
Proposal for C2y

WG14 N3578

Title: Dogfooding the _Optional qualifier

Author, affiliation: Christopher Bazley, Arm. (WG14 member in individual capacity – GPU expert.)
Date: 2025-06-05

Proposal category: New feature

Target audience: Committee, General developers

Abstract: In this paper, I demonstrate real-world use cases for _Optional — a proposed new type
qualifier that offers meaningful nullability semantics without turning C programs into a wall of
keywords. By solving problems in real programs and libraries, I learned much about how to use the
new qualifier to be best advantage, what pitfalls to avoid, and how it compares to Clang's nullability
qualifiers. I also uncovered an unintended consequence of my design.

Prior art: N3089, N3422.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3089.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3422.pdf

Dogfooding the _Optional qualifier
Reply-to: Christopher Bazley (chris.bazley.wg14@gmail.com)
Document No: N3578
Date: 2025-06-05

Table of Contents

SUMMARY OF CHANGES .. 4

MOTIVATION ... 4

METHODOLOGY ... 8

KNOWN LIMITATIONS OF MY APPROACH ... 10

VIRTUE FROM NECESSITY ... 11

_OPTIONAL MAKES CODE SELF-DOCUMENTING ... 12

DEALING WITH INTERFACE MISMATCHES ... 13

OUTDATED CALLERS THAT CONSUME POTENTIALLY-NULL POINTERS ... 13
OUTDATED CALLEES THAT CONSUME POTENTIALLY-NULL POINTERS .. 14

CASTS IN LOOP MACROS .. 16

CALLBACK CONTEXT CONUNDRUM .. 17

PRECEDENT FOR USE OF EXISTING QUALIFIERS ... 17
SUBSTITUTION OF A NON-NULL VALUE .. 19
USING INDIRECTION FOR TYPE COMPATIBILITY .. 21
SUGGESTED BEST PRACTICES ... 22

POINTER PROPERTY PREDICAMENT ... 23

IMPROVED CODE CLARITY .. 24

DEFENSIVE CONTROL FLOW ... 25

DEFENSIVE PROVISION OF OBJECTS ... 27

ALLOWING NULL ARGUMENTS — THE RIGHT WAY ... 30

CASTS HARM ANALYSIS .. 32

POINTERS AS OUTPUT PARAMETERS ... 33

GLOBAL VARIABLES .. 35

WHEN POINTERS CANNOT BE COPIED SAFELY .. 39

ARRAY TO POINTER DECAY AND ITS CONSEQUENCES .. 41

_OPTIONAL REALLY DOES FIND BUGS .. 43

POINTER ARITHMETIC AND ARRAY INDEXING .. 43
CHECKING FOPEN RETURN VALUES: A MISSED BRANCH .. 45
CONCLUSION ... 47

DOGFOODING ALSO FOUND A BUG IN MY FORK OF CLANG ... 48

IN CONCLUSION ... 48

ACKNOWLEDGEMENTS .. 48

Summary of Changes
N3578

 • Initial version

Motivation
At the 72nd meeting of WG14 in Graz, the committee decided to create a Technical Specification (TS)
based on my proposal, N3422, which formalizes _Optional as a type qualifier for nullability, after
previously voting overwhelmingly for something along the lines of N3089. Nevertheless, there
remains persistent opposition to aspects of my design, notably from Clang’s lead maintainer. Since I
am not immune to criticism, I’ve been eating my own dog food this Easter.

Originally, (years ago now) I used my prototype to add pointer nullability information to parts of the
user-space Mali GPU driver. This code is not open source; therefore, it is not available for anyone to
study, nor is there any evidence to support my claim. However, a lot of my own code is open source
on GitHub, and it is that code which I have been updating to use the _Optional qualifier.

It’s reasonable to ask why I haven’t done that before. For one thing, I don’t want to take on the task
of porting Clang to my preferred development platform. (Even if I had time, it would be appallingly
slow and probably run out of memory.) This is not a criticism of Clang in particular, but of complex
modern compilers in general. I’ve hesitated to incorporate _Optional into my hobby projects,
partly due to how my design was received by Clang’s maintainers and partly because I must work
and parent my children for most of the time.

However, I cannot expect to be taken seriously if I don’t show real-world use cases.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3422.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3089.pdf
https://en.wikipedia.org/wiki/Eating_your_own_dog_food
https://github.com/chrisbazley
https://github.com/chrisbazley
https://www.riscosopen.org/

None of the following projects were cherry-picked for suitability, nor did I spend hours refactoring
to show my code in a better light or to fit better into my proposed model. For example, I would no
longer write parameter declarations with abstract declarators and interleaved comments instead of
parameter names (a style that I copied from old system headers).

The following projects are covered by GPL v2:

• 3dObjLib
• ApocToObj
• CBDebugLib
• CBLibrary, CBLibrary (2), CBLibrary (3), CBLibrary (4)
• CBOSLib, CBOSLib (2)
• CBUtilLib, CBUtilLib (2)
• ChocToObj
• GKeyComp
• GKeyLib
• SF3KtoObj
• SF3KtoProT, SF3KtoProT (2), SF3KtoProT (3)
• SF3KUtils
• strb_t
• StreamLib

Please try to imagine what these commits would look like if every pointer parameter been
annotated with either _Nullable or _Nonnull. Like restrict, Clang’s nullability attributes lack any
mechanism for the compiler to check that they have been used consistently or correctly. Would you
want to write or maintain such code? I don’t think this is a false dichotomy; one way or another, the
days of relying on the diligence of programmers to handle null pointer values safely are numbered.

Excessive verbiage will kill C as a language that programmers actually want to use. We are already
halfway there. Yes, it may persist for a while for the purpose of describing system headers, but not
as a language for writing anything valuable. I’m not yet convinced that those working predominantly
on C++ codebases appreciate this, or that they care. Why should they?

Most C programmers do not want to write code like this (real function) definition:

void DrawObjs_to_screen(
 const PolyColData *const _Nonnull poly_colours,
 const HillColData *const _Nullable hill_colours,
 const CloudColData *const _Nonnull clouds,
 ObjGfxMeshes *const _Nonnull meshes,
 const View *const _Nonnull view,
 const MapArea *const _Nonnull scr_area,
 DrawObjsReadObjFn *const _Nonnull read_obj,
 DrawObjsReadHillFn *const _Nonnull read_hill,
 void *const cb_arg,
 TriggersData *const _Nullable triggers,
 const ObjEditSelection *const _Nullable restrict selection,
 const Vertex scr_orig,
 const bool is_ghost,
 const ObjEditSelection *const _Nullable restrict occluded)
{
 ...
}

https://choosealicense.com/licenses/gpl-2.0/
https://github.com/chrisbazley/3dObjLib/commit/791dbc469121d45b97fce12238edddd4113f89ef
https://github.com/chrisbazley/ApocToObj/commit/a061e0afff948f74877ee31a5e09074b1a41a679
https://github.com/chrisbazley/CBDebugLib/commit/83cfce88e70341fb6f450d74bb7028b4fa156586
https://github.com/chrisbazley/CBLibrary/commit/207ec90ecec006fb31c5ce5e452bf4969d9712f0
https://github.com/chrisbazley/CBLibrary/commit/db9a0e31618e558d9a9f3b12bddc1dae6cc393f7
https://github.com/chrisbazley/CBLibrary/commit/b33982074dcbd54d25b64dbd1de61d69abcf44af
https://github.com/chrisbazley/CBLibrary/commit/9896e9beaa831ef9bd2da2ddec4ac236a8fd742e
https://github.com/chrisbazley/CBOSLib/commit/18234b2746225b5fa8ece0209a367d06dfe76de1
https://github.com/chrisbazley/CBOSLib/commit/0ed7e59a25baa8b3bcb740728ea499f3fb1ddb9a
https://github.com/chrisbazley/CBUtilLib/commit/69e10295ba6df38acadfe46a28a4d6089a9e4890
https://github.com/chrisbazley/CBUtilLib/commit/7431e5af03cebf743ac49f567cc1be4a3d2c080a
https://github.com/chrisbazley/ChocToObj/commit/cf475cfcc1baedce822c29f6a856b0c925c2e1d7
https://github.com/chrisbazley/GKeyComp/commit/c059185924e78e6f940c00e1341eb12f018baab0
https://github.com/chrisbazley/GKeyLib/commit/f628ed2f1130dae950bce91851a0b538ee1c3172
https://github.com/chrisbazley/SF3KtoObj/commit/8d3fba57cb6b7faf7c0ee74d1d50771966f1b655
https://github.com/chrisbazley/SF3KtoProT/commit/2ce4f765f2bcd5292d55d501607226fa84cdc43f
https://github.com/chrisbazley/SF3KtoProT/commit/4a96abdd0245f7aeb4eda7a0d9dc9efc3b9fe895
https://github.com/chrisbazley/SF3KtoProT/commit/0cdd4ccc3c298349a23a8b1a986291b2f0daf9b2
https://github.com/chrisbazley/SF3KUtils/commit/6e3a7b65fbd02a3947a0f91fa7b4921feda1ee67
https://github.com/chrisbazley/strb_t/commit/30af2ec19a229c9eb694c296bc71aeee0fd2eb0c
https://github.com/chrisbazley/StreamLib/commit/cc0808dc27d793d800eb64cec30f5828198b2431
https://github.com/chrisbazley/SFEditor/blob/5ac682d0fe290f7b75b2b7b301de1ccad5f2f43a/DrawObjs.c#L356

At that point, writing C starts to feel more like painstakingly navigating a type system minefield than
enjoying a programming language — let alone a hobby. I would rather write C++ than write C in the
cluttered style shown in the preceding example. If this style ever becomes widespread, it will risk
reinforcing the stereotype of C as an outdated, overly burdensome language — which would be a
shame, given how clear and concise it once was.

I really did write all but one of those const qualifiers in the preceding example because I am
punctilious to the point of mild obsession. On the other hand, I am also clear-eyed about the fact
that most programmers have neither the time nor the inclination to write code like this. I did not
add the restrict qualifiers, and I would never add _Nonnull or _Nullable.

For me, Clang’s nullability attributes were the straw that broke the camel’s back. Despite occupying
the same syntactic position, they are not qualifiers at all: they are metadata bolted on to types,
invisible to the language’s core semantics, and incompatible with the clean declarator syntax that C
is built around.

Qualifiers have been an important part of C since it was standardized by ANSI, but Denis Ritchie (co-
creator of C) was initially sceptical of them:

Let me begin by saying that I’m not convinced that even the pre-December
qualifiers (`const’ and `volatile’) carry their weight; I suspect that what they add
to the cost of learning and using the language is not repaid in greater
expressiveness.

However, he did not outright reject the idea. He also wrote:

Const has two virtues: putting things in read-only memory, and expressing
interface restrictions. For example, saying

char *strchr(const char *s, int c);

is a reasonable way of expressing that the routine cannot change the object
referred to by its first argument. I think that minor changes in wording preserve
the virtues, yet eliminate the contradictions in the current scheme.

Indeed, const ended up being almost universally accepted. It does a lot to make interfaces self-
documenting and to allow verification that read-only objects are not modified. I believe
that _Optional is in the same tradition: opt-in, minimalist, and useful without imposing too great a
burden on compiler authors. By this standard, nullability attributes fall short.

https://en.wikipedia.org/wiki/ANSI_C
https://www.lysator.liu.se/c/dmr-on-noalias.html

By restraining the desire to over-specify everything, it’s possible to reduce the blizzard of clutter; we
can then selectively introduce _Optional and yet still write mnemonic-style declarators such
as *hill_colours (in accordance with K&R’s design for the language’s syntax):

void DrawObjs_to_screen(
 const PolyColData *poly_colours,
 _Optional const HillColData *hill_colours,
 const CloudColData *clouds,
 ObjGfxMeshes *meshes,
 const View *view,
 const MapArea *scr_area,
 DrawObjsReadObjFn *read_obj,
 DrawObjsReadHillFn *read_hill,
 void *cb_arg,
 _Optional TriggersData *triggers,
 _Optional const ObjEditSelection *selection,
 const Vertex scr_orig,
 const bool is_ghost,
 _Optional const ObjEditSelection *occluded)
{
 ...
}

(Here, _Optional qualifies the object being pointed to, not the pointer itself, like most typical usage
of const.)

Incidentally, Python has distinct abstract base classes for read-only collections: e.g.,
(immutable) Mapping vs. (mutable) dict and (immutable) Sequence vs. (mutable) list.
Consequently, there is no Const[dict] in Python’s type annotations, let alone a Nonconst[dict].
This is an interesting alternative to qualifiers but a poor fit for a language (like C) that has no
generalized and extensible mechanism for subtype polymorphism.

https://docs.python.org/3/library/collections.abc.html

Methodology
It is possible to introduce _Optional gradually by reading code and adding the qualifier to the
referenced type of any pointer that is only dereferenced after an explicit null check. However, this is
not a very thorough method. On the other hand, it is the least disruptive way to start, especially if
you restrict yourself to ‘leaf’ functions whose arguments can be null, but which do not pass those
values to other functions or assign them to global variables.

To have confidence that most referenced types that ought to have been qualified
as _Optional were updated, it is necessary to think about the possible origin of null pointer values:

1. As a result of default initialisation of an object of pointer type (e.g., because it lacks an
explicit initialiser or it is initialized with an empty initializer).

2. As a result of the implementation-defined conversion of an integer to a pointer type.
3. As a result of assigning the macro NULL or any other null pointer constant.
4. As a result of assigning the return value of a third-party library function that may return

null.

Today, there is nothing that can be done about points 1 and 2, although they are interesting
avenues for future improvement of tooling. Instead, I chose to focus on points 3 and 4.

In my projects, I only use NULL as a null pointer constant (i.e. no nullptr from C23, no naked 0 or
naked (void *)0). I therefore redefined the NULL macro to force generation of diagnostics
when NULL is assigned to objects whose referenced type is not qualified as _Optional:

#undef NULL
#define NULL ((_Optional void *)0)

Strictly speaking, a null pointer constant is not a pointer to a qualified type, therefore my definition
of NULL is not a null pointer constant:

An integer constant expression with the value 0, such an expression cast to type
void *, or the predefined constant nullptr is called a null pointer constant.

(6.3.3.3 Pointers, ISO/IEC 9899:202y (en) — N3550 working draft)

This is a trade-off: I chose practical enforcement over strict standard compliance. In
practice, ((_Optional void *)0) serves as a null pointer constant in every kind of situation but
one. In pedantic mode, Clang produces diagnostic messages if ((_Optional void *)0) is assigned
to a function pointer:

<source>:9:7: warning: assigning to 'int (*)(int)' from 'const void *' converts
between void pointer and function pointer [-Wpedantic]
 9 | foo = NULL;
 | ^ ~~~~

Consequently, I had to add casts when assigning NULL (as redefined with _Optional) to function
pointers, since the qualifier is not compatible with function types:

 /* Create a temporary sky file */
 EditSky edit_sky;
 (void)edit_sky_init(&edit_sky, NULL, (EditSkyRedrawBandsFn *)NULL,
 (EditSkyRedrawRenderOffsetFn *)NULL, (EditSkyRedrawStarsHeightFn *)NULL);

 Editor tmp;
 editor_init(&tmp, &edit_sky, (EditorRedrawSelectFn *)NULL);

https://github.com/chrisbazley/CBUtilLib/blob/74ec209983c4efd3424b6cf04971015e9f763640/Optional.h#L38-L39
https://github.com/chrisbazley/CBUtilLib/blob/74ec209983c4efd3424b6cf04971015e9f763640/Optional.h#L38-L39
https://github.com/chrisbazley/CBUtilLib/blob/74ec209983c4efd3424b6cf04971015e9f763640/Optional.h#L38-L39
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3550.pdf
https://github.com/chrisbazley/SF3KUtils/blob/2abd3233e570aa17f62f4bd18ce30c7cdd44e768/SFSkyEdit/EditWin.c#L2976C1-L2982C62

Another thing to watch out for when using Clang is that including <stddef.h> (or any header file
that might include <stddef.h>) reinstates the original definition of NULL — even if <stddef.h> was
also included before redefining the macro! In practice, this means that a header file that
redefines NULL must be included last by any file that includes it.

Neither of these issues will exist when compilers gain the ability to diagnose misassignment of null
pointer constants (analogous to GCC’s -Wwrite-strings option to diagnose misuse of string
literals), because the _Optional qualifier won’t need to be explicit in the definition of NULL (any
more than the const qualifier is explicit in "Hello world").

It would be idiomatic to initialise a pointer to an _Optional object with the return value of malloc,
even though the return type of malloc is void * rather than _Optional void *:

_Optional int *ip = malloc(sizeof *ip);

Just as assigning the return value of malloc to an object of type int * adds useful type information,
so does assigning it to an object of type _Optional int *. However, this technique requires a
thorough search for all calls to malloc in a program and constant vigilance thereafter.

I therefore defined shims for some third-party library functions. Their purpose is to catch
assignment of a return value that can be null to a pointer whose referenced type is not qualified
as _Optional. They act as a transitional mechanism. I did not do this for functions provided by my
own libraries, because it was more useful to invest my time in updating those.

Each shim comprises a substitute function and a macro that replaces a call to the original function
with a call to the substitute. Each substitute wraps a call to the original but has a return value with a
more qualified type. For example, here is a shim to update the return type of malloc:

static inline _Optional void *optional_malloc(size_t n)
{
 return malloc(n);
}
#undef malloc
#define malloc(n) optional_malloc(n)

The same strategy is used for other functions that can return null, such as strchr and realloc.

Of course, this is only half of the picture: it would be inconvenient to define a shim to malloc that
returns a pointer to a qualified type, but not a shim to free that accepts the same type.
Consequently, a few more shims were needed to adapt parameter types:

static inline void optional_free(_Optional void *x)
{
 free((void *)x);
}
#undef free
#define free(x) optional_free(x)

fopen was the only function operating on a stream that needed a shim. For example, fclose does
not accept a null pointer.

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wwrite-strings
https://github.com/chrisbazley/CBUtilLib/blob/74ec209983c4efd3424b6cf04971015e9f763640/Optional.h#L55C1-L60C37
https://github.com/chrisbazley/CBUtilLib/blob/74ec209983c4efd3424b6cf04971015e9f763640/Optional.h#L55C1-L60C37

Known limitations of my approach
• Assignment of NULL to function pointers requires explicit casts.
• Redefining NULL is fragile across #include directives.
• Requires a manual audit of third-party library functions to identify those which may return a

null pointer.

Ultimately, if toolchain support for _Optional improves, much of this machinery — such as
redefining NULL or writing wrappers — will become unnecessary. In the meantime, this approach
helps enforce correct nullability semantics with my prototype fork of Clang.

Virtue from necessity
Many of the changes that I made whilst dogfooding the _Optional qualifier were to add the
sigil &* to expressions in which the qualifier would not otherwise be removed from a referenced
type. For example, in a commit of +1449 -1150 lines, 512 lines added _Optional (35%), 300 lines
added &* (20%), and 2 lines (0.1%) added both. That’s closer to parity between use
of _Optional and &* than I expected, but I do not think either significantly impacts the terseness or
readability of the code.

I did not make a big effort to minimize the use of &* because it is easy to type and transparent to
tools that don’t understand _Optional; the way to do so would be to minimise the number of
individual dereferences of maybe-null pointers. I hope everyone can agree that would be a worthy
goal, irrespective of anything else.

This idiom may appear ugly, but I have yet to hear anyone propose a practical alternative that
doesn’t require path-sensitive analysis. In any case, I rather like having something to tell me “Watch
out!” when a pointer is assumed to be non-null. It makes it easier to validate code by eye, which is
important for code reviews. If a reviewer cannot tell that a pointer argument should not be null
without looking at the description of a called function, that is time-consuming.

Anyone can see that a call such as gkeycomp_compress(&*comp, ¶ms) should be guarded by
control flow statements to ensure that comp is never null. Traditionally, it would be necessary to find
every definition of the gkeycomp_compress function that the translation unit containing this call
could conceivably be linked with (assuming they are all open source, and disregarding definitions
that haven’t been written yet), then analyse every definition to discover whether it is safe to
use comp as an argument.

&* (or any equivalent) can be used as an assertion that a pointer is not null regardless of whether
the referenced object needs to exist. It is often the case that although a callee could accept null, the
programmer does not intend to pass null to that function (either because any error should have
been handled earlier, as in the case of free, or because null has a special meaning, as in the case
of strtok). This use-case is enabled by path-sensitive analysis, not made redundant by it.

Using &*ptr as a signal —not just as a workaround— enhances the readability of code by making the
programmer’s intent explicit and allows that intent to be translated into diagnostic messages if
appropriate.

https://github.com/chrisbazley/SF3KUtils/commit/6e3a7b65fbd02a3947a0f91fa7b4921feda1ee67

_Optional makes code self-documenting
Many large undocumented function parameter lists (the details of which I had long forgotten)
immediately became at least somewhat self-documenting as a result of selectively adding the
_Optional qualifier.

There’s no chance that I would have bothered to go back and document functions in my hobby
projects after all this time; adding the _Optional qualifier was a lot easier, more useful and more
fun.

For example, this:

static bool process_file(const char * const model_file,
 const char * const index_file,
 const char * const output_file,
 const int first, const int last,
 const char * const name,
 const long int data_start,
 const char * const mtl_file,
 double const thick,
 const unsigned int flags, const bool time,
 const bool raw)

Became this:

static bool process_file(const char * const model_file,
 _Optional const char * const index_file,
 _Optional const char * const output_file,
 const int first, const int last,
 _Optional const char * const name,
 const long int data_start,
 const char * const mtl_file,
 double const thick,
 const unsigned int flags, const bool time,
 const bool raw)

The reference parameters marked _Optional immediately stand out because references to non-
optional objects are not marked with _Nonnull (or equivalent). Now, someone can instantly see
that they don’t need to pass an object name, index file name or output file name to process_file.
This might be sufficient to jog their memory or even to guess correctly why not. (Clue: it has
something to do with stdin and stdout.)

https://github.com/chrisbazley/ChocToObj/blob/e6dbc84f6bc917dd6562623a0100f4c478e7f550/choctoobj.c#L50
https://github.com/chrisbazley/ChocToObj/blob/cf475cfcc1baedce822c29f6a856b0c925c2e1d7/choctoobj.c#L50

Dealing with interface mismatches
The chief proponent of Clang’s nullability attributes has said that, for his users, “not sure whether it
can be null” (aka_Null_unspecified, but usually implicit) is the most important category of
pointer.

I did not require a third state when dogfooding the _Optional qualifier, nor do I think it would have
meaningful semantics for my programs. We do not talk about whether data is immutable, mutable
or not-sure; nor is that distinction part of the language. Either an lvalue is assumed to be modifiable
or it is not; either an lvalue is assumed to be valid or it is not.

Does anyone seriously wish that the ANSI C committee had
mandated _Const, _Nonconst and _Const_unspecified attributes instead of a
single const qualifier? Would the state of C programming be better today if every mutable type
were qualified as _Nonconst? I do not think so.

However, nor do I not dismiss the idea that it is sometimes necessary to update code separately
from libraries that it depends upon, or update a library separately from code that depends upon it.
My original dogfooding exercise in 2022 modified a codebase that had few external dependencies;
many real projects are not like that.

There are two main scenarios of interest, when it comes to compatibility. I’ll examine them in turn,
using real code examples, then compare use of _Optional with use of Clang’s nullability attributes.

Outdated callers that consume potentially-null pointers
A library function that can return null might be updated to output a pointer to an _Optional-
qualified type before all code that depends on that library has been updated to handle _Optional-
qualified types:

_Optional GKeyComp *gkeycomp_make(unsigned int /*history_log_2*/);

Unless the _Optional qualifier is used in _Generic selection, it can be defined for compatibility
purposes as a macro that expands to nothing. This makes it relatively easy to avoid the need to
update outdated code that consumes a potentially-null pointer produced by a function.

I went further than that: every library header that I updated to specify an interface
using _Optional also defines it as a macro that expands to nothing unless explicitly overridden:

#if !defined(USE_OPTIONAL) && !defined(_Optional)
#define _Optional
#endif

To enable the _Optional qualifier, USE_OPTIONAL must be defined as part of the command line
used to invoke the compiler. This avoids imposing any requirement on outdated code that might
depend on such headers.

Once a decision has been made to update an outdated caller of a function that can return null, the
referenced type of any variable to which the return value is assigned must be updated to add
the _Optional qualifier:

_Optional GKeyComp *comp = NULL;
// ...
comp = gkeycomp_make(history_log_2);

https://github.com/chrisbazley/GKeyLib/commit/f628ed2f1130dae950bce91851a0b538ee1c3172#diff-0d9635fd3b328b1b08cb307821e1264c8ea430ec10ba3db262f0b7985817bc05R46
https://github.com/chrisbazley/GKeyLib/commit/f628ed2f1130dae950bce91851a0b538ee1c3172#diff-0d9635fd3b328b1b08cb307821e1264c8ea430ec10ba3db262f0b7985817bc05R46
https://github.com/chrisbazley/GKeyLib/commit/f628ed2f1130dae950bce91851a0b538ee1c3172#diff-0d9635fd3b328b1b08cb307821e1264c8ea430ec10ba3db262f0b7985817bc05R46
https://github.com/chrisbazley/GKeyLib/commit/f628ed2f1130dae950bce91851a0b538ee1c3172#diff-0d9635fd3b328b1b08cb307821e1264c8ea430ec10ba3db262f0b7985817bc05R46
https://github.com/chrisbazley/GKeyLib/commit/f628ed2f1130dae950bce91851a0b538ee1c3172#diff-0d9635fd3b328b1b08cb307821e1264c8ea430ec10ba3db262f0b7985817bc05R37
https://github.com/chrisbazley/GKeyComp/commit/c059185924e78e6f940c00e1341eb12f018baab0#diff-fba65f53d97a532a3b314b9b3343d7c70e0ec9f3c2418fd3097668d6f4592bfbR92-R93
https://github.com/chrisbazley/GKeyComp/commit/c059185924e78e6f940c00e1341eb12f018baab0#diff-fba65f53d97a532a3b314b9b3343d7c70e0ec9f3c2418fd3097668d6f4592bfbR92-R93
https://github.com/chrisbazley/GKeyComp/commit/c059185924e78e6f940c00e1341eb12f018baab0#diff-fba65f53d97a532a3b314b9b3343d7c70e0ec9f3c2418fd3097668d6f4592bfbR92-R93
https://github.com/chrisbazley/GKeyComp/commit/c059185924e78e6f940c00e1341eb12f018baab0#diff-fba65f53d97a532a3b314b9b3343d7c70e0ec9f3c2418fd3097668d6f4592bfbR92-R93

This makes it easier to reason about the calling code, since the imported constraint on the variable
is explicitly stated. However, subsequent assignments of the variable’s value (including in function
calls) may then cause constraint violations that require further updates to the calling code.

For example, a constraint violation may be diagnosed in a subsequent call to a function that does
not accept the address of an _Optional object:

gkcomp.c:171:32: warning: passing '_Optional GKeyComp *' (aka '_Optional struct
GKeyComp *') to parameter of type 'GKeyComp *' (aka 'struct GKeyComp *') discards
qualifiers [-Wincompatible-pointer-types-discards-qualifiers]
 171 | status = gkeycomp_compress(comp, ¶ms);
 | ^~~~
/work/GKeyLib/GKeyComp.h:68:54: note: passing argument to parameter here
 68 | GKeyStatus gkeycomp_compress(GKeyComp */*comp*/,
 | ^

Having checked that the address of the _Optional object cannot be assigned to an argument or
variable that discards the qualifier if the pointer is actually null, those expressions will
need updating to explicitly remove the _Optional qualifier (e.g., using the &* idiom):

status = gkeycomp_compress(&*comp, ¶ms);

If available, path-sensitive analysis can then be used to verify that the updated expressions really
are guarded by control flow statement.

In contrast, had the gkeycomp_make function been updated to output a _Nullable pointer then no
changes would have been required to the calling code. This is because the _Nullable attribute is
not really part of the type; it has no meaningful semantics without path-sensitive analysis.

C claims to be a language that allows “programmers and tools to reason about code, allows for
diverse implementations, keeps compilation times short”. Programmers cannot reason about code
into which constraints are imported invisibly. Relying solely on path-sensitive analysis has
advantages but it is conducive neither to diverse implementations nor to short compilation times.

Outdated callees that consume potentially-null pointers
Some code that calls a library function that can accept null might be updated to pass a pointer to
an _Optional-qualified type before the library they depend on has been updated to
handle _Optional-qualified types:

_Optional CONST _kernel_oserror *canonicalise(_Optional char **b,
 _Optional const char *pv,
 _Optional const char *ps,
 const char *f)
{
 assert(b != NULL);
 assert(f != NULL);
 DEBUGF("Canonical: About to do path '%s' with variable '%s' and string '%s'\n",
 f, STRING_OR_NULL(pv), STRING_OR_NULL(ps));

 /* First pass - determine buffer size needed */
 size_t nbytes;
 _Optional CONST _kernel_oserror *e = os_fscontrol_canonicalise(
 NULL, 0, pv, ps, f, &nbytes);

The preceding function serves as a memory-allocation veneer for a function in another library and
passes several potentially-null pointers (pv and ps) straight through. This situation is rare, in my
experience. Usually, potentially-null arguments are either pointers being passed back into a library
whence they originated (as in the case of malloc and free), or they are null pointer constants.

https://github.com/chrisbazley/GKeyComp/commit/c059185924e78e6f940c00e1341eb12f018baab0#diff-fba65f53d97a532a3b314b9b3343d7c70e0ec9f3c2418fd3097668d6f4592bfbR171
https://github.com/chrisbazley/GKeyComp/commit/c059185924e78e6f940c00e1341eb12f018baab0#diff-fba65f53d97a532a3b314b9b3343d7c70e0ec9f3c2418fd3097668d6f4592bfbR171
https://github.com/chrisbazley/GKeyComp/commit/c059185924e78e6f940c00e1341eb12f018baab0#diff-fba65f53d97a532a3b314b9b3343d7c70e0ec9f3c2418fd3097668d6f4592bfbR171
https://github.com/chrisbazley/CBLibrary/commit/207ec90ecec006fb31c5ce5e452bf4969d9712f0#diff-da82adb3e84da894b05dc5a7a6bbbc405228493286ecaa56daf42335c667bb15R68
https://github.com/chrisbazley/CBLibrary/commit/207ec90ecec006fb31c5ce5e452bf4969d9712f0#diff-da82adb3e84da894b05dc5a7a6bbbc405228493286ecaa56daf42335c667bb15R68
https://github.com/chrisbazley/CBLibrary/commit/207ec90ecec006fb31c5ce5e452bf4969d9712f0#diff-da82adb3e84da894b05dc5a7a6bbbc405228493286ecaa56daf42335c667bb15R68
https://github.com/chrisbazley/CBLibrary/commit/207ec90ecec006fb31c5ce5e452bf4969d9712f0#diff-da82adb3e84da894b05dc5a7a6bbbc405228493286ecaa56daf42335c667bb15R68
https://github.com/chrisbazley/CBOSLib/commit/18234b2746225b5fa8ece0209a367d06dfe76de1#diff-e821d3e727d26ff639beab934c2c0a4004dbea3cd56a816348f65268d143eebcR43
https://github.com/chrisbazley/CBOSLib/commit/18234b2746225b5fa8ece0209a367d06dfe76de1#diff-e821d3e727d26ff639beab934c2c0a4004dbea3cd56a816348f65268d143eebcR43
https://github.com/chrisbazley/CBOSLib/commit/18234b2746225b5fa8ece0209a367d06dfe76de1#diff-e821d3e727d26ff639beab934c2c0a4004dbea3cd56a816348f65268d143eebcR43
https://github.com/chrisbazley/CBOSLib/commit/18234b2746225b5fa8ece0209a367d06dfe76de1#diff-e821d3e727d26ff639beab934c2c0a4004dbea3cd56a816348f65268d143eebcR43

There is no way of preprocessing an old library header such that _Optional qualifiers magically
appear in the parameter types of functions that it declares, therefore the only place to address the
problem is in the calling code.

Casts can be used to remove the _Optional qualifier from the referenced type of arguments passed
to an outdated function:

_Optional CONST _kernel_oserror *e = os_fscontrol_canonicalise(
 (char *)NULL, 0, (const char *)pv, (const char *)ps, f, &nbytes);

Casts are the solution that C programmers have always used when calling functions that do not
accept pointer-to-const, but they are not type-safe. A macro to remove the _Optional qualifier
from a referenced type more safely can be created by making use of the fact that the operand
of typeof is not evaluated:

#define optional_cast(p) ((typeof(&*(p)))(p))

_Optional CONST _kernel_oserror *e = os_fscontrol_canonicalise(
 optional_cast(NULL), 0, optional_cast(pv), optional_cast(ps), f, &nbytes);

This has another advantage which is that macro-style casts are easier to find, and their purpose is
immediately obvious. When passing NULL as an argument, less information is lost by using an
ordinary cast, and (void *)NULL is as easy to spot or search for as optional_cast(NULL).

An alternative might be to use a null pointer constant such as (void *)0 in place of my modified
definition of NULL, but that would not be future proof should compilers gain the ability to diagnose
misassignment of null. The other alternative of 0 is worse for readability and would provoke a
diagnostic message if -Wzero-as-null-pointer-constant were enabled.

In contrast, had the canonicalise function instead tried to pass _Nullable pointer
arguments pv and ps to an outdated version of os_fscontrol_canonicalise then no changes
would have been required to either function. This is because the _Nullable attribute is not really
part of the type; it has no meaningful semantics without path-sensitive analysis.

Neither Clang nor its static analyser complain when the _Nullable attribute is implicitly discarded,
nor when a null pointer constant is an argument unless the callee’s parameters have explicitly been
annotated as _Nonnull. Effectively, the default assumption is that any function can accept null or
a _Nullable pointer. This requires all parameters of pointer type to be written with
the _Nonnull attribute; a bigger change to use of the language than selective use of _Optional.

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wzero-as-null-pointer-constant

Casts in loop macros
In general, casts are discouraged because they discard useful type information, but in some cases —
such as macro-generated for loops— they remain the most practical tool.

I found them useful in the specific use-case of a loop macro that traverses an intrusive linked list:

#define LINKEDLIST_FOR_EACH_SAFE(list, item, tmp) \
 for (LinkedListItem *(item) = (LinkedListItem *)linkedlist_get_head(list), \
 *(tmp); \
 (tmp) = (item) ? \
 (LinkedListItem *)linkedlist_get_next(item) : \
 (LinkedListItem *)NULL, \
 (item) != NULL; \
 (item) = (tmp))

(Reformatted for greater clarity.)

Both linkedlist_get_head and linkedlist_get_next return a pointer to an _Optional
LinkedListItem. I chose to cast away the _Optional qualifier rather than qualify the referenced
type of item to match the return type of these functions, because users of the macro expect a non-
null pointer to the current item within the loop body. Given the constraints of for statements, I
couldn’t think of a better way to express that.

In practice, this type information is often discarded immediately by macros like CONTAINER_OF, so
the precise type of item rarely matters outside the loop header:

LINKEDLIST_FOR_EACH_SAFE(&path->waypoints, item, tmp)
{
 Waypoint *const waypoint = CONTAINER_OF(item, Waypoint, link);
 waypoint_delete(waypoint);
}

In other cases, it would not be too onerous to use the &* idiom within the loop body — merely an
unwelcome surprise:

 LINKEDLIST_FOR_EACH_SAFE(&list, item, tmp)
 {
 if (j++ % KeepInterval)
 {
 linkedlist_remove(&list, &*item);
 }
 }

While using &*item is safe and amenable to static analysis, I feel that casting in the macro definition
produces cleaner and more intuitive code.

https://github.com/chrisbazley/CBUtilLib/blob/9c492487edcd089845a671ec14f7c3801bcee33c/LinkedList.h#L162
https://github.com/chrisbazley/SFEditor/blob/5ac682d0fe290f7b75b2b7b301de1ccad5f2f43a/Paths.c#L153C1-L157C4
https://github.com/chrisbazley/SFEditor/blob/5ac682d0fe290f7b75b2b7b301de1ccad5f2f43a/Paths.c#L153C1-L157C4
https://github.com/chrisbazley/CBUtilLib/blob/29b3c172ae83bd68adb3c1973aa88793052990f0/tests/ListTest.c#L524

Callback context conundrum
In C, null is used for two semantically distinct purposes: to indicate the absence of a referenced
object, or as a placeholder where a pointer is required but its value is irrelevant. The latter usage is
common in callbacks, where null is often passed simply because the callback function signature
requires a pointer argument.

An example is the void * parameter of the standard library function bsearch_s, whose value is
passed to a user-specified comparison function. If the comparison function requires no context,
then there is no point in requiring a non-null pointer to be passed.

Precedent for use of existing qualifiers
Let us consider the precedent set by const and volatile. It is plausible for callback functions to use
immutable or volatile contexts, yet it is rare for C libraries to allow the address of such contexts to
be passed without casting.

For example, this function allows an event handler to be registered:

typedef int (WimpEventHandler) (int event_code,
 WimpPollBlock *event,
 IdBlock *id_block,
 void *handle);

_kernel_oserror *event_register_wimp_handler (ObjectId object_id, int event_code,
 WimpEventHandler *handler,
 void *handle);

For a function such as event_register_wimp_handler to accept a context pointer of type const
void *, volatile void * or const volatile void *, the two declarations would need to have
been written like this:

typedef int (WimpEventHandler) (int event_code,
 WimpPollBlock *event,
 IdBlock *id_block,
 const volatile void *handle);

_kernel_oserror *event_register_wimp_handler (ObjectId object_id, int event_code,
 WimpEventHandler *handler,
 const volatile void *handle);

This is only a small inconvenience for the author of the library that
provides event_register_wimp_handler, but a huge inconvenience for users who
implement WimpEventHandler functions. Accepting a pointer to a qualified type in the registration
function forces all event handlers to accept it too!

https://gitlab.riscosopen.org/bavison/ToolboxLib-fixed/-/blob/Libs-0_09/eventlib/h/event#L77

Nowadays, it would be possible to solve this using _Generic, by selecting the type of the
registration function according to the type of the callback function:

typedef int (WimpEventHandler) (int event_code,
 WimpPollBlock *event,
 IdBlock *id_block,
 void *handle);

typedef int (WimpEventHandlerC) (int event_code,
 WimpPollBlock *event,
 IdBlock *id_block,
 const void *handle);

typedef int (WimpEventHandlerCV) (int event_code,
 WimpPollBlock *event,
 IdBlock *id_block,
 const volatile void *handle);

typedef int (WimpEventHandlerV) (int event_code,
 WimpPollBlock *event,
 IdBlock *id_block,
 volatile void *handle);

_kernel_oserror *event_register_wimp_handler (ObjectId object_id, int event_code,
 WimpEventHandler *handler,
 void *handle);

_kernel_oserror *event_register_wimp_handler_c (ObjectId object_id, int event_code,
 WimpEventHandlerC *handler,
 const void *handle);

_kernel_oserror *event_register_wimp_handler_cv (ObjectId object_id,
 int event_code,
 WimpEventHandlerCV *handler,
 const volatile void *handle);

_kernel_oserror *event_register_wimp_handler_v (ObjectId object_id, int event_code,
 WimpEventHandlerV *handler,
 volatile void *handle);

#define event_register_wimp_handler(object_id, event_code, handler, handle) \
 _Generic(handler, \
 WimpEventHandler *: event_register_wimp_handler, \
 WimpEventHandlerC *: event_register_wimp_handler_c, \
 WimpEventHandlerCV *: event_register_wimp_handler_cv, \
 WimpEventHandlerV *: event_register_wimp_handler_v) \
 (object_id, event_code, handler, handle)

However, there is a combinatorial explosion as support for more qualifiers is added: all
combinations of const, volatile, _Optional and _Atomic would require 16 variants
of event_register_wimp_handler. Supporting all the desired combinations with polymorphism
may be impractical.

One goal of dogfooding was to evaluate how well _Optional integrates with existing libraries. I
therefore avoided 'cheating' by assuming that the types
of event_register_wimp_handler and WimpEventHandler could be redefined arbitrarily.

Instead of polymorphic solutions such as that shown in the preceding example, there are two
common ways of dealing with existing qualifiers:

1. Cast the qualifier away when converting a pointer to type void *, or
2. Use an extra level of indirection (i.e. pass the address of an unqualified pointer to the

qualified type, instead of passing the pointer itself).

Either solution also works for the _Optional qualifier, but _Optional is a bit different: if a null
pointer is passed to a callback function, then that argument cannot be used (by definition) except
for its capacity to encode one bit of information: pointer-to-object vs. pointer-to-nothing.

This suggests a third option: require the address of a callback context object.

Substitution of a non-null value
The writer_internal_init function is used to initialise an instance of a struct type that has a
member of type void *. The role of this member is similar to the context argument passed
to bsearch_s except that instead of being passed directly to callbacks, it can be read from a struct.
It could be thought of as a pointer to instance variables of subclasses of Writer.

Previously, not all callers of writer_internal_init supplied a data pointer; some (having no
instance variables) instead passed NULL:

void writer_null_init(Writer * const writer)
{
 assert(writer != NULL);
 static WriterFns const fns = {writer_null_fwrite, writer_null_destroy};
 writer_internal_init(writer, &fns, NULL);
}

I did not want to allow the data member of the struct to be NULL, because that would have made
work everywhere that member is used. (In general, it’s a bad idea to use unnecessarily permissive
types.)

Instead, I considered modifying writer_internal_init to automatically substitute a default
pointer value for null:

void writer_internal_init(Writer *const writer, WriterFns const *const fns,
 _Optional void *data)
{
 assert(writer != NULL);
 DEBUGF("Initializing writer %p with data %p\n", (void *)writer, data);
 assert(fns != NULL);

 *writer = (Writer){
 .fns = *fns,
 .data = data ? &*data : writer, // substitute a default non-null value
 // ...
 };
}

https://github.com/chrisbazley/StreamLib/blob/80368f64494e145bf2f87f187784c7bdcb66b96e/Writer.c#L103
https://github.com/chrisbazley/StreamLib/blob/e45740acfe7793bddab95eb4b448e4438a3bd706/WriterNull.c#L50
https://github.com/chrisbazley/StreamLib/blob/e45740acfe7793bddab95eb4b448e4438a3bd706/WriterNull.c#L50

There is a problem with this approach though: null does not merely indicate the absence of a
referenced object; it is also commonly used to indicate an error. For example,
the writer_gkey_init_from function allocates storage for an object whose address is passed as
‘data’:

 WriterGKeyData *const data = malloc(sizeof(*data));
 if (data == NULL) {
 DEBUGF("Failed to allocate writer data\n");
 return false;
 }

 // ...

 static WriterFns const fns = {writer_gkey_fwrite, writer_gkey_destroy};
 writer_internal_init(writer, &fns, data);

If this, or any other caller of writer_internal_init, neglected to check for data == NULL then a
default non-null value would have been substituted. Callback functions (such as
writer_gkey_destroy) could later misinterpret the default value as the address of something else
(in this case, a WriterGKeyData object instead of a Writer object):

static bool writer_gkey_destroy(Writer * const writer)
{
 assert(writer != NULL);
 WriterGKeyData *const data = writer->data;

Instead, I decided to modify callers that previously passed NULL to pass a (dummy) non-null
value instead:

void writer_null_init(Writer * const writer)
{
 assert(writer != NULL);
 static WriterFns const fns = {writer_null_fwrite, writer_null_destroy};
 writer_internal_init(writer, &fns, writer);
}

The callers of writer_internal_init are now responsible for any consequences of passing the
address of the wrong object, instead of providing a footgun by hiding this substitution.

The easiest way of conjuring up a non-null pointer compatible with void * is to use a string literal
(e.g. "" or "none"):

void writer_null_init(Writer * const writer)
{
 assert(writer != NULL);
 static WriterFns const fns = {writer_null_fwrite, writer_null_destroy};
 writer_internal_init(writer, &fns, "");
}

Although tempting, this is probably a bad idea because it would generate a diagnostic message if
the code were compiled by GCC with the -Wwrite-strings option enabled.

https://github.com/chrisbazley/StreamLib/blob/80368f64494e145bf2f87f187784c7bdcb66b96e/WriterGKey.c#L363
https://github.com/chrisbazley/StreamLib/blob/cc0808dc27d793d800eb64cec30f5828198b2431/WriterGKey.c#L332
https://github.com/chrisbazley/StreamLib/blob/cc0808dc27d793d800eb64cec30f5828198b2431/WriterGKey.c#L332
https://github.com/chrisbazley/StreamLib/blob/cc0808dc27d793d800eb64cec30f5828198b2431/WriterNull.c#L51
https://github.com/chrisbazley/StreamLib/blob/cc0808dc27d793d800eb64cec30f5828198b2431/WriterNull.c#L51
https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html#index-Wwrite-strings

In the preceding example, there is no reason for writer_gkey_destroy to use a Writer address
stored in writer->data instead of using writer directly; in other cases, I was able to substitute a
callback context that could plausibly be useful.

For example, I replaced this code:

bool IO_copy(EditWin *const edit_win)
{
 // ...
 if (E(entity2_claim(Wimp_MClaimEntity_Clipboard, export_file_types,
 estimate_cb, cb_write, cb_lost, NULL)))
 {
 return false;
 }

With this:

bool IO_copy(EditWin *const edit_win)
{
 // ...
 if (E(entity2_claim(Wimp_MClaimEntity_Clipboard, export_file_types,
 estimate_cb, cb_write, cb_lost, edit_win)))
 {
 return false;
 }

As it happens, the callback functions estimate_cb, cb_write and cb_lost do not currently need a
reference to the EditWin, but the change is harmless and unobtrusive.

Using indirection for type compatibility
An interesting use-case that I came across concerned use of a Boolean variable as a callback
context:

bool is_safe = true;
success = loader3_load_file(canonical_path,
 message->data.data_load.file_type,
 read_file, load_failed, &is_safe);

It would be reasonable to assume that the callback function read_file dereferences the callback
context pointer to get a value of true or false, but it does not!

Instead, the value of the pointer is used directly, as an optimisation:

static bool read_file(Reader *const reader, int const estimated_size,
 int const file_type, char const *const filename, void *const client_handle)
{
 bool const is_safe = client_handle != NULL;

A different call to register read_file as a callback function does not even specify a callback context:

ON_ERR_RPT(loader3_receive_data(message, read_file, load_fail, NULL));

The type of the context and its value of true are irrelevant because the value of is_safe is unused!
This illustrates that even when the pointed-to value is irrelevant, every pointer can encode one bit
of information that can be extracted by comparing it with null.

https://github.com/chrisbazley/SF3KUtils/blob/b297897898da4858f33a160b5a3d8e4d9e3f20b5/SFColours/ColsIO.c#L1668
https://github.com/chrisbazley/SF3KUtils/blob/6e3a7b65fbd02a3947a0f91fa7b4921feda1ee67/SFColours/ColsIO.c#L1679
https://github.com/chrisbazley/SF3KUtils/blob/ed957457f34628df6e055c811e2e63cd40ec7abf/SFToSpr/SFTIconbar.c#L334
https://github.com/chrisbazley/SF3KUtils/blob/ed957457f34628df6e055c811e2e63cd40ec7abf/SFToSpr/SFTIconbar.c#L334
https://github.com/chrisbazley/SF3KUtils/blob/ed957457f34628df6e055c811e2e63cd40ec7abf/SFToSpr/SFTIconbar.c#L277

Instead of changing the signature of loader3_receive_data to allow null as a callback context
pointer, I refactored the calling code so that a callback context is always specified:

static bool is_safe = false;
ON_ERR_RPT(loader3_receive_data(message, read_file, load_fail, &is_safe));

Consequently, the callback function no longer needs to handle null:

static bool read_file(Reader *const reader, int const estimated_size,
 int const file_type, char const *const filename, void *const client_handle)
{
 bool const *const is_safe = client_handle;

Suggested best practices

• Do not permit null as a callback context simply as a placeholder.
• Avoid using a null/non-null as a substitute for a Boolean variable.
• Prefer credible (even redundant) callback contexts over dummy values.
• Prefer explicitly passing a dummy value as a callback context rather than letting the callee

substitute one implicitly.

https://github.com/chrisbazley/SF3KUtils/blob/6e3a7b6/SFToSpr/SFTIconbar.c#L282
https://github.com/chrisbazley/SF3KUtils/blob/6e3a7b65fbd02a3947a0f91fa7b4921feda1ee67/SFToSpr/SFTIconbar.c#L193C1-L196C45

Pointer property predicament
In object-oriented programming, getter and setter functions are commonly used to access
properties of an object. Some properties may be pointers. For example, the following pair of
functions allow the address of some data to be associated with a window, icon or menu:

extern _kernel_oserror *toolbox_set_client_handle (unsigned int flags,
 ObjectId id,
 void *client_handle
);

extern _kernel_oserror *toolbox_get_client_handle (unsigned int flags,
 ObjectId id,
 void **client_handle
);

It is possible to set null as the client handle of an object, but there is rarely a use-case for doing so.
Users of this library are not obliged to call toolbox_set_client_handle, so its argument is never
just a placeholder; if the function is called at all, then the passed-in value is always meaningful —
even if it is null.

Since none of my programs pass NULL to toolbox_set_client_handle, I had no incentive to create
a shim to allow it. On the other hand, null is the default value of an object’s client handle, therefore
there is an argument for requiring callers of toolbox_get_client_handle to pass the address of a
pointer to _Optional void in case the setter has not been called yet.

The declaration of the getter could be updated as follows:

extern _kernel_oserror *toolbox_get_client_handle (unsigned int flags,
 ObjectId id,
 _Optional void **client_handle
);

Consequently, existing event handler code like this:

 void *client_handle;
 if (!E(toolbox_get_client_handle(0, id_block->ancestor_id, &client_handle)))
 {
 EditWin * const edit_win = client_handle;

Would need to be rewritten defensively:

 _Optional void *client_handle;
 if (!E(toolbox_get_client_handle(0, id_block->ancestor_id, &client_handle)) &&
 client_handle)
 {
 EditWin * const edit_win = &*client_handle;

I decided not to make the preceding changes for reasons of expediency: to avoid modifying a third-
party interface (or creating shims for it), and to avoid updating every call
to toolbox_get_client_handle in my own projects. Ultimately, the benefits just weren’t worth the
effort.

https://gitlab.riscosopen.org/bavison/ToolboxLib-fixed/-/blob/Libs-0_09/toolboxlib/h/toolbox#L500
https://gitlab.riscosopen.org/bavison/ToolboxLib-fixed/-/blob/Libs-0_09/toolboxlib/h/toolbox#L500
https://github.com/chrisbazley/SF3KUtils/blob/6e3a7b65fbd02a3947a0f91fa7b4921feda1ee67/SFColours/SFCFileInfo.c#L61C1-L64C46

Improved code clarity
I believe that some of my changes improved code clarity because of the rule that &s[n] removes
any _Optional qualifier from the referenced type of s, whereas s + n does not.

Although s + n is equivalent to &s[n] in current code, it does not occur often
enough to justify modifying arithmetic operators to remove any _Optional
qualifier from a pointed-to object.

(N3422, _Optional: a type qualifier to indicate pointer nullability (v2))

Consequently, I was ‘forced’ to replace this code:

 for (int pt_sample_no = 0;
 pt_sample_no < pt_samples->count;
 pt_sample_no++) {
 Fortify_CheckAllMemory();

 const PTSampleInfo * const ptsi = pt_samples->sample_info + pt_sample_no;
 const SampleInfo * const sample = sf_samples->sample_info + ptsi->sample_num;

 with this:

 _Optional const PTSampleInfo * const ptsi_array = pt_samples->sample_info;
 _Optional const SampleInfo * const sample_array = sf_samples->sample_info;
 if (!ptsi_array || !sample_array) {
 return false;
 }

 for (int pt_sample_no = 0;
 pt_sample_no < pt_samples->count;
 pt_sample_no++) {
 Fortify_CheckAllMemory();

 const PTSampleInfo * const ptsi = &ptsi_array[pt_sample_no];
 const SampleInfo * const sample = &sample_array[ptsi->sample_num];

I consider the latter to be an improvement in readability and efficiency as well as robustness:

• The array element syntax is clearer than use of pointer arithmetic.
• It is easier for the optimiser to see that neither pt_samples->sample_info nor

sf_samples->sample_info are modified within the loop.
• It is more robust and self-evidently correct to check for pt_samples->sample_info or

sf_samples->sample_info being null instead of relying on the value of
pt_samples->count being zero in those circumstances.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3422.pdf
https://github.com/chrisbazley/SF3KtoProT/blob/d6000fc3d45a737c4e4126aa640d7f2b853fbd3b/protracker.c#L228
https://github.com/chrisbazley/SF3KtoProT/blob/0cdd4ccc3c298349a23a8b1a986291b2f0daf9b2/protracker.c#L234

Defensive control flow
In code with complex control flow that I knew would not be performance sensitive, if there was any
possible ambiguity about whether a pointer could be null or not, I often chose to add explicit checks
for null pointer values using an if statement.

For example, I chose to replace this:

 if (success) {
 const clock_t start_time = time ? clock() : 0;

 success = processor(in, tmp != NULL ? tmp : out, history_log_2, verbose);

 if (success && time)
 {
 printf("Time taken: %.2f seconds\n",
 (double)(clock_t)(clock() - start_time) / CLOCKS_PER_SEC);
 }
 }

With this:

 if (success && in && out) {
 const clock_t start_time = time ? clock() : 0;

 success = processor(&*in, tmp != NULL ? &*tmp : &*out, history_log_2, verbose);

 if (success && time)
 {
 printf("Time taken: %.2f seconds\n",
 (double)(clock_t)(clock() - start_time) / CLOCKS_PER_SEC);
 }
 }

Could I have proved that neither in nor out could be null if success were true? Yes. But defensive
programming makes it easier for people and tools that analyse the code to see that it is safe,
especially when there is complex conditional logic leading up to the point where a pointer must not
be null. If a compiler can optimise away such checks, then it will.

https://github.com/chrisbazley/GKeyComp/commit/c059185924e78e6f940c00e1341eb12f018baab0#diff-a7c0d42b577afd5eadd55510927d516911b78efe3fe9c114e8eb9ee5538e1e6aR140
https://github.com/chrisbazley/GKeyComp/commit/c059185924e78e6f940c00e1341eb12f018baab0#diff-a7c0d42b577afd5eadd55510927d516911b78efe3fe9c114e8eb9ee5538e1e6aR140
https://github.com/chrisbazley/GKeyComp/blob/74fc3276c87cf09691952e1c92a59b4cdc68b6be/gkcommon.c#L137C1-L147C4
https://github.com/chrisbazley/GKeyComp/blob/c059185924e78e6f940c00e1341eb12f018baab0/gkcommon.c#L140C1-L150C4

There are also cases where I did not follow that rule but perhaps, I should have done so. In
the following code, input_file is never null if tmp is not null, but that is not evident without
analysing the entire function:

 if (success) {
 if (output_file != NULL) {
 if (input_file != NULL && strcmp(&*output_file, &*input_file) == 0) {
 /* Can't overwrite the input file whilst reading from it, so direct
 output to a temporary file instead */
 if (verbose)
 puts("Opening temporary output file");

 tmp = tmpfile();
 if (tmp == NULL) {
 fprintf(stderr, "Failed to create temporary output file: %s\n",
 strerror(errno));
 success = false;
 }
 }
 // ...
 }
 }

 // ...

 if (tmp != NULL) {
 if (success) {
 if (output_file != NULL) {
 /* Open the real output file */
 if (verbose)
 printf("Opening output file '%s'\n", output_file);

 out = fopen(&*input_file, "wb");

https://github.com/chrisbazley/GKeyComp/blob/main/gkcommon.c#L158

Defensive provision of objects
Where a function requires its caller to pass a pointer to an object of a specific type (as opposed to a
pointer to void), I often found it preferable to pass the address of an object of the expected type
instead of passing NULL based on assumptions about the definition of the function.

For example, the following function doesn’t use the WimpMessage object passed to it:

static int mode_change_msg(WimpMessage *const message, void *const handle)
{
 // ...
 NOT_USED(handle);
 NOT_USED(message);

This function is not only called on receipt of a ModeChange message; it is also called when the
program starts up. Knowing that it uses neither of its arguments, I originally passed NULL as the
value of both:

 /* Read variables for current screen mode */
 mode_change_msg(NULL, NULL);

However, this is not how a WimpMessageHandler is called by the event library, therefore it seemed
preferable to pass the address of a real WimpMessage object instead of casting NULL to remove
the _Optional qualifier from the referenced type:

/* Read variables for current screen mode */
 mode_change_msg(&(WimpMessage){0}, &(int){0});

A more efficient alternative might have been to create a new function with no parameters, called
both by mode_change_msg and during start up.

https://github.com/chrisbazley/SF3KUtils/blob/2abd3233e570aa17f62f4bd18ce30c7cdd44e768/SFSkyEdit/SFSInit.c#L113
https://www.riscosopen.org/wiki/documentation/show/Message_ModeChange
https://github.com/chrisbazley/SF3KUtils/blob/2abd3233e570aa17f62f4bd18ce30c7cdd44e768/SFSkyEdit/SFSInit.c#L595
https://github.com/chrisbazley/SF3KUtils/blob/2abd3233e570aa17f62f4bd18ce30c7cdd44e768/SFSkyEdit/SFSInit.c#L595

Another example concerns unit tests for one of my editor programs.
The editor_redo function requires its caller to pass the address of an array of palette entries, but
only uses that array when redoing a subset of actions (including EditRecordType_Interpolate but
not EditRecordType_Move):

bool editor_redo(Editor *const editor, PaletteEntry const palette[])
{
 // ...
 EditSky *const edit_sky = editor->edit_sky;
 assert(edit_sky != NULL);
 LinkedListItem *const redo_item = get_redo_item(edit_sky);
 assert(redo_item != NULL);
 EditRecord *const rec = CONTAINER_OF(redo_item, EditRecord, link);
 edit_sky->next_undo = redo_item;

 bool changed = false;
 DEBUGF("Redo of type %d\n", (int)rec->type);
 switch (rec->type)
 {
 // ...
 case EditRecordType_Interpolate:// Requires palette
 if (s_interpolate(&edit_sky->sky, palette,
 rec->data.edit.dst_start, rec->data.edit.old_dst_end,
 rec->data.edit.fill, NULL, 0))
 {
 redraw_bands(edit_sky, rec->data.edit.dst_start,
 rec->data.edit.old_dst_end);
 changed = true;
 }
 break;
 case EditRecordType_Move: // Does not require palette
 changed = redo_move(editor, rec);
 if (changed)
 {
 redraw_move(edit_sky, rec);
 }
 break;

In normal usage, it is impossible to predict which action will be redone by this function. In unit tests,
however, the action type is entirely predictable. I had made use of that knowledge to
pass NULL when calling editor_redo in many tests; for example, in a test for
EditRecordType_SetRenderOffset:

 assert(editor_redo(&editor, NULL));
 assert(sky_get_render_offset(edit_sky_get_sky(&edit_sky)) == RenderOffset);
 check_redraw_render_offset(i++, &edit_sky);
 assert(render_offset_count == i);

Changing the signature of editor_redo to allow null to be passed would have required new control
flow inside that function, but there is no real-world use case for passing null. Instead, I updated
tests to always pass the address of an array regardless of whether they expected it to be used. The
compound literal that I substituted simply maps every palette entry to black:

 assert(editor_redo(&editor, (PaletteEntry [NumColours]){0}));
 assert(sky_get_render_offset(edit_sky_get_sky(&edit_sky)) == RenderOffset);
 check_redraw_render_offset(i++, &edit_sky);
 assert(render_offset_count == i);

https://github.com/chrisbazley/SF3KUtils/blob/f25da4aaef7037a4c3bf22de53127a2ed0a26e42/SFSkyEdit/Editor.c#L1539C1-L1617C4
https://github.com/chrisbazley/SF3KUtils/blob/f25da4aaef7037a4c3bf22de53127a2ed0a26e42/SFSkyEdit/Editor.c#L1539C1-L1617C4
https://github.com/chrisbazley/SF3KUtils/blob/f25da4aaef7037a4c3bf22de53127a2ed0a26e42/SFSkyEdit/tests/EditorTest.c#L3722
https://github.com/chrisbazley/SF3KUtils/blob/f25da4aaef7037a4c3bf22de53127a2ed0a26e42/SFSkyEdit/tests/EditorTest.c#L3722
https://github.com/chrisbazley/SF3KUtils/blob/main/SFSkyEdit/tests/EditorTest.c#L3728

Another example where not passing null seemed the right thing to do was when it had been used as
a stand-in for a string:

static CONST _kernel_oserror *lookup_error(const char *const token,
 const char *const param)
{
 /* Look up error message from the token, outputting to an internal buffer */
 return messagetrans_error_lookup(desc, DUMMY_ERRNO, token, 1, param);
}

/* --- */

static CONST _kernel_oserror *no_mem(void)
{
 return lookup_error("NoMem", NULL);
}

messagetrans_error_lookup is a variadic function, so its trailing parameter types are not explicit
and cannot be qualified. Nevertheless, it does handle null arguments.

Instead of qualifying the param parameter of lookup_error as _Optional, I modified its callers to
pass "" instead of NULL. One could argue that NULL is more efficient, but efficient error reporting is
rarely important.

The result is terser and more explicit:

static CONST _kernel_oserror *no_mem(void)
{
 return lookup_error("NoMem", "");
}

I took the same approach to third-party interfaces where the benefit —or even the validity— of
allowing NULL to be passed was in doubt.

For example, the following library function cannot be passed a pointer to an _Optional buffer, even
though it seems logical for its buffer argument to be ignored if bytes_written is zero:

extern _kernel_oserror *saveas_buffer_filled (unsigned int flags,
 ObjectId saveas,
 void *buffer,
 int bytes_written
);

Previously, saveas_buffer_filled could be called with NULL by the following code in one of my
programs:

 void *const buffer = *dst ? (char *)*dst + safbe->no_bytes : NULL;
 DEBUGF("Saved %d bytes to buffer %p for object 0x%x\n",
 chunk_size, buffer, saveas_id);

 ON_ERR_RPT(saveas_buffer_filled(0, saveas_id, buffer, chunk_size));

I modified the calling code to ensure that saveas_buffer_filled is never called
with NULL by passing the address of a tiny dummy object instead:

 static char dummy;
 void *const buffer = *dst ? (char *)*dst + safbe->no_bytes : &dummy;
 DEBUGF("Saved %d bytes to buffer %p for object 0x%x\n",
 chunk_size, buffer, id_block->self_id);

 ON_ERR_RPT(saveas_buffer_filled(0, id_block->self_id, buffer, chunk_size));

https://github.com/chrisbazley/CBLibrary/blob/0bd9e67bfbd9abe918e9f6948b522344cad3191c/Saver2.c#L107C1-L119C2
https://github.com/chrisbazley/CBLibrary/blob/0bd9e67bfbd9abe918e9f6948b522344cad3191c/Saver2.c#L107C1-L119C2
https://github.com/chrisbazley/CBOSLib/blob/main/MTError.c#L107C1-L109C46
https://github.com/chrisbazley/CBLibrary/blob/207ec90ecec006fb31c5ce5e452bf4969d9712f0/Saver2.c#L108C1-L120C2
https://gitlab.riscosopen.org/bavison/ToolboxLib-fixed/-/blob/Libs-0_09/h/saveas#L211
https://github.com/chrisbazley/SF3KUtils/blob/3d01d7511d2646eb1f791eaa5345e945d336ca83/SFToSpr/Utils.c#L358C1-L364C24
https://github.com/chrisbazley/SF3KUtils/blob/2abd3233e570aa17f62f4bd18ce30c7cdd44e768/SFToSpr/Utils.c#L354C1-L361C24

Allowing null arguments — the right way
In contrast to the preceding examples, I relaxed the constraints on passing null to some of my own
functions to make them more robust and simplify usage. I consider such cases distinct from
defensive programming because they involve a new guarantee that null is handled rather than
runtime checks added merely to clarify existing code or as a precaution.

For example, the following function relied on assertions to ensure that its callers never passed a null
pointer as the value of buffer unless the buff_size was zero:

_kernel_oserror *colourtrans_read_palette(unsigned int flags,
 const ColourTransContext *source,
 PaletteEntry *buffer,
 size_t buff_size,
 size_t *nbytes)
{
 _kernel_oserror *e = NULL;
 _kernel_swi_regs regs;

 assert(source != NULL);
 assert(buffer != NULL || buff_size == 0);

 assign_regs(®s.r[0], source);

 /* Find buffer size and/or read palette into caller's buffer */
 regs.r[2] = (int)buffer;
 regs.r[3] = buff_size;
 regs.r[4] = flags;
 DEBUGF("ClrTrans: Calling ColourTrans_ReadPalette with "
 "0x%x,0x%x,0x%x,0x%x,0x%x\n",
 regs.r[0], regs.r[1], regs.r[2], regs.r[3], regs.r[4]);

 e = _kernel_swi(ColourTrans_ReadPalette, ®s, ®s);

https://github.com/chrisbazley/CBOSLib/commit/18234b2746225b5fa8ece0209a367d06dfe76de1#diff-10d2ad7da51cbef3ab9f3c5e659376ce78ef69d2bcb14afbe4465d32eb88a13cR58-R78
https://github.com/chrisbazley/CBOSLib/blob/a9755f1f81f2d15ffa559269a0e9284ef64dc160/ClrTrans.c#L57-L79

I modified the function to ignore the value of buff_size if a null pointer is passed as the value
of buffer:

_Optional _kernel_oserror *colourtrans_read_palette(
 unsigned int flags,
 const ColourTransContext *source,
 _Optional PaletteEntry *buffer,
 size_t buff_size,
 _Optional size_t *nbytes)
{
 _Optional _kernel_oserror *e = NULL;
 _kernel_swi_regs regs;

 assert(source != NULL);

 if (!buffer)
 {
 buff_size = 0;
 }

 assign_regs(®s.r[0], source);

 /* Find buffer size and/or read palette into caller's buffer */
 regs.r[2] = buffer ? (int)buffer : 0;
 regs.r[3] = buff_size;
 regs.r[4] = flags;
 DEBUGF("ClrTrans: Calling ColourTrans_ReadPalette with "
 "0x%x,0x%x,0x%x,0x%x,0x%x\n",
 regs.r[0], regs.r[1], regs.r[2], regs.r[3], regs.r[4]);

 e = _kernel_swi(ColourTrans_ReadPalette, ®s, ®s);

(The return value was also updated to _Optional _kernel_oserror * to indicate that the function
may return null, which it does if no error occurred.)

In contrast to N3322, which permits null only when the length is zero (requiring tools and
programmers to correlate argument values)  this change makes acceptance of null explicit and
unconditional. Consequently, such interfaces are both safer and more amenable to static analysis,
since nullability is part of the type and does not depend on external conditions.

https://github.com/chrisbazley/CBOSLib/blob/18234b2746225b5fa8ece0209a367d06dfe76de1/ClrTrans.c#L58-L85
https://github.com/chrisbazley/CBOSLib/blob/18234b2746225b5fa8ece0209a367d06dfe76de1/ClrTrans.c#L58-L85
https://github.com/chrisbazley/CBOSLib/blob/18234b2746225b5fa8ece0209a367d06dfe76de1/ClrTrans.c#L58-L85
https://github.com/chrisbazley/CBOSLib/blob/18234b2746225b5fa8ece0209a367d06dfe76de1/ClrTrans.c#L58-L85
https://github.com/chrisbazley/CBOSLib/blob/18234b2746225b5fa8ece0209a367d06dfe76de1/ClrTrans.c#L58-L85
https://github.com/chrisbazley/CBOSLib/blob/18234b2746225b5fa8ece0209a367d06dfe76de1/ClrTrans.c#L58-L85
https://github.com/chrisbazley/CBOSLib/blob/18234b2746225b5fa8ece0209a367d06dfe76de1/ClrTrans.c#L58-L85
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3322.pdf

Casts harm analysis
Most existing code uses at least some casts. In rare cases, this hindered my efforts to ensure that all
pointers that can be null are declared with their referenced type qualified by _Optional.

I initially overlooked the following code, which uses an intrusive linked list. It casts the return value
of linkedlist_for_each (a pointer to a _Optional LinkedListItem) to a LoadOpData *, thereby
discarding the _Optional qualifier from the referenced type:

static LoadOpData *_ldr2_find_record(int msg_ref)
{
 LoadOpData *load_op_data;

 DEBUGF("Loader2: Searching for operation awaiting reply to %d\n", msg_ref);
 load_op_data = (LoadOpData *)linkedlist_for_each(
 &load_op_data_list, _ldr2_op_has_ref, &msg_ref);

 if (load_op_data == NULL)
 {
 DEBUGF("Loader2: End of linked list (no match)\n");
 }
 else
 {
 DEBUGF("Loader2: Record %p has matching message ID\n", (void *)load_op_data);
 }
 return load_op_data;
}

The cast hides the nullability of the result, preventing both type-based diagnostics and static
analysis from catching potential misuses. It was written before linkedlist_for_each was updated
to return a pointer to a _Optional LinkedListItem, but its presence now discards valuable
information.

Had linkedlist_for_each instead been declared as returning a _Nullable pointer, Clang’s static
analyser would not have produced a diagnostic either — unless load_op_data were declared
as _Nonnull with an exactly matching type. This illustrates that nullability attributes suffer the same
issue and don't offer a clear advantage in such cases.

In situations like this, only the diligence of programmers can ensure that pointer nullability
information is preserved across type conversions.

https://github.com/chrisbazley/CBLibrary/blob/00c48458279d14bdbc0fff0496bc1e72cbfd21ea/Loader2.c#L815C1-L832C2

Pointers as output parameters
In current practice, it is common to initialise an object (including one of pointer type) whose address
will be passed to another function for use as an output parameter. The obvious initialiser for
pointers is NULL.

An example is the character pointer endp in the following code:

 char *endp = NULL;
 tile_num = strtol(name + sizeof(TILE_SPR_NAME)-1, &endp, 10);

 if (tile_num > MapTileMax || *endp != '\0')
 {
 tile_num = -1;
 }

The called function, strtol, is declared in <stdlib.h> as:

long int strtol(const char * restrict nptr, char ** restrict endptr, int base);

In the description of strtol, there is no mention of the input value of the object pointed to
by endptr having any significance; only the value of the endptr argument itself:

A pointer to the final string is stored in the object pointed to by endptr, provided
that endptr is not a null pointer.

(7.25.2.8 The strtol, strtoll, strtoul, and strtoull functions, ISO/IEC 9899:202y (en) — N3550 working
draft)

In the preceding example, endptr is &endp, so the ‘object pointed to by endptr’ is endp itself.

Given that the initial value (here, NULL) is unused, the initialisation is redundant. Such initialisations
are typically added to appease static analysers, which may otherwise complain that an object
passed by address is uninitialised. They are also used to guard against future changes, or when a
called function does not always assign a value to its output parameters.

With my redefinition of NULL as ((_Optional void *)0), the compiler correctly diagnoses *endp =
NULL as a constraint violation. A naive attempt to fix this might involve qualifying the referenced
type of endp:

_Optional char *endp = NULL;

However, this causes another problem: the strtol function does not accept the address of a
pointer to _Optional. Should it?

Qualifying the type of endptr as _Optional char ** would imply that the value written
by strtol might be null. This is not the case — even on failure:

If the subject sequence is empty or does not have the expected form, no
conversion is performed; the value of nptr is stored in the object pointed to
by endptr, provided that endptr is not a null pointer.

(7.25.2.8 The strtol, strtoll, strtoul, and strtoull functions, ISO/IEC 9899:202y (en) — N3550 working
draft)

https://github.com/chrisbazley/SF3KUtils/blob/3d01d7511d2646eb1f791eaa5345e945d336ca83/SFToSpr/SFgfxconv.c#L430C5-L436C6
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3550.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3550.pdf

The only reason *endptr might be null is if it was initialised that way and strtol has not yet
overwritten it with nptror a pointer derived from nptr.

My final version of the calling code was simply to remove the redundant initializer:

 char *endp;
 tile_num = strtol(name + sizeof(TILE_SPR_NAME)-1, &endp, 10);

 if (tile_num > MapTileMax || *endp != '\0')
 {
 tile_num = -1;
 }

Since endp has automatic storage duration, it is not subject to default initialisation. Its value is
indeterminate until strtol writes to it — which is guaranteed because endptr is not null. However,
this raises an important question: how should tools reason about pointer values that are null only
because of default initialisation?

https://github.com/chrisbazley/SF3KUtils/blob/2abd3233e570aa17f62f4bd18ce30c7cdd44e768/SFToSpr/SFgfxconv.c#L434-L440

Global variables
Global variables (aka external object definitions) of pointer type present certain unique challenges.

Global pointers to dynamically allocated storage are typically initialised to null in their declarations;
even when not explicitly initialised, default initialisation gives them a null value. They are usually
assigned non-null values later, during program startup, often by an explicit initialisation function.

For example, one of my programs declared the following global variables:

static bool translate_cols = true;
static void *col_trans_table = NULL; /* table of colour numbers for drawing
 sprite in desktop (flex anchor) */
static TrigTable *trig_table = NULL; /* table of (co)sine values */
static bool def_toolbars = true; /* default toolbar show state */
static int def_scale = Scale_Default; /* default percentage scale */
static int *persp_table = NULL; /* table of reciprocal values for perspective
 projection (flex anchor) */

With my redefinition of NULL as ((_Optional void *)0), the compiler correctly diagnosed a
constraint violation in declarations such as static void *col_trans_table = NULL.

I chose to qualify the referenced type of such pointers as _Optional instead of removing their
explicit NULL initializers because I wanted the additional rigour that _Optional brings. As before,
the NULL initializers are strictly redundant, but I kept them for clarity:

static bool translate_cols = true;
static _Optional void *col_trans_table = NULL; /* table of colour numbers for
 drawing sprite in desktop */
static _Optional TrigTable *trig_table = NULL; /* table of (co)sine values */
static bool def_toolbars = true; /* default toolbar show state */
static int def_scale = Scale_Default; /* default percentage scale */
static _Optional int *persp_table = NULL; /* table of reciprocal values for
 perspective projection */

The trig_table and persp_table pointers are only null until Preview_initialise is called on
start-up; if Preview_initialise fails then the program exits. However, there is no way to indicate
that global pointers cannot be null after being assigned a value, therefore every function that uses
such pointers must assume they could be null.

https://github.com/chrisbazley/SF3KUtils/blob/3d01d7511d2646eb1f791eaa5345e945d336ca83/SFSkyEdit/Preview.c#L173C1-L180C63
https://github.com/chrisbazley/SF3KUtils/blob/2abd3233e570aa17f62f4bd18ce30c7cdd44e768/SFSkyEdit/Preview.c#L178C1-L185C59

The following function uses trig_table to rotate coordinates:

static void cam_rotate(Point3D *const p, int const x_angle, int const y_angle)
{
 // ...
 int const x_in = p->x;
 int y_in = p->y;
 int const z_in = p->z;

 /* Apply X rotation */
 int cos = TrigTable_look_up_cosine(trig_table, x_angle),
 sin = TrigTable_look_up_sine(trig_table, x_angle);

 p->x = (x_in * cos) / (SineMultiplier / PostRotateScaler) -
 (y_in * sin) / (SineMultiplier / PostRotateScaler);

 y_in = (x_in * sin) / SineMultiplier +
 (y_in * cos) / SineMultiplier;

 /* Apply Y rotation */
 cos = TrigTable_look_up_cosine(trig_table, y_angle);
 sin = TrigTable_look_up_sine(trig_table, y_angle);
 // ...

The compiler diagnoses constraint violations when compiling this function with the modified
declaration of trig_table, because the possibly-null pointer is passed
to TrigTable_look_up_cosine and TrigTable_look_up_sine:

Preview.c:204:38: warning: passing '_Optional TrigTable *' (aka '_Optional struct
TrigTable *') to parameter of type 'const TrigTable *' (aka 'const struct TrigTable
*') discards qualifiers [-Wincompatible-pointer-types-discards-qualifiers]
 204 | int cos = TrigTable_look_up_cosine(trig_table, x_angle),
 | ^~~~~~~~~~
/work/CBUtilLib/TrigTable.h:60:47: note: passing argument to parameter 'table' here
 60 | int TrigTable_look_up_cosine(const TrigTable *table, int angle);
 | ^

A naive solution would be to add a defensive check for trig_table being null upon entry to the
function and then substitute &*trig_table to remove _Optional from the referenced type of the
pointer, just as one would for an argument:

static void cam_rotate(Point3D *const p, int const x_angle, int const y_angle)
{
 // ...
 int const x_in = p->x;
 int y_in = p->y;
 int const z_in = p->z;

 if (!trig_table) return;

 /* Apply X rotation */
 int cos = TrigTable_look_up_cosine(&*trig_table, x_angle),
 sin = TrigTable_look_up_sine(&*trig_table, x_angle);

 p->x = (x_in * cos) / (SineMultiplier / PostRotateScaler) -
 (y_in * sin) / (SineMultiplier / PostRotateScaler);

 y_in = (x_in * sin) / SineMultiplier +
 (y_in * cos) / SineMultiplier;

 /* Apply Y rotation */
 cos = TrigTable_look_up_cosine(&*trig_table, y_angle);
 sin = TrigTable_look_up_sine(&*trig_table, y_angle);
 // ...

https://github.com/chrisbazley/SF3KUtils/blob/3d01d7511d2646eb1f791eaa5345e945d336ca83/SFSkyEdit/Preview.c#L185C1-L219C2

This prevents constraint violations, but the static analyser still reports a warning — and the
explanation is subtle:

Preview.c:207:37: warning: Pointer to _Optional object is dereferenced without a
preceding check for null [optionality.OptionalityChecker]
 207 | sin = TrigTable_look_up_sine(&*trig_table, x_angle);
 | ^~~~~~~~~~~
1 warning generated.

Strangely, this warning relates to the second use of trig_table, not the first. It might not be
immediately obvious why. The answer is that the analyser must assume that any function call might
modify the value of global variables. So, from the point of view of the analyser, the call
to TrigTable_look_up_cosine doesn’t just use the value of trig_table; it also potentially
invalidates it!

These issues are very hard for programmers to spot, because it is rarely clear whether a variable is
global or local. The correct solution is to assign the value of a global variable to a local variable
before checking whether it is null. The analyser knows the local variable can’t change between uses,
so the null check remains valid throughout the block.

This also allows the checked pointer to be given a more restrictive type, thereby all but eliminating
use of the &* sigil (used to remove _Optional) and simplifying the programmer’s mental model:

static void cam_rotate(Point3D *const p, int const x_angle, int const y_angle)
{
 // ...
 int const x_in = p->x;
 int y_in = p->y;
 int const z_in = p->z;

 if (!trig_table) {
 return;
 }
 const TrigTable *const tt = &*trig_table;

 /* Apply X rotation */
 int cos = TrigTable_look_up_cosine(tt, x_angle),
 sin = TrigTable_look_up_sine(tt, x_angle);

 p->x = (x_in * cos) / (SineMultiplier / PostRotateScaler) -
 (y_in * sin) / (SineMultiplier / PostRotateScaler);

 y_in = (x_in * sin) / SineMultiplier +
 (y_in * cos) / SineMultiplier;

 /* Apply Y rotation */
 cos = TrigTable_look_up_cosine(tt, y_angle);
 sin = TrigTable_look_up_sine(tt, y_angle);
 // ...

https://github.com/chrisbazley/SF3KUtils/blob/2abd3233e570aa17f62f4bd18ce30c7cdd44e768/SFSkyEdit/Preview.c#L203C1-L226C61

The preceding example is of the most trivial kind, in which it is ‘obvious’ that none of the callees can
have modified the value of trig_table. In more complex cases, confirming that the value of a
global variable does not change can require detailed analysis.

For instance, I had to convince myself that the next_client pointer of a round-robin scheduler
could not be modified by any of the functions that it schedules. The payoff for this analysis was
improved clarity: renaming the global variable as global_next and assigning its value to a
local next_client made the code easier to reason about:

 _Optional SchedulerClient *last_called = NULL, *next_client = global_next;
 while (clients_count)
 {
 if (next_client == NULL)
 {
 /* We have lost our place in the list, or reached the end */
 DEBUG_VERBOSEF("Scheduler: returning to head of client list\n");
 _Optional LinkedListItem *const head = linkedlist_get_head(&clients_list);
 if (head == NULL)
 {
 DEBUGF("Scheduler: client list is empty!\n");
 break; /* paranoia */
 }
 next_client = CONTAINER_OF(head, SchedulerClient, list_item);
 }

Once again, using _Optional had made my code less ambiguous. This pattern of assigning global
state to a local variable can reduce both false positives in analysis and mental burden for readers
and reviewers alike.

https://github.com/chrisbazley/CBLibrary/blob/main/Scheduler.c#L472C1-L487C1

When pointers cannot be copied safely
Several of my programs use a shifting heap provided by a third-party library named Flex. It is built
on the following typedef, which represents a pointer to an ‘anchor’ that both uniquely identifies a
heap block and stores its current address:

typedef void **flex_ptr;

Hiding pointer types usually harms the clarity of code. The Linux kernel coding style guide goes
further, by also arguing against hiding struct types using typedef. Nevertheless, both practices are
common.

Type aliases that hide pointers have another drawback: the referenced type cannot easily be
qualified as const or _Optional. For example, const flex_ptr means a constant pointer to a void
* — not a pointer to a const void *, which may have been the intent.

flex_ptr is not an opaque type because no functions are provided to allocate an ‘anchor’ or get the
address stored in it. Instead, users are expected to allocate their own ‘anchor’ and pass its address
to functions that expect a flex_ptr. This results in weak type-safety, because the only type of
pointer that matches without casting is void *.

Consider the following example. There’s nothing in the type of the records member that signals its
intended use, so a comment is needed to explain that its address is intended to be a flex_ptr:

typedef struct
{
 int num_cols;
 void *records; /* flex anchor */
}
ExpColFile;

Elsewhere in the program, whether records is null determines whether flex_free is called to free
the associated heap block:

void ExpColFile_destroy(ExpColFile *const file)
{
 if (file->records)
 {
 flex_free(&file->records);
 }
}

Theoretically, this check would allow ExpColFile_destroy to be called after a failed call
to ExpColFile_init, or twice for the same ExpColFile. This is
because flex_alloc sets records to null if it fails (although undocumented),
and flex_free sets records to null (as documented).

It might seem that the referenced type of records ought to be qualified as _Optional since it can
be null. However, the program does not rely on that: if flex_alloc succeeds, then the value
of records is assumed to be non-null; if flex_alloc fails or flex_free has been called, records is
not used again. As such, the array pointed to by records is not really treated as optional.

https://gitlab.riscosopen.org/bavison/ToolboxLib-fixed/-/blob/Libs-0_09/h/flex#L34
https://gitlab.riscosopen.org/bavison/ToolboxLib-fixed/-/blob/Libs-0_09/h/flex#L34
https://www.kernel.org/doc/html/v4.10/process/coding-style.html#typedefs
https://www.kernel.org/doc/html/v4.10/process/coding-style.html#typedefs
https://github.com/chrisbazley/SF3KUtils/blob/2abd3233e570aa17f62f4bd18ce30c7cdd44e768/SFColours/ExpColFile.h#L14-L19
https://github.com/chrisbazley/SF3KUtils/blob/2abd3233e570aa17f62f4bd18ce30c7cdd44e768/SFColours/ExpColFile.c#L86-L92

In any case, it would be impossible to change the type of records to _Optional void * without
requiring a cast whenever &records is passed to a function that expects flex_ptr (aka void **)
instead of _Optional void **. (Some existing users already cast for a different reason, having
judged that declaring ‘anchors’ with a specific type is preferable to using void * where there is no
actual requirement for polymorphism.)

Conversely, redefining flex_ptr as _Optional void ** would break all existing code that
passes void **, since void ** cannot be implicitly converted to that type. (In contrast,
redefining flex_ptr as an alias for void * _Optional *would be fine, but null arguments are not
what is needed.)

Nor would the enhanced type variance proposed by N3510 avoid incompatibilities: passing void
** to a function that treats it as _Optional void ** would permit the callee to set the caller's
pointer to null — a transformation that must be assumed unsafe. (An implicit conversion
to _Optional void *const * would be allowed, but that contradicts the actual behaviour of the
library.)

Even if redefining flex_ptr as _Optional void ** were practical, the semantics would not be a
good fit for my program: casts (to remove the _Optional qualifier) or null checks would be required
every time records is used. The usual way to avoid repetitive null checks is to assign an _Optional
void * to a variable of unqualified type (in this case, ExportColFileRecord *) and use that
instead. That specifically does not work with Flex, because it requires a unique pointer to each heap
block — otherwise, it wouldn’t know which pointer to update when shifting blocks.

Ultimately, I left the definition of flex_ptr —and my usage of it— unchanged. Not every pointer
that can be null must be qualified as a pointer to _Optional. Still, the issues raised here should
concern anyone designing a similar library: forbidding pointer copying severely limits the ability of
the type system to enforce safety.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3510.pdf

Array to pointer decay and its consequences
Many of my projects are RISC OS applications. RISC OS is a venerable operating system that
represents errors using the following struct type:

typedef struct
{
 int errnum;
 char errmess[252];
} _kernel_oserror;

Conventionally, “no error” (i.e. success) is represented by a null pointer of type _kernel_oserror
*.

A curious quirk of C is that use of the errmess member of this struct is —under most
circumstances— indistinguishable from use of the errmess member of the following (hypothetical)
struct:

typedef struct
{
 int errnum;
 char *errmess;
} _kernel_oserror;

This is because objects of array type ‘decay’ automatically into pointers to the first array element
(with a few exceptions, such as when used as the operand of the address-of operator).

When compiling some obsolete code after an incomplete effort to add the _Optional qualifier to
most uses of _kernel_oserror, I encountered an unexpected constraint violation:

Loader.c:866:40: warning: passing '_Optional char[256]' to parameter of type 'const
char *' discards qualifiers [-Wincompatible-pointer-types-discards-qualifiers]
 866 | err_complain(errptr->errnum, errptr->errmess);
 | ^~~~~~~~~~~~~~~
./Err.h:152:53: note: passing argument to parameter here
 152 | void err_complain(int /*num*/, const char * /*mess*/); /* Cancel & OK
buttons */
 | ^

This was easily cured by using the &* idiom to remove the _Optional qualifier from the referenced
type of errptr->errmess:

 _Optional _kernel_oserror *errptr;
 errptr=toolbox_get_object_class(0, object, &objclass);
 if (errptr != NULL) {
 if (errptr->errnum != ERR_BAD_OBJECT_ID)
 err_complain(errptr->errnum, &*errptr->errmess);
 return false; /* ignore listener if bad object ID */
 }

However, the resultant code looks noisy and puzzling — neither of which I intended when
designing _Optional. What does a null check on errptr have to do with the nullability of the
pointer errptr->errmess? Nothing — yet the code appears to treat them as related.

The errmess member of _kernel_oserror is treated as _Optional char[252] because the
expression errptr->errmess is an lvalue derived from a pointer to an _Optional type. This array
type ‘decays’ into a pointer to the first character of the error message, which is also _Optional.
The err_complain function does not accept _Optional char * —only char *— therefore the
qualifier must be removed again.

https://en.wikipedia.org/wiki/RISC_OS
https://github.com/dudleysoft/beebDoom/blob/master/kernel.h#L21C1-L25C19
https://github.com/chrisbazley/CBLibrary/blob/9896e9beaa831ef9bd2da2ddec4ac236a8fd742e/Loader.c#L888C1-L892C8
https://github.com/chrisbazley/CBLibrary/blob/9896e9beaa831ef9bd2da2ddec4ac236a8fd742e/Loader.c#L886C1-L892C8
https://github.com/chrisbazley/CBLibrary/blob/9896e9beaa831ef9bd2da2ddec4ac236a8fd742e/Loader.c#L886C1-L892C8
https://github.com/chrisbazley/CBLibrary/blob/9896e9beaa831ef9bd2da2ddec4ac236a8fd742e/Loader.c#L886C1-L892C8

It makes sense that the error message is treated as optional, since it belongs to an optional object.
However, it is not normally possible to construct a pointer to such a subobject without first
removing the _Optional qualifier, because the address of an object is never null — only the pointer
to it can be.

At the heart of this problem is the fact that one aspect of my design for _Optional is based on a
false assumption:

There is only one way to get the address of an object (excepting arithmetic),
whereas there are many ways to dereference a pointer.

(N3422, _Optional: a type qualifier to indicate pointer nullability (v2))

Thanks to array-to-pointer ‘decay’, that is not true: an array type can ‘decay’ into the corresponding
pointer type without explicit use of the unary & operator. This suggests that my design decision to
remove the _Optional qualifier using the & operator instead of the dereferencing operators (*, ->
and []) should be revisited.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3422.pdf

_Optional really does find bugs
Pointer arithmetic and array indexing
I discovered several latent bugs in the following code:

 const SampleInfo * const sample = sf_samples->sample_info + sample_num;
 if ((sample_num >= sf_samples->count) ||
 (sample->type == SampleInfo_Type_Unused)) {
 printf("%d %d %d\n", sf_samples->count, sample_num, sample->type);
 fprintf(stderr, "Warning: Sample number %d is not defined!\n",
 sample_num);
 continue;
 }

Let us assume that sf_samples->sample_info is an array of at least sf_samples->count elements,
which prevents (sample->type == SampleInfo_Type_Unused) from being evaluated
when sample is an invalid pointer.

Nevertheless:

1. The expression sf_samples->sample_info + sample_num has undefined behaviour
if sf_samples->sample_info is null pointer regardless of the value of sample_num,
according to section 6.5.7 of the ISO C23 standard. (The latest draft of C2Y has relaxed this
rule, allowing zero-length operations on null pointers.)

2. sf_samples->sample_info + sample_num is using an array element index of unknown
magnitude. This has undefined behaviour if sample_num is greater than the number of
elements in the array.

3. The resultant indeterminate pointer is dereferenced by printf(“%d %d %d\n”,
sf_samples->count, sample_num, sample->type).

My first step was to qualify the referenced type of the sample_info member as _Optional:

typedef struct {
 int count;
 int alloc;
 _Optional PTSampleInfo *sample_info;
} PTSampleArray;

The compiler then produced a diagnostic of a constraint violation in the declaration that contains
the first bug, without path-sensitive analysis:

protracker.c:925:34: warning: initializing 'const SampleInfo *const' with an
expression of type '_Optional SampleInfo *' discards qualifiers [-Wincompatible-
pointer-types-discards-qualifiers]
 925 | const SampleInfo * const sample = sf_samples->sample_info +
sample_num;
 | ^
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Although the diagnostic message does not pertain to the use of the additive operator, it seems 
unlikely that sf_samples->sample_info + sample_num would be evaluated without assigning the 
result to an argument or variable. 

  

https://github.com/chrisbazley/SF3KtoProT/blob/d6000fc3d45a737c4e4126aa640d7f2b853fbd3b/protracker.c#L899C1-L908C10


The simplistic fix of adding an _Optional qualifier to the declaration specifiers of sample (to avoid 
the constraint violation) is wrong, but a diagnostic message is only produced when the amended 
code is subjected to path-sensitive analysis: 

protracker.c:925:77: warning: Pointer to _Optional object is dereferenced without a 
preceding check for null [optionality.OptionalityChecker] 
  925 |         _Optional const SampleInfo * const sample = sf_samples->sample_info 
+ sample_num; 
      |                                                     
~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~ 

Had the same declaration been written as

const SampleInfo * const sample = &sf_samples->sample_info[sample_num];

then no constraint would have been violated, whereas the static analyser produces a diagnosis for
both variants:

protracker.c:925:44: warning: Pointer to _Optional object is dereferenced without a
preceding check for null [optionality.OptionalityChecker]
 925 | const SampleInfo * const sample =
&sf_samples->sample_info[sample_num];
 |
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1 warning generated.

and

protracker.c:925:67: warning: Pointer to _Optional object is dereferenced without a
preceding check for null [optionality.OptionalityChecker]
 925 | const SampleInfo * const sample = sf_samples->sample_info +
sample_num;
 |
~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~ 

It is not clear to me that static analysers will continue to be able to diagnose arithmetic on null 
pointers, since N3322was accepted by WG14. Thus, acceptance of a corner case undermines 
detection of the common case. 

My initial attempted solution satisfied both the compiler and the static analyser, but was 
incomplete: 

        _Optional const SampleInfo * const sample = sf_samples->sample_info ? 
          &sf_samples->sample_info[sample_num] : 
          NULL; 
 
        if (!sample || 
            (sample_num >= sf_samples->count) || 
            (sample->type == SampleInfo_Type_Unused)) { 
          printf("%d %d %d\n", sf_samples->count, sample_num, 
                 sample ? sample->type : SampleInfo_Type_Unused); 
          fprintf(stderr, "Warning: Sample number %d is not defined!\n", 
                          sample_num); 
          continue; 
        } 

The first bug (arithmetic on a null pointer) is fixed, but the second (possible out-of-bounds access) 
and third (dereferencing an indeterminate pointer) still exist. The _Optional qualifier cannot solve 
array out-of-bounds issues like this, although it may coincidentally draw attention to them. 

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3322.pdf
https://github.com/chrisbazley/SF3KtoProT/blob/0cdd4ccc3c298349a23a8b1a986291b2f0daf9b2/protracker.c#L926C1-L938C10


My eventual solution was to check the value 
of sf_samples->sample_info and sf_samples->count (separately, instead of relying on count to 
be 0 when sample_info is null) before computing the address of the relevant SampleInfo element: 

        _Optional const SampleInfo * const sample = 
          sf_samples->sample_info && sample_num < sf_samples->count ? 
            &sf_samples->sample_info[sample_num] : 
            NULL; 
 
        if (!sample || (sample->type == SampleInfo_Type_Unused)) { 
          printf("%d %d %d\n", sf_samples->count, sample_num, 
                 sample ? sample->type : SampleInfo_Type_Unused); 
          fprintf(stderr, "Warning: Sample number %d is not defined!\n", 
                          sample_num); 
          continue; 
        } 

Checking fopen return values: a missed branch 
Another bug that I found was in the following code, which passed a possibly-null pointer to 
a FILE (the value of out) into the fcopy function. If fopen failed, then its caller set a variable 
named success to false but subsequent code did not check the value of that variable before 
calling fcopy: 

    if (success) { 
      if (output_file != NULL) { 
        /* Open the real output file */ 
        if (verbose) 
          printf("Opening output file '%s'\n", output_file); 
 
        out = fopen(input_file, "wb"); 
        if (out == NULL) { 
          fprintf(stderr, 
                  "Failed to open output file: %s\n", 
                  strerror(errno)); 
          success = false; 
        } 
      } else { 
        /* Default output is to standard output stream */ 
        out = stdout; 
      } 
 
      if (verbose) 
        puts("Copying from temporary to final output"); 
 
      if (fseek(tmp, 0L, SEEK_SET)) { 
        fprintf(stderr, "Failed to seek start of temporary file\n"); 
        success = false; 
      } else if (!fcopy(tmp, out)) { 
        success = false; 
      } 
    } 

  

https://github.com/chrisbazley/SF3KtoProT/blob/bf4a3fb32bfeaade23ac8bed6af596abdb323a0f/protracker.c#L923C1-L937C10
https://github.com/chrisbazley/GKeyComp/blob/74fc3276c87cf09691952e1c92a59b4cdc68b6be/gkcommon.c#L157C5-L184C6


When I changed the type of out from FILE * to _Optional FILE * (for compatibility with the 
return type of my hidden shim, optional_fopen), the compiler correctly reported a constraint 
violation: 

gkcommon.c:184:32: warning: passing '_Optional FILE *' (aka '_Optional struct 
_IO_FILE *') to parameter of type 'FILE *' (aka 'struct _IO_FILE *') discards 
qualifiers [-Wincompatible-pointer-types-discards-qualifiers] 
 184 | } else if (!fcopy(&*tmp, out)) { 
     |                          ^~~ 
 gkcommon.c:48:35: note: passing argument to parameter 'out' here 
 48 | static bool fcopy(FILE *in, FILE *out) 
    |                                   ^ 

(The &*tmp idiom removes _Optional from the referenced type safely, without requiring a cast; so 
far, this has only been applied to one of the arguments to fcopy.) 

Having to explicitly remove _Optional from referenced types encourages the programmer to think 
about whether it is safe to do so. Thus, I noticed the flow-control bug when 
changing out to &*out in the argument list of the call to fcopy, but I deliberately left the bug in the 
modified code to verify that the path-sensitive analyser also found it: 

gkcommon.c:184:33: warning: Pointer to _Optional object is dereferenced without a 
preceding check for null [optionality.OptionalityChecker] 
 184 | } else if (!fcopy(&*tmp, &*out)) { 
     |                           ^~~~ 
 1 warning generated. 

This illustrates that _Optional provides value to a careful programmer even without path-sensitive 
analysis, although such tools are still useful to validate the final version of some code. 

  



The real solution was to make the call to fcopy conditional on the value of success (although it 
would arguably have been more straightforward to check the value of out): 

    if (success) { 
      if (output_file != NULL) { 
        /* Open the real output file */ 
        if (verbose) 
          printf("Opening output file '%s'\n", output_file); 
 
        out = fopen(&*input_file, "wb"); 
        if (out == NULL) { 
          fprintf(stderr, 
                  "Failed to open output file: %s\n", 
                  strerror(errno)); 
          success = false; 
        } 
      } else { 
        /* Default output is to standard output stream */ 
        out = stdout; 
      } 
    } 
 
    if (success) { 
      if (verbose) 
        puts("Copying from temporary to final output"); 
 
      if (fseek(&*tmp, 0L, SEEK_SET)) { 
        fprintf(stderr, "Failed to seek start of temporary file\n"); 
        success = false; 
      } else if (!fcopy(&*tmp, &*out)) { 
        success = false; 
      } 
    } 

With this fix, all paths that could pass a potentially null value to a non-nullable parameter are 
guarded by explicit checks. 

Conclusion 
_Optional is not magic. It doesn't solve array bounds checking or replace the need for careful 
control flow, but it does makes problems visible earlier and forces programmers to reflect on their 
code. 

  

https://github.com/chrisbazley/GKeyComp/blob/c059185924e78e6f940c00e1341eb12f018baab0/gkcommon.c#L160C5-L189C6


Dogfooding also found a bug in my fork of Clang 
Years ago, I designed a 3D object library to use pointer-to-array types throughout, as an experiment 
in unusual use of C’s type system. That made it perfect for finding a bug in my fork of Clang: The 
code that I had written to remove the _Optional qualifier from the type of the operand of the 
address-of operator did not remove the qualifier from array types, resulting in incorrect qualifier 
mismatch diagnostics. 

For example: 

void fred(int (*x)[10]); 
 
void jim(void) 
{ 
  _Optional int (*y)[10]; 
  fred(&*y); // warning: passing '_Optional int (*)[10]' to parameter of type 'int 
(*)[10]' discards qualifiers 
} 

Similar spurious messages prevented me from doing a thorough job of updating my 3D object 
library. In the following example, the vector_x and vector_y functions both require the address of 
an array of coordinates, but only the first call has been updated to explicitly remove 
the _Optional qualifier from the referenced type of point: 

  _Optional Coord (* const point)[3] = vertex_array_get_coords(varray, v); 
  if (!point) { 
    return false; 
  } 
  const Coord px = *vector_x(&*point, plane); 
  Coord py = *vector_y(point, plane); 

I don’t think this is indicative of any long-term problem though, because using point instead 
of &*point passes a pointer to an _Optional-qualified referenced type to a function that cannot 
accept it — a constraint violation that must be diagnosed. 

I have since pushed a fix to my fork of Clang (+23 -1 lines changed). Matt Godbolt has also 
kindly updated Compiler Explorer to include my fix. Since the wording that I proposed in my most 
recent paper, N3422, did not include any example usage of arrays, I will ensure that the next version 
does so. 

This bug illustrates the importance of exercising even the more obscure corners of the type system. 

In conclusion 
If you have the time and inclination, then please experiment with using _Optional in your own 
projects. It’s relatively low risk: the qualifier can easily be deleted again with grep and sed, as can 
the &* pattern used to remove it from referenced types. In particular, I am addressing those who 
support standardisation of _Optional. I’d rather that support for such an important new feature of 
the language be based on real-world usage rather than purely on trust. 

Acknowledgements 
Alex Celeste for suggesting the optional_cast macro (by a different name).  

https://github.com/chrisbazley/3dObjLib
https://github.com/chrisbazley/llvm-project
https://github.com/chrisbazley/3dObjLib/commit/791dbc469121d45b97fce12238edddd4113f89ef#diff-1647af1e82aeaac1d8e6c5cbe3aae1187ff7b5d1a4595e0fad95e2fd47668cb5R531
https://github.com/chrisbazley/llvm-project/commit/93d22887329efb36f8af1c4f236d18330e62484e
https://godbolt.org/z/P5M16GaG5
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3422.pdf

