // ok
}
}
fputs(" meow", stdout);
return 1; // prints "cat says meow"
}
int v() {

int count = 0;
target: if (count >= 2) {
fputs("meow", stdout);
return 1; // prints "cat says cat says meow "

}
_Defer { fputs("cat says ", stdout); }

© ISO 2025 — All rights reserved.
11

ISO/DIS TS25755(en)

count++;
goto target;
return 0; // never reached

13 EXAMPLE 2 All the expressions and statements of an enclosing block are evaluated before
executing defer statements, including any conversions. After all defer statements are executed,
the block is then exited.

int main()

int r = 4;

int* p = &r;

_Defer { *p = 5; }
return *p; // return 4;

{

This is important for proper resource management in conjunction with potentially complex return
expressions.

#include <stdlib.h>
#include <stddef.h>

int f(size_t n, void* buf) {
/* o000 ¥/
return 0O;

}

int main() {
const int size = 20;
void* buf = malloc(size);
_Defer { free(buf); }
// buffer is not freed until AFTER use buffer returns
return use buffer(size, buf);

Conversions for the purposes of return are also computed before any defer statements are entered.

#include <float.h>
#include <assert.h>

bool f() {
double x = DBL_SNAN;
_Defer {
// fetestexcept(FE_INVALID) is nonzero because of the
// comparison during the conversion to bool
assert(fetestexcept(FE_INVALID) != 0);
}

return x;

14 EXAMPLE 3 It is not defined if defer statements execute their deferred blocks if the exiting / non-
returning functions detailed previously are called.

© ISO 2025 — All rights reserved.
12

ISO/DIS TS25755(en)

#include <stdlib.h>

int f() {
void* p = malloc(1);
if (p == NULL) {
return 0;
}
_Defer free(p);
exit(1l); // "p" may be leaked
return 1;

}

int main() {
return f();

}

15 EXAMPLE 4 Defer statements, when execution reaches them, are tied to the scope of the defer
statement within their enclosing block, even if it is a secondary block without braces.

#include <stdio.h>
#include <stdlib.h>
int main() {
{
_Defer {
fputs(" meow", stdout);
}
if (true)
_Defer fputs('cat", stdout);
fputs(" says", stdout);
}
// "cat says meow" is printed to standard output
exit(0);
}

16 This applies to any enclosing block, even for loops without braces around its body.

#include <stdio.h>
#include <stdlib.h>

int main() {
const char* arr[] = {"cat", "kitty", "ferocious little baby"};
_Defer {
fputs(" meow", stdout);
}
for (unsigned int i = 0; i < 3; ++i)
_Defer printf("my %s,\n", arr[il);
fputs("says", stdout);

// "my cat,

// my kitty,

// my ferocious little baby,
// says meow"

© ISO 2025 — All rights reserved.
13

ISO/DIS TS25755(en)

// 1is printed to standard output
return 0;

17 EXAMPLE 5 Defer statements execute their deferred blocks in reverse order of the appearance
of the defer statements, and nested defer statements execute their deferred blocks in reverse order
but at the end of the deferred block they were invoked within. The following program:

int main() {

int r = 0;
{
_Defer {
_Defer r *= 4;
r *= 2;
_Defer {
r += 3;
}
}

_Defer r += 1;

}

return r; // return 20;

is equivalent to:

int main()
int r
r+=1
r *= 2;
r+=3
r *= 4;

return r; // return 20;

18 EXAMPLE 6 Defer statements can be executed within a switch, but a switch cannot be used to
jump into the scope of a defer statement.

#include <stdlib.h>

int main() {
void* p = malloc(1);
switch (1) {
_Defer free(p); // constraint violation
default:
_Defer free(p);
break;
}

return 0;

19 EXAMPLE 7 Defer statements can not be exited by means of break or continue .

© ISO 2025 — All rights reserved.
14

ISO/DIS TS25755(en)

int main() {
switch (1) {
default:
_Defer {
break; // constraint violation
}
}
for (;;) {
_Defer {
break; // constraint violation
}
}
for (;;) {
_Defer {
continue; // constraint violation
}
}

return 0;

20 EXAMPLE 8 Defer statements that are not reached are not executed.

#include <stdlib.h>

int main() {
void* p = malloc(1);
return 0;
_Defer free(p); // not executed, p is leaked

21 EXAMPLE 9 Defer statements can contain other compound statements.

typedef struct meow *handle;

extern int purr(handle *h);
extern void un_purr(handle h);

int main() {
handle h;
int err = purr(&h);
_Defer if (!err) un_purr(h);
return 0;

6.5. Predefined macro names

[predef.macro]

1 In addition to the keywords in ISO/IEC 9899:2024 §6.10.10, an implementation shall define the

following macro names:

__STDC_DEFER_TS25755__ The integer literal 2 if the implementation follows the recommended
practice and provides a keyword defer as in [keywords]. Otherwise, the integer literal 1.

© ISO 2025 — All rights reserved.
15

ISO/DIS TS25755(en)

7. Library [library]

The requirements from ISO/IEC 9899:2024, clause 7 apply with additional requirements in this
document.

7.1. The thrd_create function [lib-thrd.create]

In addition to the description and return requirements in in ISO/IEC 9899:2024 §7.28.5.1, when the
thrd_start_t func parameter is returned from, it behaves as if it also runs any defer statements
that are in scope for func before invoking thrd_exit with the returned value.

7.2. Defer mechanism <stddefer.h> [lib-stddefer.hdr]
The header <stddefer.h> defines the following macros for use with the defer feature.

The macro

__ STDC_VERSION STDDEFER H

is an integer constant expression with the value 202602L.

The macro

defer

which expands to _Defer.

© ISO 2025 — All rights reserved.
16

Index
C

Conversions

D

Defer statement
Defer statement
Deferred block

I

ISO/IEC 14882
ISO/IEC 9899
ISO/IEC 9899:2024

K

Keywords
break
continue
defer
goto
return
switch
_Defer

M

Macros
defer
_ STDC DEFER TS

_ STDC_VERSION STDDEFER H

main function

N

Non-local jump
noreturn
_Noreturn

P

Program termination

S
Signal

T

thrd _create
thrd_exit

U

Undefined behavior
Unlabeled statement

ISO/DIS TS25755(en)

6,7,8,12,14, 15
8,13, 14
7,14

8
5
6,7,8,15,16

7,14
7,14
7,15

7,8

7,14
6,7,16

16
16
16

16
16

© ISO 2025 — All rights reserved.

17

ISO/DIS TS25755(en)

© ISO 2025 - All rights reserved WWwWw.iso.org

https://www.iso.org

	Foreword
	Introduction
	1. Scope
	2. Normative References
	3. Terms and definitions
	4. Conformance
	5. Environment
	5.1. General
	5.2. Program termination
	5.2.1. Semantics

	6. Language
	6.1. General
	6.2. Keywords
	6.2.1. Recommended practice

	6.3. Statements
	6.3.1. Syntax

	6.4. Defer statements
	6.4.1. Syntax
	6.4.2. Description
	6.4.3. Constraints
	6.4.4. Semantics

	6.5. Predefined macro names

	7. Library
	7.1. The thrd_create function
	7.2. Defer mechanism <stddefer.h>

	Index

