
Proposal for C2y

WG14 N3422

Title: _Optional: a type qualifier to indicate pointer nullability (v2)

Author, affiliation: Christopher Bazley, Arm. (WG14 member in individual capacity – GPU expert.)

Date: 2024-12-16

Proposal category: New features

Target audience: General Developers, Compiler/Tooling Developers

Abstract: This paper proposes a new type qualifier for the purpose of adding pointer nullability

information to C programs. Its goal is to provide value not only for static analysis and

documentation, but also for translators which report errors based only on existing type-compatibility

rules. The syntax and semantics are designed to be as familiar (to C programmers) and ergonomic as

possible. In contrast, existing solutions are incompatible, confusing, error-prone, and intrusive.

Prior art: MyPy, C, Clang, GCC

_Optional: a type qualifier to indicate
pointer nullability (v2)

Reply-to: Christopher Bazley (chris.bazley@arm.com)

Document No: N3422

Date: 2024-12-16

Summary of Changes
N3089

• Initial proposal

N3422

• Added ‘What is a null pointer?’

• Added examples of spooky action at a distance and where annotations fail to diagnose

errors that are detected by type compatibility rules.

• Added ‘Why _Optional rather than _Mandatory?’

• Added ‘But any pointer can be null’.

• Added ‘Treatment of null pointer constants’.

• Rewrote the section on ‘Function pointers’ to include the possibility of using typeof and

explain the potential benefits of using typedef.

• Expanded ‘Considerations for static analysis’ section with effects of conversions.

• Tried to clarify the distinction between an optional pointer and a pointer-to-optional.

• Added proposed wording changes to the standard.

• Edited to take account of the changes in N3342.

• Mentioned C23’s standard attribute syntax.

• Tidied up web links to put them in line and remove indirection via Medium.

Philosophical underpinning
The single most important (and redeeming) feature of C is its simplicity. It should be (relatively)

quick to learn every aspect of the language, (relatively) easy to create a translator for it, and the

language's semantics should follow (more-or-less) directly from its syntax.

People criticise C’s syntax, but I consider it the foundation of the language. Any experienced C

programmer has already acquired the mindset necessary to read and write code using it. Aside from

the need to minimize incompatibilities, the syntactic aberrations introduced by C++ can be ignored.

There are significant differences between the design philosophies of C and C++; most relevantly, the

designer of C++ did not approve of C’s mnemonic syntax for declarations.

“Pythonic” is sometimes used as an adjective to praise code for its use of Python-specific language

idioms. I believe that an equivalent word “scenic” could be used to describe C language idioms,

meaning that they conform to a mode of expression characteristic of C. I’ve tried to keep that in

mind when evaluating syntax and semantics.

Inspiration from Python
For the past twenty years, I've mostly been coding in C. I had always considered C to be a strongly

typed language: it allows implicit conversions between void * pointers and other pointer types,

and between enum and integer types, but those aren't serious shortcomings so long as the

programmer is aware of them.

Recently, I switched to a team that writes code in a mixture of languages (including C++, Python, and

JavaScript). Writing code in languages that are dynamically typed but with statically checked type

annotations was a revelation to me. Our project uses MyPy [0] and Typescript [1] for static type

checking.

The main thing that I grew to appreciate was the strong distinction that MyPy makes between values

that can be None and values that cannot. Such values are annotated as Optional[int], for

example. Any attempt to pass an Optional value to a function that isn't annotated to accept

None is faulted, as is any attempt to do unguarded operations on Optional values (i.e., without

first checking for the value being None).

Problem statement
In contrast to Python, C's type system makes no distinction between pointer values that can be null,

and those that cannot. Effectively, any pointer in a C program can be null, which leads to repetitive,

longwinded, and unverifiable parameter descriptions such as "Non-null pointer to…" or "Address of

X … (must not be null)".

Such invariants are not usually documented within a function except by assertions, which clutter the

source code and are ineffective without testing. Some programmers even write tests to verify that

assertions fail when null is passed to a function, although the same stimulus would provoke

undefined behaviour in release builds. The amount of time and effort that could be saved if such

misuse were instead caught during translation is huge.

https://mypy.readthedocs.io/en/stable/
https://www.typescriptlang.org/

What is a null pointer?
A null pointer is defined by 6.3.3.3 p3 of the ISO C standard:

If a null pointer constant or a value of the type nullptr_t (which is necessarily the

value nullptr) is converted to a pointer type, the resulting pointer, called a null

pointer, is guaranteed to compare unequal to a pointer to any object or

function. Conversion of a null pointer to another pointer type yields a null pointer

of that type. Any two null pointers shall compare equal.

Like any other pointer, a null pointer has a referenced type which may be qualified. Although all null

pointers compare equal, it is a constraint violation to compare pointers of incompatible types (as per

6.5.10). Translators can reason about the referenced type of a pointer that points to no object or

function, e.g. to diagnose a constraint violation upon assignment to a const-qualified lvalue.

Pointers can be dereferenced using the indirection operator. The only constraint is that the operand

shall have pointer type, therefore no diagnostic message is required when the operand is a null

pointer. (This is generally impossible to determine at translation time anyway.)

The semantics of indirection are defined by 6.5.4.3 p4 of the ISO C standard:

If the operand points to a function, the result is a function designator; if it points

to an object, the result is an lvalue designating the object. If the operand has type

"pointer to type", the result has type "type". If an invalid value has been assigned

to the pointer, the behavior of the unary * operator is undefined. (Among the

invalid values for dereferencing a pointer by the unary * operator are a null

pointer…)

An lvalue is defined by 6.3.3.1 p1 of the ISO C standard:

An lvalue is an expression with an array type or a complete object type that

potentially designates an object; if an lvalue does not designate an object when

it is evaluated, the behavior is undefined.

Many programs contain lvalues that do not always designate an object when evaluated, including as

a result of applying the indirection operator to a null pointer. C lacks mechanisms to help

programmers avoid creating such lvalues.

Pointer arithmetic is limited by 6.5.7 p9 and p10 of the ISO C standard:

When an expression that has integer type is added to or subtracted from a

pointer, the result has the type of the pointer operand. If the pointer operand

points to an element of an array object, and the array is large enough, the result

points to an element offset from the original element such that the difference of

the subscripts of the resulting and original array elements equals the integer

expression

When two pointers are subtracted, both shall point to elements of the same

array object, or one past the last element of the array object; the result is the

difference of the subscripts of the two array elements

Since a null pointer does not point to any object, arithmetic on null pointers has undefined

behaviour. C lacks mechanisms to help programmers avoid performing arithmetic on null pointers.

Isn't this a solved problem?
Given that the issue of undefined behaviour caused by null pointers has been present in C since its

inception, many solutions have already been attempted.

Static in parameter declarations
C99 extended the syntax for function parameter declarations to allow the static keyword to

appear within [], which requires the passed-in array to be at least a specified size:

#include <stddef.h>

#include <stdlib.h>

void *my_memcpy(char dest[static 1], const char src[static 1],

size_t len);

void test(void)

{

 my_memcpy(NULL, NULL, 10); // warning: argument 1 to

'char[static 1]' is null where non-null expected

}

void test2(void)

{

 char *dest = malloc(10), *src = NULL;

 my_memcpy(dest, src, 10);

 free(dest);

}

This syntax is not a general-purpose solution because it can only be used for function parameters.

Even in parameter declarations, it has limited applicability because arrays of type void are illegal.

This makes it unusable for declaring functions such as memcpy.

Historically, support for checking parameters specified using [static 1] was very limited. GCC

11.1.0 only produces a diagnostic message when a null pointer constant is specified directly as a

function argument [2]:

<source>: In function 'test':

<source>:8:5: warning: argument 1 to 'char[static 1]' is null where

non-null expected [-Wnonnull]

 8 | my_memcpy(NULL, NULL, 10); // warning: argument 1 to

'char[static 1]' is null where non-null expected

 | ^~~~~~~~~~~~~~~~~~~~~~~~~

<source>:8:5: warning: argument 2 to 'char[static 1]' is null where

non-null expected [-Wnonnull]

<source>:4:7: note: in a call to function 'my_memcpy'

 4 | void *my_memcpy(char dest[static 1], const char src[static

1], size_t len);

 | ^~~~~~~~~

https://godbolt.org/z/GvjdxbjTW

Later versions of the GNU compiler introduced a new static analysis pass enabled by the command

line argument -fanalyzer [3]. This allows GCC 14.1.0 to diagnose use of null pointer values that

have been stored in intermediate variables, including potential null pointer values originating from

malloc [4]:

<source>: In function 'test2':

<source>:9:5: warning: use of NULL 'src' where non-null expected

[CWE-476] [-Wanalyzer-null-argument]

 9 | my_memcpy(dest, src, 10);

 | ^~~~~~~~~~~~~~~~~~~~~~~~

 'test2': events 1-3

 |

 | 8 | char *dest = malloc(10), *src = NULL;

 | | ^~~

 | | |

 | | (1) 'src' is NULL

 | | (2) 'src' is NULL

 | 9 | my_memcpy(dest, src, 10);

 | | ~~~~~~~~~~~~~~~~~~~~~~~~

 | | |

 | | (3) argument 2 ('src') NULL where non-null expected

 |

<source>:4:7: note: argument 2 of 'my_memcpy' must be non-null

 4 | void *my_memcpy(char dest[static 1], const char src[static

1], size_t len);

 | ^~~~~~~~~

<source>:9:5: warning: use of possibly-NULL 'dest' where non-null

expected [CWE-690] [-Wanalyzer-possible-null-argument]

 9 | my_memcpy(dest, src, 10);

 | ^~~~~~~~~~~~~~~~~~~~~~~~

 'test2': events 1-2

 |

 | 8 | char *dest = malloc(10), *src = NULL;

 | | ^~~~~~~~~~

 | | |

 | | (1) this call could return NULL

 | 9 | my_memcpy(dest, src, 10);

 | | ~~~~~~~~~~~~~~~~~~~~~~~~

 | | |

 | | (2) argument 1 ('dest') from (1) could be NULL

where non-null expected

 |

<source>:4:7: note: argument 1 of 'my_memcpy' must be non-null

 4 | void *my_memcpy(char dest[static 1], const char src[static

1], size_t len);

 | ^~~~~~~~~

https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10
https://godbolt.org/z/s87vrz4n1

GNU attribute
A GNU compiler extension [5] (also supported by Clang and the ARM compiler [6]) allows function

arguments to be marked as not supposed to be null:

void *my_memcpy(void *dest, const void *src, size_t len)

__attribute__((nonnull (1, 2)));

void test(void)

{

 char *dest = NULL, *src = NULL;

 my_memcpy(NULL, NULL, 10); // warning: argument 1 null where

non-null expected

 my_memcpy(dest, src, 10); // no diagnostic message

}

Since GCC began to support C23’s attribute specifier syntax, an alternative spelling of the same

attribute is available. For example, [[gnu::nonnull(1, 2)]] could be substituted for

__attribute__((nonnull (1, 2))).

Regardless of how it is spelt, I find the __attribute__ syntax intrusive and verbose. It is also

error-prone because attributes only apply to function declarations as a whole: it's easy to

accidentally specify wrong argument indices, because the arguments themselves are not annotated.

Clang extended the syntax to allow __attribute__((nonnull)) to be used within an

argument list, but the GNU compiler does not support that.

Clang annotations
RFC: Nullability qualifiers (2015) [7] proposed not one but three new type annotations:

_Nullable, _Nonnull and _Null_unspecified. Support for these was added in version 3.7

of Clang [8], but GCC doesn't recognize them. Like GCC without -fanalyzer, Clang itself only

detects cases where a null pointer constant is specified directly as a function argument:

void *my_memcpy(void *_Nonnull dest, const void *_Nonnull src,

size_t len);

void test(void)

{

 char *dest = NULL, *src = NULL;

 my_memcpy(NULL, NULL, 10); // warning: Null passed to a callee

that requires a non-null 1st parameter

 my_memcpy(dest, src, 10); // no diagnostic message

}

However, Clang-tidy [9], a standalone tool based on Clang, can issue diagnostic messages about

misuse of pointers that it is able to infer based on annotations and path-sensitive analysis:

<source>:9:3: warning: Null pointer passed to 1st parameter

expecting 'nonnull' [clang-analyzer-core.NonNullParamChecker]

 my_memcpy(dest, src, 10); // no diagnostic message

 ^ ~~~~

<source>:7:9: note: 'dest' initialized to a null pointer value

 char *dest = NULL, *src = NULL;

 ^~~~

<source>:9:3: note: Null pointer passed to 1st parameter expecting

'nonnull'

 my_memcpy(dest, src, 10); // no diagnostic message

 ^ ~~~~

https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
https://developer.arm.com/documentation/dui0491/i/Compiler-specific-Features/--attribute----nonnull---function-attribute
https://discourse.llvm.org/t/rfc-nullability-qualifiers/35672
https://clang.llvm.org/docs/AttributeReference.html#nullability-attributes
https://clang.llvm.org/extra/clang-tidy/

Clang's syntax is less verbose and error-prone than __attribute__, but the requirement to

annotate all pointers as either _Nullable or _Nonnull makes code harder to read and write.

Most pointers should not be null: consider the instance pointer passed to every method of a class.

It's no longer safe to write such declarations in traditional style with economy of effort. I also think

the semantics of these annotations (discussed later) are far more complex than befits a simple

language like C, and likely to cause confusion.

Because Clang’s annotations are not type qualifiers, neither the compiler nor the static analyser

diagnose some programmer errors that would be detected by existing type compatibility rules [10]:

void foo(int *_Nullable x)

{

 void baz(int *_Nonnull *l);

 int *_Nonnull *k;

 k = &x; // no constraint violation or diagnostic

 baz(&x); // no constraint violation or diagnostic

}

Another confounding aspects of Clang’s nullability attributes is that they appear to exert a kind of

spooky action at a distance over pointers that either lack any explicit nullability attribute or from

which it appears to have been explicitly cast away:

void bar(int *_Nonnull y);

void foo(int *_Nullable i)

{

 int *j;

 j = (int *)i;

 bar(j); /* warning: Nullable pointer is passed to a callee

 that requires a non-null 1st parameter */

}

Clang’s static analyser generates a diagnostic for the above snippet [11] because it treats the cast

(int *) as equivalent to (int *_Null_unspecified), which is useless in this scenario. The

“assumed null unless disproven” quality of the pointer i is preserved upon assigning it to j (with or

without a cast), which appears to contradict the declared type of j.

A solution [12] is to modify the cast to be more explicit:

void bar(int *_Nonnull y);

void foo(int *_Nullable i)

{

 int *j;

 j = (int *_Nonnull)i;

 bar(j);

}

https://godbolt.org/z/7TTa9ehWs
https://godbolt.org/z/7cTWETePW
https://godbolt.org/z/dsE67Mdq1

Conclusion
I’ve seen Clang’s nullability qualifiers described as “enormous and useless noise, while providing

doubtful value” [13] and the very idea of annotating pointers called a “naive dream”. I agree with

the first statement, but not the second: other languages have shown that null safety is achievable

and useful, whilst C lags with competing partial solutions that are confusing, error-prone, and

intrusive.

Attributes and annotations must be hidden behind macros for compatibility between tools. They

provide no value (other than documentation) to developers using translators which do not support

path-sensitive analysis. Not all developers use special build machines costing thousands of pounds: I

do a lot of coding on a Raspberry Pi, using a toolchain that dates from the 1980s [14] but is still

actively maintained [15] (and recently gained support for C17). For me, having a rapid edit-compile-

run cycle is paramount.

Even tiny translators such as cc65 [16] can check that the addresses of objects declared with const

or volatile are not passed to functions that do not accept such pointers, because the rules for

type compatibility are simple (for the benefit of machines and people). This is exactly the niche that

the C language should be occupying.

I postulate that improved null safety does not require path-sensitive analysis.

https://reviews.freebsd.org/D9004
https://en.wikipedia.org/wiki/Norcroft_C_compiler
https://www.riscosopen.org/content/sales/dde
https://cc65.github.io/

Syntactic and semantic precedents
Type qualifiers (as we understand them today) didn't exist in pre-ANSI C, which consequently had a

stronger similarity between declarations and expressions, since qualifiers can't appear in expressions

(except as part of a cast).

The second edition of 'The C Programming Language' (K&R, 1988) says only that:

Types may also be qualified, to indicate special properties of the objects being

declared.

Notably, the special properties conferred by const, volatile, restrict and _Atomic all

relate to how objects are stored or how that storage is accessed - not the range of values

representable by an object of the qualified type.

Is the property of being able to represent a null pointer value the kind of property that should be

indicated by a type-qualifier? Restrictions on the range of values representable by an object are

usually implied by its type-specifiers (although long, short, signed, and unsigned are

intriguingly also called "qualifiers" by K&R, presumably because their text predates ANSI C).

Pointers are a special type of object though. Multiple levels of indirection can be nested within a

single declaration, as in the following declaration of baz (an array of pointers to arrays of pointers

to int):

int bar;

int *foo[2] = {NULL, &bar};

int *(*baz[3])[2] = {&foo, NULL, NULL};

It's therefore necessary to specify whether null is permitted for every level of indirection within a

declarator (e.g. for both baz[3] and (*baz[3])[2]). The only existing element of C's existing

syntax that has such flexibility is a type-qualifier.

It's not meaningful to specify whether null is permitted as part of the declaration-specifiers (e.g.

static int) on the lefthand side of a declaration, because this property only applies to pointers.

The restrict qualifier already has this limitation.

Here's an example of how the above declaration might look with Clang's nullability qualifiers:

int bar;

int *_Nullable foo[2] = {NULL, &bar};

int *_Nullable (*_Nullable baz[3])[2] = {&foo, NULL, NULL};

Syntactically, this may look like a perfect solution; semantically, this paper will argue that it is not!

A variable of type char *const (const pointer to char) can be assigned to a variable of type

char * (pointer to char), but a variable of type const char * (pointer to const char)

cannot. After a learner internalizes the knowledge that qualifiers on a pointer target must be

compatible, whereas qualifiers on a pointer value are discarded, this rule can be applied to any

assignment or initialization:

int *const x = NULL;

int *s = x; // no warning

int *volatile y = NULL;

int *t = y; // no warning

int *restrict z = NULL;

int *r = z; // no warning

One might not expect the same laxity to apply to the _Nullable and _Nonnull qualifiers,

because they relate to the assigned value, not the storage access properties of a particular copy of it.

Despite that, Clang-tidy allows an assigned value to be _Nullable unless the type of the assigned-

to-object is qualified as _Nonnull:

extern int *_Nullable getptr(void);

int *_Nullable z = getptr();

int *q = z; // no warning

int *_Nonnull p = z; // warning: Nullable pointer is assigned to a

pointer which is expected to have non-null value

*q = 10; // warning: Nullable pointer is dereferenced

This compromise between the traditional semantics of assignment (discard top-level qualifiers) and

the semantics needed to track nullability (ensure compatible qualifiers) looks like a weak basis for

null safety; however, it is mitigated by the fact that the static analyser tracks whether a pointer value

may be null regardless of its type. In turn, that makes it impossible to tell what constraints apply to

a pointer value by referring to its declaration.

A related issue is that top-level qualifiers on arguments are redundant in a function declaration (as

opposed to definition) because arguments are passed by value. Callers don't care what the callee

does with its copy of a pointer argument - only what it does with the pointed-to object.

Consequently, such qualifiers are ignored when determining compatibility between declarations and

definitions of the same function. The normative part of an argument declaration is to the left of the

asterisk:

void myfunc(const char *const s);

// ^^^^^^^^^^ ^^^^^

// Normative Not normative

// vvvvvvvvvv vvvvvvvv

void myfunc(const char *restrict s)

{

}

Notably, this rule also applies to restrict-qualified arguments, despite an apparent conflict with

a principle stated in WG14's charter:

Application Programming Interfaces (APIs) should be self-documenting when

possible

Interfaces cannot be self-documenting when qualifiers (such as restrict) that are part of the

contract may differ between the function definition and the function declaration used by callers.

The same laxity should not apply to the _Nullable and _Nonnull qualifiers, because they relate

to the passed value, not its storage access properties. Despite that, Clang ignores any differences

between rival declarations of a function, except in cases where contradictory qualifiers were used.

It is permissible to write [] instead of * in a parameter declaration, to hint that an array is passed

(by reference) to a function. One might expect this [] syntax to be incompatible with qualifying the

type of the pointer (as opposed to the type of array elements). On the contrary, Clang allows

nullability qualifiers to appear between the brackets:

void myfunc(const char s[_Nullable]); // s "may store a null value

 // at runtime"

This syntax is not intuitive to me (usually [] indicates an index or size) but it does follow 6.7.5.3 of

the C language standard:

A declaration of a parameter as ''array of type'' shall be adjusted to ''qualified

pointer to type'', where the type qualifiers (if any) are those specified within the

[and] of the array type derivation.

Proposed syntax
An essential feature of a new type qualifier expressing 'may be null’1 is that this property must not

be lost when a qualified pointer is copied (including when it is passed as a function argument).

Qualifiers on a pointed-to type must be compatible in assignments, initializations, and function calls,

whereas qualifiers on a pointer type need not be. The fact that every programmer has internalized

this rule makes me reluctant to propose (or embrace) any change to it for nullability qualifiers on a

pointer type.

I'm tempted to say that both restrict and the Clang annotations _Nullable and _Nonnull

are in the wrong place. The restrict qualifier frees an optimizer to generate more efficient code,

almost like the opposite of volatile. Isn't the quality of being aliased a property of an object,

rather than any single pointer to it?

At the heart of C's syntax is the primacy of fundamental types such as int. Every declaration is a

description of how a chain of indirections leads to such a type.

Let’s reframe the 'may be null' property as a quality of the pointed-to object, rather than the

pointer:

const int *i; // *i is an int that may be stored in read-only memory

volatile int *j; // *j is an int that may be stored in shared memory

_Optional int *k; // *k is an int that may not be stored at all

I chose the name _Optional to bootstrap existing knowledge of Python and make a clear

distinction between this qualifier and _Nullable. I also like the idea of Python giving something

back to C.

_Optional is the same length as _Nullable and only one character longer than volatile. C's

syntax isn't known for its brevity, anyway. (Think not of functions such as strcpy, but of

declarations such as const volatile unsigned long int.)

Read-only objects are often stored in a separate address range so that illegal write accesses

generate a segmentation fault (on machines with an MMU). Likewise, null pointer values encode a

reserved address, which is typically neither readable nor writable by user programs. In both cases

(const and _Optional), a qualifier on the referenced type of a pointer may reflect something

about the address of an object of that type.

Modifying an object designated by an lvalue that has const-qualified type only has undefined

behaviour if the object was actually defined as const; otherwise, it is merely a constraint violation.

Likewise, an lvalue that does not designate an object because it is the result of dereferencing a null

pointer only has undefined behaviour if evaluated.

Could potential null pointer dereferences also be moved to the domain of constraint violations?

Unlike assignment to an lvalue with const-qualified type, no diagnostic should be produced for

accesses to an object designed by an lvalue with _Optional-qualified type. Were that my intent, I

would have proposed a name like _None rather than _Optional, with constraints against use of

lvalues that have _None-qualified types as operands.

1 This wording is sufficiently controversial that a separate section has been devoted to it.

Requiring the _Optional qualifier to be cast away before accessing a so-qualified object would be

tiresome and would sacrifice type safety for null safety. I do not think that is a good trade-off.

Despite this limitation, the new qualifier is useful:

• It allows interfaces to be self-documenting. (Function declarations must match their

definition.)

• It allows the translator to report errors on initialization or assignment, if implicitly converting

a pointer to _Optional into a pointer to an unqualified type.

• It provides information to static analysis tools, which can warn about dereferences of a

pointer to _Optional if path-sensitive analysis does not reveal a guarding check for null in

the preceding code.

Example usage

void foo(int *);

void bar(_Optional int *i)

{

 *i = 10; // path-sensitive warning of unguarded dereference

 if (i) {

 *i = 5; // no path-sensitive warning

 }

 int *j = i; // warning: initializing discard qualifiers

 j = i; // warning: assignment discards qualifiers

 foo(i); // warning: passing parameter discards qualifiers

}

Here's an example of complex declarations that I used earlier, updated to use the proposed qualifier:

 int bar;

 _Optional int *foo[2] = {NULL, &bar};

// ^^decl-spec^^ ^^decl^

 _Optional int *(*qux[3])[2] = {&foo, &foo, &foo};

// ^^decl-spec^^ ^^declarator^

 _Optional int *_Optional (*baz[3])[2] = {&foo, NULL, NULL};

// ^^decl^

// ^^decl-spec^^ ^^pointer^ ^^dir-decl^^

// ^^^^^^declarator^^^^^^^

Let's break it down:

• Storage is allocated for an object, bar, of type int. This will be used as the target of a

pointer to _Optional int but doesn't need to be qualified as such (any more than a

const array must be passed to strlen).

• Storage is allocated for an array, foo, of two pointers to _Optional int. _Optional

in the declaration-specifiers indicates that elements of foo may be null; an expression

resembling the declarator (e.g. *foo[0]) may have undefined behaviour.

• Storage is allocated for an array, qux, of three pointers to arrays of pointers to _Optional

int. _Optional in the declaration-specifiers indicates that elements of the pointed-to

arrays may be null; an expression resembling the declarator (e.g. *(*qux[0])[0]) may

have undefined behaviour.

• Storage is allocated for an array, baz, of three pointers to _Optional arrays of pointers to

_Optional int. _Optional in the pointer(opt) of the top-level declarator indicates

that elements of baz may be null; an expression resembling the inner declarator (e.g.

*baz[0]) may have undefined behaviour. _Optional in the declaration-specifiers has

the same meaning as for qux.

Qualification of types other than referenced types
Parameter declarations using [] syntax can be written more naturally using an _Optional

qualifier than using Clang's _Nullable qualifier:

void myfunc(_Optional const char s[]);

With the above exception, it isn't useful to qualify a type other than a referenced type as

_Optional (although so-qualified types exist during expression evaluation). Such declarations are

therefore disallowed, like similar abuse of restrict, to avoid confusion.

Consequently, there is no need to create another class of undefined behaviour when an attempt is

made to access an object defined with an optional-qualified type through use of an lvalue with non-

optional-qualified type. (The equivalent semantics for existing qualifiers are given by 6.7.4.1p7.)

Optional pointer versus pointer-to-optional
The following code declares p, a pointer to an optional pointer, and q, a pointer to a const pointer:

int *_Optional *p, *const *q;

(It is not syntactically valid to declare an optional pointer directly.)

Note that an 'optional pointer' is not a pointer whose value may be null; it's a pointer obtained by

dereferencing a pointer that may be null2. If *p is used as an lvalue and it does not designate an

object because p is null, then the object (of type int *_Optional) designated by *p does not

exist.

This is like the existing rule that a 'const pointer' is not a pointer that may address an immutable

object; it's a pointer that is not itself modifiable. If *q is used as an lvalue then the object (of type

int *const) designated by *q cannot be modified.

Attempting to police this distinction is probably fruitless, since ‘const pointer’ and ‘pointer to const’

are already used interchangeably, causing considerable confusion.

A secondary reason that it does not make sense to describe _Optional int *p as an ‘optional

pointer’ is that a null pointer is a pointer – it’s just a pointer that does not point to any object or

function. The pointer is not optional; the referenced object is.

2 By ‘may be null’, please understand the meaning to be that generation of relevant diagnostics is enabled –
not that only pointers to so-qualified referenced types can be null.

Why _Optional rather than _Mandatory?
As mentioned earlier, function parameters that can legitimately be null are outnumbered by

parameters that cannot be null without provoking undefined behaviour.

The very first sentence of K&R’s book “The C programming language” is

C is a general-purpose programming language which features economy of

expression…

Neither static array extents nor any alternative method of annotating function parameters as non-

null (including a future _Mandatory qualifier) resemble “economy of expression”.

The goal of keeping C “pleasant, expressive, and versatile” (as K&R described it) is incompatible with

declaring interfaces like this:

bool coord_stack_init(coord_stack stack[static 1], size_t limit);

void coord_stack_term(coord_stack stack[static 1]);

bool coord_stack_push(coord_stack stack[static 1], coord item);

coord coord_stack_pop(coord_stack stack[static 1]);

bool coord_stack_is_empty(coord_stack stack[static 1]);

Or this:

bool coord_stack_init(coord_stack *_Nonnull stack, size_t limit);

void coord_stack_term(coord_stack *_Nonnull stack);

bool coord_stack_push(coord_stack *_Nonnull stack, coord item);

coord coord_stack_pop(coord_stack *_Nonnull stack);

bool coord_stack_is_empty(coord_stack *_Nonnull stack);

Or this:

bool coord_stack_init(coord_stack *stack, size_t limit)

 __attribute__((nonnull (1, 1)));

void coord_stack_term(coord_stack *stack)

 __attribute__((nonnull (1, 1)));

bool coord_stack_push(coord_stack *stack, coord item)

 __attribute__((nonnull (1, 1)));

coord coord_stack_pop(coord_stack *stack)

 __attribute__((nonnull (1, 1)));

bool coord_stack_is_empty(coord_stack *stack)

 __attribute__((nonnull (1, 1)));

Instead of like this:

bool coord_stack_init(coord_stack *stack, size_t limit);

void coord_stack_term(coord_stack *stack);

bool coord_stack_push(coord_stack *stack, coord item);

coord coord_stack_pop(coord_stack *stack);

bool coord_stack_is_empty(coord_stack *stack);

An equally important reason to add _Optional instead of _Mandatory is that the assignment

semantics for _Mandatory would need to be opposite to those for const and volatile

(because _Mandatory is not a restriction on usage of a so-qualified pointer, therefore it should not

be contagious).

Implicitly discarding a const qualifier provokes a diagnostic message:

const int *x = &y;

int *z = x; // warning: initialization discards 'const' qualifier

 // from pointer target type

const int *q = z; // no warning

As does implicitly discarding a volatile qualifier:

volatile int *x = &y;

int *z = x; // warning: initialization discards 'volatile' qualifier

 // from pointer target type

volatile int *q = z; // no warning

Implicitly discarding a _Mandatory qualifier would not provoke a diagnostic message; instead, a

new type of diagnostic message might be generated upon implicitly acquiring the qualifier:

_Mandatory int *x = &y;

int *z = x; // no warning

_Mandatory int *q = z; // warning : initialization adds '_Mandatory'

 // qualifier to pointer target type

Choosing defaults wisely so that they do not need to be constantly overridden is an important aspect

of usability. Limiting the number of distinct rules and patterns makes regular languages easier to

learn than irregular ones.

The implementation cost of adding a _Mandatory qualifier might not differ much from the cost of

adding an _Optional qualifier, but I believe that its effect on those learning and using the

language would be detrimental to the extent that it might not be used at all. The limited uptake of

static array size expressions, despite their potential for annotating function parameters as non-

null, seems to point in this direction.

A new qualifier indicating that a pointer may be null can only have been explicitly added to an

existing program by its maintainer. Consequently, implementations can immediately begin to

generate diagnostic messages about misuse of pointers to so-qualified objects. In contrast,

implementations cannot reasonably begin to generate diagnostic messages about usage of pointers

to unqualified objects when they introduce support for a qualifier indicating that a pointer cannot be

null.

But any pointer can be null
A common objection to the idea of a qualifier expressing the property “this pointer can be null” is

that any pointer can be null, therefore a creating new category of pointers that can be null would be

meaningless.

This is based on a misconception about the meaning of the proposed _Optional qualifier: it does

not mean “a pointer to a so-qualified type is permitted to be null”; it means “a pointer to a so-

qualified type is assumed to be null in the absence of other information, for the purpose of

generating diagnostics.”

Calling a function, foo, with a null pointer argument in the following example illustrates that foo

may receive a null pointer regardless of its parameter type:

void foo(char *i)

{

 if (!i) {

 puts("i is not a pointer to any object or function");

 }

 char k;

 _Optional char *j = i;

 k = *j; // diagnostic message because j is assumed to be null

 if (j) { // j could now be a pointer to an object or function

 k = *j; // no diagnostic message because j is constrained

 }

}

// Another translation unit:

int main(void)

{

 foo(NULL); // i becomes null although it is unqualified

 return 0;

}

If the above program is executed, then “i is not a pointer to any object or function” is sent to the

standard output stream before *j is evaluated (with undefined behaviour).

It is not necessarily redundant for programs to check for the value of a pointer to an unqualified

referenced type (such as i) being null, and compilers must not make optimisations based on false

inferences that pointers to unqualified referenced types cannot be null.

Whether to employ defensive programming techniques depends on the type of program or library

being written, the security environment it operates within, and the trustworthiness of calling code

(which may even be written in another language). It is also possible to create null pointers using

memset. No language solution can fully guarantee that a program is free of null pointers whose

nullability is not expressed though the type system.

A similar situation exists with the const qualifier: some programmers use it sparingly, and others

not at all. Modifying an object through an lvalue of unqualified type is often an encapsulation

violation whether it has undefined behaviour or not. There is no way of guaranteeing that a program

is free of modifiable lvalues that designate immutable objects.

Modifiable lvalues are defined by 6.3.3.1 p1 of the ISO C standard:

A modifiable lvalue is an lvalue that does not have array type, does not have an

incomplete type, does not have a const-qualified type, and if it is a structure or

union, does not have any member (including, recursively, any member or element

of all contained aggregates or unions) with a const-qualified type.

The quoted text does not guarantee that an lvalue with const-qualified type designates an

immutable object; nor does it prevent an immutable object from being designated by a modifiable

lvalue that does not have a const-qualified type.

Analogous to the given meaning of the proposed _Optional qualifier, one could say that const

does not mean “an object designated by an lvalue of this type is permitted to be immutable”; it

means “an object designated by an lvalue of this type is assumed to be immutable”.

Consider the declaration of strstr in 7.21.5.7 of the C99 standard:

char *strstr(const char *s1, const char *s2);

Dereferencing the returned pointer produces a modifiable lvalue even if the s1 argument does not

designate a mutable object!

Modifying an object defined with a const-qualified type through use of an lvalue with non-const-

qualified type has undefined behaviour, but it is not a constraint violation:

const char s1[] = "carwash"; // immutable object

*strstr(s1, "wash") = 'm'; // undefined behaviour

A static array generated from a string literal can be stored in shared or read-only memory as per

6.4.6 p7 of the ISO C standard:

It is unspecified whether these arrays are distinct provided their elements have

the appropriate values. If the program attempts to modify such an array, the

behavior is undefined.

The type of such arrays is char, which means that that string literals are another potential source of

modifiable lvalues that designate immutable objects.

Assigning to a static array generated from a string literal has undefined behaviour, but it is not a

constraint violation:

char *s = "carwash"; // pointer to an immutable object

*s = 'm'; // undefined behaviour

Nevertheless, const qualifiers have considerable practical value. Nobody would argue that since

assigning to an lvalue has undefined behaviour if the designated object is immutable, creating a

subcategory of modifiable lvalues is pointless.

Calling a function, bar, with a string literal argument in the following example [17] illustrates that

bar may receive a reference to an immutable object regardless of its parameter type:

char h;

void bar(char *i)

{

 if (i != &h) {

 puts("i is not known to designate a mutable object");

 }

 const char *j = i;

 *j = 4; // constraint violation because *j is assumed to

 // designate an immutable object

 if (j == &h) { // *j must now designate a mutable object

 *j = 5; // still a constraint violation

 }

}

// Another translation unit:

int main(void)

{

 bar("cuppa");

 return 0;

}

It is not possible for bar to check that *i is mutable in the general case, but bar could reject

references other than those of a set of known mutable objects (such as h).

The fact that *i is a modifiable lvalue whereas *j is not (even when i == j and j == &h)

illustrates a key difference between _Optional and const: like nullability, immutability can be

disproven, but translators do not use such inferences to modify their generation of diagnostics. The

standard requires diagnostics for constraint violations, and constraints must be simple enough to be

enforced by all implementations.

https://godbolt.org/z/xad86788P

Treatment of null pointer constants
It would be invaluable for a diagnostic message to be produced whenever a null pointer constant is

assigned to a pointer that does not have a _Optional-qualified referenced type.

The simplest way for users to implement the desired behaviour would be to define nullptr (or

NULL) as a macro that expands to ((_Optional void *)0). The following example illustrates

that by invoking GCC 14.2.0 with the command line argument -Dnullptr='((const void

*)0)' [18]:

int main(void)

{

 void baz(int *);

 int *i = nullptr; // discards qualifier from pointer target type

 i = nullptr; // discards qualifier from pointer target type

 baz(nullptr); // discards qualifier from pointer target type

 return 0;

}

A better long-term direction for the language would be to follow the path established by GCC for

treatment of string literals.

GCC provides a compiler option to change the type of the static array generated from string literals

[19]:

-Wwrite-strings

When compiling C, give string constants the type const char[length] so that

copying the address of one into a non-const char * pointer will get a warning;

when compiling C++, warn about the deprecated conversion from string literals to

char *.

An analogous compiler option could be provided to change the type of null pointers generated from

null pointer constants, and those generated when an object is subject to default initialisation. This

would be more powerful than a macro solution.

It is not easy to determine whether a given program can be translated with -Wwrite-strings

(or a new option such as -Wnull-pointers) without generating diagnostics. Portability issues

such as this are covered by Annex J of the ISO C standard. Writable string literals are described

therein both as an example of undefined behaviour (J.2) and as a common extension (J.5.6).

https://godbolt.org/z/9xn3Esqvf
https://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Warning-Options.html

Conversions from maybe-null to not-null
I presented the idea of diagnostic messages when a pointer-to-_Optional is passed to a function

with incompatible argument types as an unalloyed good. In fact, such usage has legitimate

applications.

Consider the following veneer for the strcmp function which safely handles null pointer values by

substituting the empty string:

int safe_strcmp(_Optional const char *s1, _Optional const char *s2)

{

 if (!s1) s1 = "";

 if (!s2) s2 = "";

 return strcmp(s1, s2); // warning: passing parameter discards

qualifiers

}

In the above situation, both s1 and s2 would both need to be cast before calling strcmp:

int safe_strcmp(_Optional const char *s1, _Optional const char *s2)

{

 if (!s1) s1 = "";

 if (!s2) s2 = "";

 return strcmp((const char *)s1, (const char *)s2);

}

The above solution would be detrimental to readability and type safety.

It could be argued that any mechanism to remove _Optional from the target of a pointer without

first checking its value (at runtime) fatally compromises null safety. I disagree: C provides tools to

write type-safe code, whilst allowing leniency where it is pragmatic to do so.

It might be possible to use some combination of _Generic and unqual_typeof to remove only

a specific qualifier from a type (like const_cast in C++) but such casts would still clutter the code

and therefore seem likely be rejected by programmers who prefer to rely solely on path-sensitive

analysis.

What is required is a solution that accommodates both advanced translators and translators which

report errors based only on simple type-compatibility rules. Translators capable of doing so must be

able to validate conversions from maybe-null to not-null in the same way as they would validate a

real pointer dereference.

One of my colleagues suggested just such a solution:

int safe_strcmp(_Optional const char *s1, _Optional const char *s2)

{

 if (!s1) s1 = "";

 if (!s2) s2 = "";

 return strcmp(&*s1, &*s2);

}

This idiom has the benefit that it is already 'on the radar' of implementers (and some programmers)

because of an existing rule that neither operator of &* is evaluated. It's searchable, easy to type (&

and * are on adjacent keys), and not too ugly.

Do not underestimate the importance of &* being easy to type! I must have written it thousands of

times by now. The alternatives that I considered would have made updating a large existing

codebase unbearable.

The way I envisage this working is:

• All translators implicitly remove the _Optional qualifier from the type of the pointed-to

object in the result of the expressions &*s1 and &*s2.

• A translator that does not attempt path-sensitive analysis will not warn about the

expressions &*s1 and &*s2, since it cannot tell whether s1 and s2 are null pointers.

• A translator that warns about dereferences of pointers to _Optional, in cases where such

pointers cannot be proven to be non-null, may warn about the expressions &*s1 and &*s2

if the guarding if statements are removed.

However, this proposal might entail a modification to the description of the address and indirection

operators in 6.5.4.3 p3 of the ISO C standard:

If the operand [of the unary & operator] is the result of a unary * operator,

neither that operator nor the & operator is evaluated and the result is as if both

were omitted, except that the constraints on the operators still apply and the

result is not an lvalue.

C++ does not currently allow indirection on an operand of type void *. This rule would either need

to be aligned with C, or else C++ programmers would need to cast away the qualifier from

_Optional void * in some circumstances, rather than using an idiom such as &*.

Modification of operator semantics
I haven't yet explained how such an expression such as &*s would remove the _Optional

qualifier from the type of a pointed-to object.

Whereas a qualifier that applies to a pointer type is naturally removed by dereferencing that pointer,

a qualifier (such as _Optional) that applies to a pointed-to object is not:

int *const x;

typeof(&*x) y; // y has type 'int *' not 'int *const'

y = 0;

int b;

int const *a = &b;

typeof(&*a) c; // c has type 'int const *'

*c = 0; // error: read-only variable is not assignable

Consequently, modified semantics are required for the unary * operator, the unary & operator, or

both.

It's tempting to think that the appropriate time to remove a maybe-null qualifier from a pointer is

the same moment at which undefined behaviour would ensue if the pointer were null. I prototyped

a change to remove the _Optional qualifier from the result of unary * but found it onerous to

add &* everywhere it was necessary to remove the _Optional qualifier from a pointer.

Moreover, many previously simple expressions became unreadable:

• &(&*s)[index] (instead of &s[index])

• &(&*s)->member (instead of &s->member)

Whilst it would have been possible to improve readability by using more intermediate variables, that

isn't the frictionless experience I look for in a programming language. (The same consideration

applies to reliance on casts in the absence of modified operator semantics.)

The proposed idiom &*s is merely the simplest expression that incorporates a semantic dereference

without accessing the pointed-to object. A whole class of similar expressions exist, all of which are

typically translated to a machine-level instruction to move or add to a register value (rather than a

load from memory):

• &s[0]

• &0[s] (by definition, E1[E2] is equivalent to (*((E1)+(E2))))

• &(*s).member

• &s->member

There is only one way to get the address of an object (excepting arithmetic), whereas there are

many ways to dereference a pointer. Therefore, I propose that any _Optional qualifier be

implicitly removed from the operand of the unary & operator, rather than modifying the semantics

of the unary *, subscript [] and member-access -> operators.

The operand of & is already treated specially, being exempt from conversion from an lvalue to the

value stored in the designated object, and from implicit conversion of an array or function type into

a pointer. It therefore seems less surprising to add new semantics for & than *.

Another class of expressions that generate an address from a pointer without accessing the pointed-

to object are arithmetic expressions in which one operand is a pointer:

• 1 + s

• s - 1

• ++s

None of the above expressions affect the qualifiers of a pointed-to object in the result type: if the

type of s is a pointer-to-const then so is the type of s + 1.

Although s + n is equivalent to &s[n] in current code, it does not occur often enough to justify

modifying arithmetic operators to remove any _Optional qualifier from a pointed-to object. This

also avoids the question of changes to prefix/postfix operators such as ++ and compound

assignments such as +=. The alternative substitution of &*s + n is tolerably readable.

Function pointers
Traditionally, C's declaration syntax did not permit qualifiers on the referenced type to be specified

as part of a function pointer declaration:

<source>:4:6: error: expected ')' [clang-diagnostic-error]

int (const *f)(int); // pointer to const-qualified function

 ^

A syntactic way around this limitation is to use an intermediate typedef name:

typedef int func_t(int);

const func_t *f; // pointer to const-qualified function

It is easier to document the parameters and return value of a function type when it is named by a

separate typedef declaration.

The resultant typedef name can also be used as a convenient way of declaring functions of the

given type without repetition:

func_t inches_to_mm, feet_to_mm, metres_to_mm;

Since the publication of C23, the typeof operator can alternatively be used to specify qualifiers for

the referenced type in a function pointer declaration:

const typeof(int (int)) *f; // pointer to const-qualified function

Some programmers may find a declaration that uses typeof easier to read than a traditional-style

declaration, especially when the function pointer type is a return type. Others may prefer to adhere

to K&R’s principle that declarations should resemble usage.

Further extending the declaration syntax is beyond the scope of my proposal.

None of this solves the underlying semantic issue. GCC 14.2.0 does not produce a diagnostic

message about qualified function types unless -pedantic is passed as a command line argument,

but Clang 18.1.0 does [20]:

<source>:5:1: warning: 'const' qualifier on function type 'func_t'

(aka 'int (int)') has unspecified behavior [clang-diagnostic-

warning]

const func_t *f; // pointer to const-qualified function

^~~~~~

This diagnostic message can be justified by 6.7.4.1 p10 of the ISO C23 standard:

If the specification of a function type includes any type qualifiers, the behavior is

undefined.

N3342 [24] (which has been accepted by WG14) modified this text as follows:

If the specification of a function type includes any type qualifiers, the behavior is

implementation-defined.

This change moved qualified function types out of a category of behaviour that could be

unpredictable and into a category of behaviour for which implementors are expected to document

their choices. Such use of const and volatile is still a possible source of portability issues.

Since _Optional is new, its semantics when applied to function types can instead be standardized.

https://godbolt.org/z/8bqMdPeK4
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3342.pdf

Migration of existing code
Functions which consume pointers that can legitimately be null can usually be changed with no

effect on compatibility. For example, void free(_Optional void *) can consume a pointer

to an _Optional-qualified type, or a pointer to an unqualified type, without casting.

Such changes are not seamless when functions are used as callback functions (i.e. called through

function pointers), because any extra qualifiers cause a type mismatch. It would be incredibly useful

for C to support variance in assignments of function pointers to the same degree that it supports

variance for function calls (not only for _Optional, but for existing qualifiers). Such a proposal lies

outside the scope of this paper.

'Safe' wrappers for existing functions that produce null pointers can also be written, for example

_Optional FILE *safe_fopen(const char *, const char *) would produce a

pointer that can only be passed to functions which accept pointers to _Optional-qualified types.

Here is an example of one type of change that I made to an existing codebase:

Before

entry_t *old_entries = d->entries;

d->entries = mem_alloc(sizeof(entry_t) * new_size);

if (NULL == d->entries)

{

 d->entries = old_entries;

 return ERROR_OOM;

}

After

_Optional entry_t *new_entries = mem_alloc(sizeof(entry_t) *

new_size);

if (NULL == new_entries)

{

 return ERROR_OOM;

}

d->entries = &*new_entries;

This pattern avoids the need to qualify the array pointed to by struct member entries as

_Optional, thereby simplifying all other code which uses it. When nullability is part of the type

system, more discipline and less constructive ambiguity is required. General-purpose struct types

for which pointer nullability depends on specific usage become a liability.

Of course, programmers are free to eschew the new qualifier, just as many do not consider const

correctness to be worth their time.

Proposed language extension
• A new type qualifier, _Optional, indicates that a pointer to a so-qualified type should be

assumed to be null (for the purpose of issuing diagnostic messages only) unless proven

otherwise. This does not preclude any other pointer type from being null.

• Types other than those of a pointed-to object or pointed-to incomplete type shall not be

_Optional-qualified in a declaration.

• The semantics of the unary & operator are modified so that if its operand has type "type"
then its result has type "pointer to type", with the omission of any _Optional qualifier of

the pointed-to type.

• If an operand is a pointer to an _Optional-qualified type and its value cannot be statically
proven never to be null, then implementations may generate a diagnostic message of any
undefined behaviour that would occur if the value were null.

• A specification of a function pointer type that has an _Optional-qualified referenced type

does not have implementation-defined behaviour, unlike other qualifiers.

The _Optional qualifier is treated like existing qualifiers when determining compatibility between

types, and when determining whether a pointer may be implicitly converted to a pointer to a

differently qualified type.

Considerations for static analysis

Dereferences that do not access storage
Clang’s static analyser currently ignores many instances of undefined behaviour. For example, it

allows expressions like &self->super (equivalent to &(*self).super) when self is null.

This expression is not exempted by the rule that

If the operand [of the unary & operator] is the result of a unary * operator,

neither that operator nor the & operator is evaluated and the result is as if both

were omitted

because the operand of the address-of operator is (*self).super, not *self.

This latitude is also required because many common user-defined macros such as container_of

have undefined behaviour.

offsetof is a standard macro, and therefore it can be assumed to be free of undefined behaviour.

However, the simplest definition of offsetof incorporates an explicit null pointer dereference:

#define offsetof(st, m) \

 ((size_t)&(((st *)0)->m))

Such expressions must be rejected when applied to pointers to _Optional values, otherwise it

would not be safe to remove _Optional from a pointer target by use of the proposed &* idiom

(or any equivalent). Effectively, qualifying a type as _Optional enables an enhanced level of

checking for undefined behaviour, which operates partly at a syntactic level rather than solely at the

level of simulated memory accesses.

This paper argues that unlocking improved checking for UB is a powerful and desirable side-effect of

adding a new type qualifier.

Conversions from qualified to unqualified type
Explicitly casting an expression to remove _Optional from a referenced type instead of using the

proposed &* idiom could be considered bad style because it prevents effective static analysis.

However, part of the traditional spirit of C is that programmers should be able to override checks

when necessary. This philosophy is sometimes expressed in phrases such as “Don't prevent the

programmer from doing what needs to be done."

It is also necessary to consider the case where an expression is not explicitly cast to remove

_Optional from a pointer target before using it as the righthand operand of an assignment. Such

code violates one of the constraints of section 6.5.16.1 in the C standard, specifically:

the type pointed to by the left operand has all the qualifiers of the type pointed to

by the right operand

Section 5.2.1.3 does not require that translation of a program must terminate when a constraint

violation is detected, merely that a diagnostic message must be produced:

Of course, an implementation is free to produce any number of diagnostic

messages, often referred to as warnings, as long as a valid program is still

correctly translated. It can also successfully translate an invalid program.

It is the default behaviour of many implementations to continue translation when certain constraint

violations are detected.

For example:

int main(void)

{

 const int *i = &(int){0};

 int *j;

 j = i; // constraint violation: j lacks a qualifier of i

 static_assert(_Generic(j, int *:1, default:0)); // passes

 *j = 2;

 *i = 1; // constraint violation: not a modifiable lvalue

 return 0;

}

Clang 19.1.0 and GCC 14.1 produce a diagnostic message for both constraint violations but only

terminate translation if the second is present [21]. If the second constraint violation is removed,

then the modified program is translated successfully. It is therefore necessary to think about

recommended practice for situations where a qualifier is implicitly removed by assignment, as well

as when it is explicitly cast away.

As evidenced by the static assertion, the referenced type of j does not mysteriously acquire the

qualifier of the referenced type of i when j is assigned the value of i. Consequently, the

subsequent assignment to *j is not a constraint violation and does not produce a diagnostic. The

object referenced by j was not declared as const, therefore the assignment *j = 2 succeeds.

This paper considers it axiomatic that constraints expressed through the type system must also be

removable through the type system. One aspect is that such constraints must be removable by cast

or assignment; another is that they must not reappear after being discarded.

It follows that implementations should not produce a diagnostic for operators such as unary * when

the referenced type of their operand is not _Optional-qualified, if the only reason for doing so is

that static analysis can trace the provenance of that operand’s value back to a pointer to an

_Optional-qualified referenced type (on at least one execution path).

For example:

void foo(_Optional int *i)

{

 int *j;

 j = i; // violates type constraints for =

 *j = 5; // no diagnostic recommended although

 // *i is optional and j == i

}

https://godbolt.org/z/6jKxdfKb4

Nor should implementations produce a diagnostic for an assignment to an lvalue (or parameter)

when neither the lvalue (or parameter) nor the assigned expression have a referenced type which is

_Optional-qualified, if the only reason for doing so is that static analysis can trace the provenance

of the expected value of the assigned expression back to an object declared with (or value cast to)

an _Optional-qualified referenced type.

For example:

void bar(int *y);

void foo(_Optional int *i)

{

 int *j;

 j = i; // violates type constraints for =

 bar(j); // no diagnostic recommended although

 // *i is optional and j == i

}

The proposed recommended practice resembles the behaviour of MyPy for equivalent Python code:

from typing import Optional

def bar(y:int) -> None:

 pass

def foo(i:Optional[int]) -> None:

 j:int = 0

 j = i # incompatible types in assignment

 bar(j) # no diagnostic although j == i

When prototyping _Optional in Clang’s static analyser, I chose to mutate the state of tracked

values from ‘Nullable’ to ‘Unspecified’ upon encountering conversions of references from an

_Optional-qualified referenced type to a non-_Optional-qualified referenced type. This is only

a change to the semantics of Nullable when used in conjunction with _Optional, in which case

the qualifier overrules the attribute.

For example:

void foo(_Optional int *_Nullable i)

{

 int *j;

 j = (int *)i; // cast to avoid constraint violation

 *j = 5; // no diagnostic because *i is _Optional

}

An alternative solution would have been to store optionality state separately from nullability state.

Conversions from unqualified to qualified type
This paper argues that conversions from a non-_Optional-qualified referenced type to an

_Optional-qualified referenced type should not discard any “proven not null” property of the

converted pointer value. That property is a product of path-sensitive analysis; it was not introduced

by and is not visible through the type system3, therefore it need not be removable through the type

system.

For example:

void foo(char *i)

{

 if (i) { // constrains i to be non-null

 _Optional char *j;

 char k;

 j = i; // j inherits the non-null constraint of i...

 k = *j; // ...therefore no diagnostic message is recommended

 }

}

Discarding the “proven not null” property of a pointer value upon conversion would prevent

common patterns such as:

char *first = "one"; // constrains first to be non-null

list_t list = {};

_Optional char *buf = first; // *buf is assumed to be UB as per type

add_item(&list, &*buf); // unwanted diagnostic message!

if (more) {

 buf = strdup("two"); // *buf is assumed to be UB as per type

 if (buf) // constrains buf to be non-null

 add_item(&list, &*buf); // no diagnostic message

}

3 For example, a controlling expression such as i != NULL within an if statement does not implicitly

remove _Optional from the referenced type of *i within the secondary block (if i has a pointer type).

Possible objections
The need to define a typedef name before declaring a pointer to an _Optional function, or

alternatively use typeof to specify the function type, is a drawback of qualifying the referenced

type rather than the pointer type. This paper argues that code clarity and documentation is often

improved by composing complex declarations from simpler declarations, and that this limitation of

the declaration syntax is outweighed by the benefit of regular semantics in actual usage.

Existing standard library functions do not accept a null pointer instead of any function pointer

parameters. Nevertheless, it might be worth considering an extension to C’s declaration syntax to

remove the need to use typedef or typeof for such declarations, especially if other applications

of qualified function types arise.

Some may struggle to accept a novel syntax for adding nullability information to pointers, given the

existence of more prosaic solutions. This paper urges them to consider whether a solution inspired

by pointer-to-const is really such a novelty - especially in comparison to the irregular new

semantics required when the pointer type itself is qualified.

Others may agree with Stroustrup [22] that C's syntax and semantics are a "known mess" of

"perversities". This paper argues that pointer nullability should be added in a way that conforms to

long-established C language idioms rather than violating such norms (as C++ references do) in the

hope of satisfying users who will never like C anyway.

Implementations
A working prototype [23] of the required changes to Clang and Clang-tidy exists.

The prototype has been used successfully at Arm to add pointer nullability information to parts of

the user-space Mali GPU driver. I found the new qualifier useful for finding issues caused by not

handling null values defensively even before having updated Clang-tidy. This is what I had hoped

because a new qualifier cannot be justified unless it provides value in the absence of static analysis.

https://github.com/chrisbazley/llvm-project

Proposed wording changes
The wording proposed is a diff from the N3054 working draft — September 3, 2022 ISO/IEC

9899:2023 with changes from N3342 [24] incorporated. Green text is new text, while red text is

deleted text.

6.2.5 Types
31 Any type so far mentioned is an unqualified type. Each unqualified type has several qualified

versions of its type52), corresponding to the combinations of one, two, three, or all threefour of the

const, volatile, and restrict, and _Optional qualifiers. The qualified or unqualified

versions of a type are distinct types that belong to the same type category and have the same

representation and alignment requirements.53) An array and its element type are always considered

to be identically qualified.54) Any other derived type is not qualified by the qualifiers (if any) of the

type from which it is derived.

6.4.1 Keywords
Syntax

1 keyword: one of

alignas

alignof

auto

bool

break

case

char

const

constexpr

continue

default

do

double

else

enum

extern

false

float

for

goto

if

inline

int

long

nullptr

register

restrict

return

short

signed

sizeof

static

static_assert

struct

switch

thread_local

true

typedef

typeof

typeof_unqual

union

unsigned

void

volatile

while

_Atomic

_BitInt

_Complex

_Decimal128

_Decimal32

_Decimal64

_Generic

_Imaginary

_Noreturn

_Optional

6.5.3.2 Address and indirection operators

Semantics
3 The unary & operator yields the address of its operand. If the operand has type "type", the result

has type "pointer to type", preserving all qualifiers except any _Optional qualifier that previously

applied to the type category of the operand. If the operand is the result of a unary * operator,

neither that operator nor the & operator is evaluated and the result is as if both were omitted,

except that the constraints on the operators still apply, any _Optional qualifier is still removed

from the referenced type, and the result is not an lvalue. Similarly, if the operand is the result of a

[] operator, neither the & operator nor the unary * that is implied by the [] is evaluated and the

result is as if the & operator were removed and the [] operator were changed to a + operator

except that any _Optional qualifier is removed from the referenced type. Otherwise, the result is

a pointer to the object or function designated by its operand.

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3342.pdf

6.5.15 Conditional operator
9 Given the declarations

const void *c_vp;

void *vp;

const int *c_ip;

volatile int *v_ip;

int *ip;

const char *c_cp;

_Optional int *o_ip;

the third column in the following table is the common type that is the result of a conditional

expression in which the first two columns are the second and third operands (in either order):

c_vp

v_ip

c_ip

vp

ip

vp

c_ip

c_vp

c_ip

0

v_ip

c_cp

c_ip

ip

o_ip

o_ip

const void *

volatile int *

const volatile int *

const void *

const int *

void *

const _Optional int *

const _Optional void *

6.7.3 Type qualifiers

Syntax
1 type-qualifier:

const

restrict

volatile

_Atomic

_Optional

Constraints
2 Types other than pointer types whose referenced type is an object type and (possibly multi-

dimensional) array types with such pointer types as element type shall not be restrict-qualified.

3 The _Atomic qualifier shall not be used if the implementation does not support atomic types (see

6.10.9.3).

4 The type modified by the _Atomic qualifier shall not be an array type or a function type.

5 Types other than the referenced type of a pointer type shall not be optional-qualified. This rule is

applied recursively (see 6.2.5).

Semantics
10 The intended use of the _Optional qualifier is to promote analysis that diagnoses potential

undefined behavior during translation. The qualifier indicates that a pointer to a so-qualified type is

potentially null. Deleting all instances of the qualifier from all preprocessing translation units

composing a conforming program does not change its meaning (i.e., observable behavior).

11 NOTE Pointers to non-optional-qualified types can also be null pointers. Implementations are free

to detect and diagnose undefined behavior resulting from use of null pointers regardless of their

type. XX) The absence of an Optional qualifier is not an optimization opportunity.

XX) An attempt to access an object through an lvalue that does not designate an object because evaluating it

entails dereferencing a null pointer could be considered analogous to an attempt to modify an object defined

with a const-qualified type through use of a modifiable lvalue. Implementations are free to diagnose both

kinds of undefined behavior regardless of whether the lvalue used for the access has an optional or const

qualified type.

1012 If the specification of an array type includes any type qualifiers, both the array and the element

type are so-qualified. If the specification of a function type includes any type qualifiers other than

_Optional, the behavior is implementation-defined. 151)

Recommended practice
17 Implementations that do not perform data-flow analysis should not produce diagnostic messages

about use of pointers to optional-qualified types except to indicate violation of a syntax rule or

constraint.

18 Many operators result in undefined behavior if one or more of their operands is a null pointer. If

such an operand has the type of a pointer to an optional-qualified type, then an implementation

that performs data-flow analysis may produce a diagnostic message. A diagnostic message is only

recommended if the implementation is unable to prove that no path exists which results in the

operand being a null pointer.

19 Interprocedural analysis is not required to correctly diagnose use of pointers to optional-qualified

referenced types as potentially invalid operands. Context-insensitive analysis is recommended for

this purpose, because it promotes stability in the set of diagnostic messages produced for each

function definition regardless of any changes to its callers.

20 The value of a pointer whose referenced type is optional-qualified may be assumed to be

potentially null until its set of potential values has been constrained by a conditional branch or

assignment of a value (other than null) on the path being followed during data-flow analysis.

EXAMPLE 4 The snippet below illustrates valid and invalid use of the _Optional type qualifier in

declarations:

_Optional int *poi; // valid

typeof(&*poi) pi; // pi has type "int *" because of &

static_assert(_Generic(typeof(pi), int *: 1, default: 0));

const int *pci; // valid

typeof(&*pci) pci2; // pci2 has type "const int *" despite &

static_assert(_Generic(typeof(pci2), const int *: 1, default: 0));

int *_Optional opi; // invalid: "int *" is not a referenced type

_Optional int oi; // invalid: "int" is not a referenced type

_Optional struct s; // invalid: "struct s" is not a referenced type

_Optional int oa[2][3]; // invalid: int is not a referenced type

_Optional int (*poa)[2][3]; // valid

typeof(*poi) k; // invalid: "int" is not a referenced type

typeof(*pci) m; // valid

static_assert(_Generic(typeof(m), const int: 1, default: 0));

typedef int U[15];

_Optional U oat; // invalid: oat has type "_Optional int [15]"

_Optional U *poat; // valid: poat has type "_Optional int (*)[15]"

_Optional int *f(float); // valid

_Optional int f2(float); // invalid: int is not a referenced type

_Optional int (*fp)(float); // invalid: int is not a referenced type

typedef int F(float);

_Optional F *fp2; // valid: fp2 has type "int (*)(float) _Optional"

void h(_Optional int); // invalid: "int" is not a referenced type

void l(_Optional int param[2][3]); // valid: param is a pointer

EXAMPLE 5 The snippet below illustrates valid and invalid use of the _Optional type qualifier in

assignments and function calls:

void fred(_Optional int *i)

{

 void foo(int *);

 void bar(_Optional int *);

 int *j, k;

 _Optional int *m;

 j = i; // violates type constraints for =

 foo(i); // violates type constraints for function call

 m = i; // valid

 i = j; // valid

 bar(j); // valid

 j = (int *)i; // valid

 foo((int *)i); // valid

 // type constraints aren't lifted by path-sensitive analysis

 if (i) {

 j = i; // violates type constraints for =

 foo(i); // violates type constraints for function call

 }

 i = &k;

 j = i; // violates type constraints for =

 foo(i); // violates type constraints for function call

}

EXAMPLE 6 The snippet below illustrates the recommended effect of the _Optional type qualifier

on production of path-sensitive diagnostics:

void jim(_Optional int *i)

{

 void foo(int *);

 int *j, k;

 // A diagnostic is recommended for the following statements,

 // because of the type and unconstrained value of i

 *i = 10;

 k = *i;

 j = &*i;

 foo(&*i);

 foo(&i[15]);

 // No diagnostic is recommended for the following

 // statements because the value of i is constrained

 // to non-null

 if (i) {

 *i = 5;

 foo(&*i);

 foo(&i[15]);

 }

 for (; i;) {

 *i = 6;

 foo(&*i);

 foo(&i[15]);

 }

 while (i) {

 *i = 7;

 foo(&*i);

 foo(&i[15]);

 }

 if (!i) {

 } else {

 *i = 8;

 foo(&*i);

 foo(&i[15]);

 }

 k = i ? *i : 0;

}

EXAMPLE 7 The snippet below illustrates the recommended effect of conversions of constrained

values to _Optional-qualified referenced types on production of diagnostics:

void sheila(int *j)

{

 int k;

 _Optional int *i, *m;

 if (!j) return;

 // Conversion preserves non-null constraint on value

 i = j;

 // No diagnostic is recommended for the following

 // statements, because the value of i is constrained

 // to non-null

 *i = 10;

 k = *i;

 // Cast preserves non-null constraint on value

 *(_Optional int *)i = 10;

 k = *(_Optional int *)i;

 // Assignment preserves non-null constraint on value

 m = i;

 // No diagnostic is recommended for the following statements,

 // because the value of m is constrained to non-null

 *m = 10;

 k = *m;

}

EXAMPLE 8 The snippet below illustrates the recommended effect of conversions of unconstrained

values from _Optional-qualified referenced types on production of diagnostics:

void andy(_Optional int *i)

{

 int *j, k;

 // A diagnostic is recommended for the following statements,

 // because of the unconstrained value of i

 *i = 10;

 k = *i;

 // No diagnostic is recommended for the following statements,

 // despite the unconstrained value of i

 *(int *)i = 10;

 k = *(int *)i;

 // A diagnostic is recommended for the following statements,

 // because of the unconstrained value of i

 *(_Optional int *)(int *)i = 10;

 k = *(_Optional int *)(int *)i;

 // Cast does not constrain value to non-null

 j = (int *)i;

 // No diagnostic is recommended for the following statements,

 // despite the unconstrained value of j

 *j = 1;

 k = *j;

 // A diagnostic is recommended for the following statements,

 // because of the unconstrained value of j

 *(_Optional int *)j = 10;

 k = *(_Optional int *)j;

 // Conversion does not constrain value to non-null

 j = i; // violates type constraints for =

 // No diagnostic is recommended for the following statements,

 // despite the unconstrained value of j

 *j = 2;

 k = *j;

}

EXAMPLE 9 The snippet below illustrates the recommended effect of conversions of unconstrained

values to _Optional-qualified referenced types on production of diagnostics:

void hazel(int *i)

{

 _Optional int *j;

 int k;

 // A diagnostic is recommended for the following statements,

 // because of the unconstrained value of i

 *(_Optional int *)i = 10;

 k = *(_Optional int *)i;

 // No diagnostic is recommended for the following statements,

 // despite the unconstrained value of i

 *(int *)(_Optional int *)i = 10;

 k = *(int *)(_Optional int *)i;

 // Conversion does not constrain value to non-null

 j = i;

 // A diagnostic is recommended for the following statements,

 // because of the unconstrained value of j

 *j = 10;

 k = *j;

 // No diagnostic is recommended for the following statements,

 // despite the unconstrained value of j

 *(int *)j = 10;

 k = *(int *)j;

}

Annex I (informative) Common warnings

I.2 Common situations
1 The following are a few of the common situations where an implementation may generate a

warning:

— An unrecognized #pragma directive is encountered (6.10.8).

— An implicit conversion of a null pointer constant to a pointer type whose referenced type is not

optional-qualified is encountered (6.3.3.3, 6.7.3).

— An object of a pointer type whose referenced type is not optional-qualified is default-initialized

(6.7.11, 6.7.3).

Acknowledgements
I would like to recognize the following people for their ideas, help, feedback, and encouragement:

Mihail Atanassov, Nikunj Patel, Peter Smith, Matthew Clarkson, Mats Petersson, Anastasia Stulova,

Raffaele Aquilone, Jonathan Ely, Jim Chaney, Aaron Ballman, Alejandro Colomar, Elizabeth Bazley,

Jakub Łukasiewicz, Martin Uecker and Jens Gustedt.

References
[0] mypy 0.991 documentation

https://mypy.readthedocs.io/en/stable/

[1] TypeScript: JavaScript With Syntax For Types

https://www.typescriptlang.org/

[2] Compiler Explorer

https://godbolt.org/z/GvjdxbjTW

[3] Static analysis in GCC 10 | Red Hat Developer

https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10

[4] Compiler Explorer

https://godbolt.org/z/s87vrz4n1

[5] Common Function Attributes (Using the GNU Compiler Collection (GCC))

https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-

Attributes

[6] ARM Compiler toolchain Compiler Reference Version 5.03

https://developer.arm.com/documentation/dui0491/i/Compiler-specific-Features/--attribute----

nonnull---function-attribute

[7] RFC: Nullability qualifiers – Clang Frontend – LLVM Discussion Forums

https://discourse.llvm.org/t/rfc-nullability-qualifiers/35672

[8] Nullability Attributes

https://clang.llvm.org/docs/AttributeReference.html#nullability-attributes

[9] Clang-Tidy - Extra Clang Tools 17.0.0git documentation

https://clang.llvm.org/extra/clang-tidy/

[10] Compiler Explorer

https://godbolt.org/z/7TTa9ehWs

[11] Compiler Explorer

https://godbolt.org/z/7cTWETePW

[12] Compiler Explorer

https://godbolt.org/z/dsE67Mdq1

[13] D9004 Addition of clang nullability attributes

https://reviews.freebsd.org/D9004

[14] Norcroft C compiler – Wikipedia

https://en.wikipedia.org/wiki/Norcroft_C_compiler

https://mypy.readthedocs.io/en/stable/
https://www.typescriptlang.org/
https://godbolt.org/z/GvjdxbjTW
https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10
https://godbolt.org/z/s87vrz4n1
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#Common-Function-Attributes
https://developer.arm.com/documentation/dui0491/i/Compiler-specific-Features/--attribute----nonnull---function-attribute
https://developer.arm.com/documentation/dui0491/i/Compiler-specific-Features/--attribute----nonnull---function-attribute
https://discourse.llvm.org/t/rfc-nullability-qualifiers/35672
https://clang.llvm.org/docs/AttributeReference.html#nullability-attributes
https://clang.llvm.org/extra/clang-tidy/
https://godbolt.org/z/7TTa9ehWs
https://godbolt.org/z/7cTWETePW
https://godbolt.org/z/dsE67Mdq1
https://reviews.freebsd.org/D9004
https://en.wikipedia.org/wiki/Norcroft_C_compiler

[15] RISC OS Open: Desktop Development Environment

https://www.riscosopen.org/content/sales/dde

[16] cc65 - a freeware C compiler for 6502 based systems

https://cc65.github.io/

[17] Compiler Explorer

https://godbolt.org/z/xad86788P

[18] Compiler Explorer

https://godbolt.org/z/9xn3Esqvf

[19] Warning Options – Using the GNU Compiler Collection (GCC)

https://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Warning-Options.html

[20] Compiler Explorer

https://godbolt.org/z/8bqMdPeK4

[21] Compiler Explorer

https://godbolt.org/z/6jKxdfKb4

[22] Stroustrup, “The Design and Evolution of C++” (1994)

[23] The author’s fork of the LLVM Project

https://github.com/chrisbazley/llvm-project

[24] Slay Some Earthly Demons IV, Martin Uecker

https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3342.pdf

https://www.riscosopen.org/content/sales/dde
https://cc65.github.io/
https://godbolt.org/z/xad86788P
https://godbolt.org/z/9xn3Esqvf
https://gcc.gnu.org/onlinedocs/gcc-4.2.4/gcc/Warning-Options.html
https://godbolt.org/z/8bqMdPeK4
https://godbolt.org/z/6jKxdfKb4
https://github.com/chrisbazley/llvm-project
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3342.pdf

