
A standard string buffer type

strb_t

Christopher Bazley
12th June 2024

Rationale

Strings are a fundamental part of every modern programming
language and ecosystem.

A lack of standardization in this area has harmed the security
and interoperability of code written in C.

This must be addressed to ensure the future viability of the
language.

Incorporating safe string functions into the
standard would:

• Standardize existing best practice.

• Reduce the level of experience needed to write correct
programs.

• Provide a better precedent to follow when users design their
own interfaces.

• Make it easier to write interoperable user-designed libraries.

Incorporating safe string functions into the
standard would not:

• Need to satisfy all conceivable use-cases optimally.

• Invalidate existing or future user-designed libraries.

• Replace all usage of naked character arrays and pointers.

• Limit choice concerning string allocation and representation.

• Necessitate deprecation or removal of existing standard
functions.

Bounds checking is not the solution

• Extra parameters and checks on return values add
complexity.

• If the address and size are managed separately, it is
easy for callers to accidentally pass the wrong size.

• Users may be tempted to subvert tools used to enforce
adherence to secure coding standards by passing a
dummy size.

• Encourages use of arrays whose size is determined at
compile time but may be insufficient or cause stack
overflow.

Truncation can be worse than overflow

“Unintentional truncation results in a loss of data and in
some cases leads to software vulnerabilities.”

(SEI CERT C Coding Standard)

.

Truncation can be hard to understand

Standard string functions exhibit one of three behaviours:

• No null character is written into the array.

• A null character is written into the last element of the
array.

• A null character is written into the first element of the
array.

.

Truncation can be hard to understand (2)

Does snprintf…

• guarantee to write a null character at the end of its
output?

• require room for a null terminator in its size argument?

• Include a null terminator in its return value?

Even senior engineers get it wrong.

Why not standardize existing functions?

The POSIX functions have:

• An extra object whose lifetime must be managed correctly.

• Surprising behaviour related to unwanted buffering.

• No persistent record of string length. (The file position often
reflects this, but it is lost when the stream is closed.)

• No encapsulation of the managed buffer.

• Weak type-safety since a FILE * could be a wide-oriented or
byte-oriented stream and does not necessarily even manage a
string.

Why not standardize existing functions? (2)

The GLib functions have:

• A large, complex interface that relies on in-band special values.

• Highly specialized functions which are bad for composability.

• No encapsulation of the managed buffer.

• No notion of a current position, which complicates consecutive
insertions.

• Unsuitable out-of-memory behaviour for many platforms and
applications.

Example using standard functions
int main(void)
{

char const *const names[] = {"apple", "orange", "banana", "lime"};
size_t const data[][6] = {{3,0,2,0,1,0}, {1,2,0,3,3,0}};
_Optional char *buf = NULL;
size_t buf_size = 0;
int err = EXIT_SUCCESS;

for (size_t i = 0; i < ARRAY_SIZE(data); ++i) {
for (size_t j = 0; j < ARRAY_SIZE(data[0]); ++j) {

size_t const len = buf ? strlen(buf) : 0,
req = len + strlen(names[data[i][j]]) + 2;

// +2 for ',' and '\0'

if (buf == NULL || buf_size < req)
{

size_t new_size = buf_size * 2;

if (new_size < req)
new_size = req;

_Optional char *new_buf = realloc(buf, new_size);
if (new_buf == NULL) {

err = EXIT_FAILURE;
break;

}

if (buf == NULL) {
*new_buf = '\0’;

}

buf = new_buf;
buf_size = new_size;

}

if (j > 0)
strcat(buf, ",");

strcat(buf, names[data[i][j]]);
}

if (err) {
fprintf(stderr, "Failed at %zu (length %zu)\n",

i, buf ? strlen(buf) : 0);
break;

}

puts(buf);
*buf = '\0';

}

free(buf);
return err;

}

Example using proposed new functions

int main(void)

{

const char *const names[] = {"apple", "orange", "banana", "lime"};

size_t const data[][6] = {{3,0,2,0,1,0}, {1,2,0,3,3,0}};

_Optional strb_t *sb = strb_alloc(0);

if (sb == NULL) {

fprintf(stderr, "Failed at start\n");

return EXIT_FAILURE;

}

for (size_t i = 0; i < ARRAY_SIZE(data); ++i) {

for (size_t j = 0; j < ARRAY_SIZE(data[0]); ++j) {

if (j > 0)

strb_puts(sb, ",");

strb_puts(sb, names[data[i][j]]);

}

if (strb_error(sb)) {
fprintf(stderr, "Failed at %zu (length %zu)\n",

i, strb_len(sb));
break;

}

puts(strb_ptr(sb));
strb_delto(sb, 0);

}

int err = strb_error(sb) ? EXIT_FAILURE : EXIT_SUCCESS;
strb_free(sb);
return err;

}

Creation/destruction are designed to feel familiar

Create Destroy Create Destroy

strb_alloc strb_free calloc free

strb_dup strdup

strb_ndup strndup

strb_aprintf asprintf

strb_vaprintf vasprintf

enum {
strb_insert,
strb_overwrite

};

int strb_setmode(strb_t *sb, int mode);
int strb_getmode(const strb_t *sb);

size_t strb_seek(strb_t *sb, size_t pos);
size_t strb_tell(strb_t const *sb);

Position indicator and mode are stateful

Instead of providing variants of every function to insert or
overwrite characters at specific positions, both aspects of
behaviour are controlled by the strb_t object.

int strb_putc(strb_t *sb, int c);

int strb_nputc(strb_t *sb, int c, size_t n);

int strb_unputc(strb_t *sb);

int strb_puts(strb_t *sb, const char *str);

int strb_nputs(strb_t *sb, const char *str, size_t n);

int strb_vputf(strb_t *sb, const char *format, va_list args);

int strb_putf(strb_t *sb, const char *format, ...);

_Optional char *strb_write(strb_t *sb, size_t n);

void strb_wrote(strb_t *sb);

void strb_delto(strb_t *sb, size_t pos);

Editing a string resembles writing to a stream

A stateful position indicator and mode (insert/overwrite)
are relevant to the following functions:

Why are position and mode stateful?

Because C is not like other languages:

• C programs must be simple in order to be correct.
• C programs are expected to be efficient.
• C programmers should not be expected to manage

many short-lived objects.

Why are position and mode stateful? (2)

void get_fruit(strb_t *sb, size_t i)

{

const char *const names[] = {"apple", "orange", "banana", "lime"};

if (i < ARRAY_SIZE(names))

strb_putf(sb, "%zu:%s", i, names[i]);

else

strb_puts(sb, "unknown fruit");

}

The following function may be inserting, overwriting,
appending, or prepending anywhere in a string.
It can be reused by anyone for any purpose, forever.

Why are position and mode stateful? (3)

enum { MONDAY, TUESDAY };
void list_fruit(strb_t *sb, int day)

{

size_t const days[2][6] = {

[MONDAY] = {1,2,0,3,3,6},

[TUESDAY] = {3,0,1,0,2,0}

};
if (day >= ARRAY_SIZE(days)) {

strb_puts(sb, "unknown day");

return;

}
for (size_t j = 0; j < ARRAY_SIZE(days[0]); ++j) {

if (j > 0)

strb_puts(sb, ",");

get_fruit(sb, days[day][j]);

}

}

Why are position and mode stateful? (4)

int main(void)

{

_Optional strb_t *sb = strb_alloc(0);

if (sb == NULL)

return EXIT_FAILURE;

strb_puts(sb, "Monday: ");

list_fruit(sb, MONDAY);

strb_puts(sb,"\nTuesday: ");

list_fruit(sb, TUESDAY);

puts(strb_ptr(sb));

int err = strb_error(sb) ? EXIT_FAILURE : EXIT_SUCCESS;

strb_free(sb);

return err;

}

Convenience functions allow string replacement

int strb_cpy(strb_t *sb, const char *str);

int strb_ncpy(strb_t *sb, const char *str, size_t n);

int strb_vprintf(strb_t *sb, const char *format, va_list args);

int strb_printf(strb_t *sb, const char *format, ...);

The position indicator and mode have no effect on the
following functions:

Error indicator allows deferred error handling

bool strb_error(strb_t const *sb);

void strb_clearerr(strb_t *sb);

• Writing comprehensive error-handling code is laborious.
• Immediate error-handling makes code harder to read.
• The presence of such code harms efficiency (branch

prediction, instruction cache use).
• The performance of code that fails typically doesn’t

matter.

Cri de cœur

C is on the verge of being impossible to defend as a rational
choice in the corporate environment because the software
ecosystem is fragmented.

If WG14 chose to, they could begin to fix this for the simple
use-cases that all C programmers have.

Cri de cœur (2)

Code written by different people or organizations has to
interact at the level of the lowest common denominator,
which is error-prone and inefficient.

We can carry on in our walled gardens, but nobody we hire to
work on our code will know anything about our interfaces.

New hires may begin by writing junk code that uses
realloc, memcpy and memmove directly instead of using
appropriate abstractions.

Simple questions need simple answers. At
the moment, the answer to “how can I
concatenate strings in C without buffer
overflow?” is “Use realloc”.

That answer sucks.

“Use GLib” is a better answer, but that ties
code to do a very simple, universal thing to
one part of a highly fragmented software
ecosystem.

I’m proposing an alternative future answer:
“Use strawberries”.

Cri de cœur (3)

Reaction from colleagues
"Thank you, it's always bothered me how annoying it is to manipulate strings in C!"

"How is this still a thing? Good luck!"

"Is there any way we can follow along and see how this paper progresses and is received? I’m
interested. Thanks!“

"The extra level of indirection might rub people the wrong way, but personally I think it's a perfectly
reasonable price to pay. You could mention the potential for small-string optimisation? I love that it
follows the stream-like pattern. I think that's perfect."

"While I agree with the decision to used a stored error (agree might be a strong word, perhaps the
lesser of many evils?) I'm not sure pointing at OpenGL as prior art helps your cause."

"The API looks nice.“

"I'd be honoured to be named in the acknowledgements."

Online reaction

Score of 15
on Reddit.

134 claps from
nine people.

7 upvotes from
five people.

