
N3226

DRAFT TECHNICAL ISO/IEC TS
SPECIFICATION 6010

First edition
Working Draft

2024-03-04

Draft Technical Speci�cation

Information Technology � Programming Languages � C � A
provenance-aware memory object model for C�

Reference Number
ISO/IEC TC 6010:Working Draft

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

"COPYRIGHT PROTECTED DOCUMENT

©ISO/IEC 2023
All rights reserved. Unless otherwise speci�ed, no part of this publication may be reproduced or utilized
otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on the
internet or an intranet, without prior written permission. Permission can be requested from either ISO at
the address below or ISO's member body in the country of the requester.

ISO copyright o�ce
Case postale 56 � CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Published in Switzerland

modifications to ISO/IEC 9899:2018, § page ii

mailto:copyright@iso.org
www.iso.org

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

Contents

1 Introduction 2

2 Scope 3

3 Normative References 3

4 Terms, de�nitions, and symbols 3

5 Environment 4

6 Language 4

6.1 Concepts . 4

6.1.1 Storage duration of objects . 4

6.1.2 Representation of types . 6

6.2 Conversion . 9

6.2.1 Other operands . 9

6.3 Lexical elements . 11

6.3.1 String literals . 11

6.4 Expressions . 11

6.4.1 Post�x operators . 11

6.4.2 Unary operators . 12

6.4.3 Additive operators . 12

6.4.4 Relational operators . 13

6.4.5 Equality operators . 13

6.4.6 Assignment operators . 13

6.4.7 Declarations . 13

6.4.8 Declarators . 14

6.4.9 Initialization . 14

6.5 Statements and blocks . 14

6.5.1 Selection statements . 14

6.6 External de�nitions . 14

6.6.1 Function de�nitions . 14

7 Library 14

7.1 Introduction . 15

7.1.1 Use of library functions . 15

7.2 Errors <errno.h> . 15

7.3 Nonlocal jumps <setjmp.h> . 15

7.3.1 Restore calling environment . 15

7.4 Signal handling <signal.h> . 15

7.4.1 Specify signal handling . 15

7.5 Variable arguments <stdarg.h> . 15

7.6 Atomics <stdatomic.h> . 16

7.6.1 Initialization . 16

7.6.2 Atomic �ag type and operations . 16

7.7 Integer types <stdint.h> . 16

Contents modifications to ISO/IEC 9899:2018, § CONTENTS page iii

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

7.7.1 Integer types . 16

7.7.2 Macros for integer constants . 17

7.8 Input/output <stdio.h> . 17

7.8.1 Streams . 17

7.8.2 Files . 17

7.8.3 File access functions . 17

7.8.4 Direction input/output functions . 18

7.9 General utilities <stdlib.h> . 19

7.9.1 Storage management functions . 19

7.9.2 Multibyte/wide character conversion functions 21

7.10 String handling <string.h> . 21

7.10.1 Copying functions . 21

7.10.2 Comparison functions . 21

7.11 Threads <threads.h> . 21

7.11.1 Thread-speci�c storage functions . 21

7.12 Date and time <time.h> . 21

7.12.1 Time conversion functions . 21

7.13 Extended multibyte and wide character utilities <wchar.h> 21

7.13.1 Formatted wide character input/output functions 21

7.13.2 Wide character input/output functions . 22

7.13.3 General wide string utilities . 22

7.13.4 Wide character time conversion functions . 22

Annex A (informative) Language syntax summary 23

Annex B (informative) Library summary 24

Annex C (informative) Sequence points 25

Annex D (normative) Universal character names for identi�ers 26

Annex E (informative) Implementation limits 27

Annex F (normative) IEC 60559 �oating-point arithmetic 28

Annex G (normative) IEC 60559-compatible complex arithmetic 29

Annex H (informative) Language independent arithmetic 30

Annex I (informative) Common warnings 31

Annex J (normative) Portability issues 32

Annex K (informative) Bounds checking interfaces 34

Annex L (informative) Analyzability 35

modifications to ISO/IEC 9899:2018, § CONTENTS page iv Foreword

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

Foreword

1 ISO (the International Organization for Standardization) and IEC (the International Electrotech-
nical Commission) form the specialized system for worldwide standardization. National bodies that
are members of ISO or IEC participate in the development of International Standards through
technical 5 committees established by the respective organization to deal with particular �elds of
technical activity. ISO and IEC technical committees collaborate in �elds of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work. In the �eld of information technology, ISO and IEC have established a joint
technical committee, ISO/IEC JTC 1.

2 The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the di�erent approval criteria needed for
the di�erent types of document should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

3 Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent
rights. Details of any patent rights identi�ed during the development of the document will be in the
Introduction and/or on the ISO list of patent declarations received (see www.iso.org/patents).

4 Any trade name used in this document is information given for the convenience of users and does
not constitute an endorsement.

For an explanation on the meaning of ISO speci�c terms and expressions related to conformity
assessment, as well as information about ISO's adherence to the WTO principles in the Technical
Barriers to Trade (TBT) see the following URL: Foreword - Supplementary information

5 The committee responsible for this document is ISO/IEC JTC 1, Information technology, Subcom-
mittee SC 22, Programming languages, their environments, and system software interfaces.

6 ISO/IEC TS 6010 updates ISO/IEC 9899:2018, Information technology, Programming Language C,
to support a provenance aware memory model for C.

Foreword modifications to ISO/IEC 9899:2018, § CONTENTS page 1

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

1. Introduction

1 In a committee discussion from 2004 concerning DR260, WG14 con�rmed the concept of provenance
of pointers, introduced as means to track and distinguish pointer values that represent storage
instances with same address but non-overlapping lifetimes. Implementations started to use that
concept, in optimisations relying on provenance-based alias analysis, without it ever being clearly
or formally de�ned, and without it being integrated consistently with the rest of the C standard.
This Technical Speci�cation provides a solution for this: a provenance-aware memory object model
for C to put C programmers and implementers on a solid footing in this regard. This Technical
Speci�cation is based on, and incorporates the content of, three earlier WG14 documents:

- N2362 Moving to a provenance-aware memory model for C: proposal for C2x by the mem-

ory object model study group. Jens Gustedt, Peter Sewell, Kayvan Memarian, Victor B. F.

Gomes, Martin Uecker. This introduced the proposal and gives the proposed change to the
standard text, presented as change-highlighted pages of the standard. Here, as appropriate for
a Technical Speci�cation, we instead present the proposed changes with respect to ISO/IEC
9899:2018.

- N2363 C provenance semantics: examples. Peter Sewell, Kayvan Memarian, Victor B. F.

Gomes, Jens Gustedt, Martin Uecker. This explains the proposal and its design choices with
discussion of a series of examples.

- N2364 C provenance semantics: detailed semantics. Peter Sewell, Kayvan Memarian, Victor

B. F. Gomes. This gives a detailed mathematical semantics for the proposal

2 In the �rst draft of this Technical Speci�cation, the latter two parts have identical text to those
earlier N-papers. Later, we integrated the following papers into the speci�cation of this Technical
Speci�cation:

- N2861 Indeterminate Values and Trap Representations. Martin Uecker, Jens Gustedt. This
paper has already been accepted by WG14 for ISO/IEC 9899:2023. It clari�es the previous
contradictory terminology for what was then called �indeterminate values�, but that described
a property of an object representation.

- N2888 Exact-width Integer Type Interfaces. Jens Gustedt. This paper has also been accepted
by WG14 for ISO/IEC 9899:2023. It clari�es some issues about integer types and is the basis
for the integration of the following paper.

- N2889 Pointers and integer types. Jens Gustedt. Although this paper has not been accepted
for ISO/IEC 9899:2023, WG14 voted in favor to integrate it in this TS. It makes the type
uintptr_t mandatory and thereby eases the speci�cations that are proposed here.

3 In addition:

- At http://cerberus.cl.cam.ac.uk/cerberus we provide an executable version of the se-
mantics, with a web interface that allows one to explore and visualise the behaviour of small
test programs. Following N2363, we include the results of this for the example programs and
for some major compilers.

- N3005 A Provenance-aware Memory Object Model for C. Jens Gustedt, Peter Sewell, Kayvan

Memarian, Victor B. F. Gomes, Martin Uecker This is a draft version of this TS which
provides a visual di�erence to ISO 9899:2018 as well as a more in-depth discussion on the
topic.

4 The proposal has been developed in discussion among the C memory object model study group, in-
cluding the authors listed above, Hubert Tong, Martin Sebor, and Hal Finkel. It has been discussed

modifications to ISO/IEC 9899:2018, § 1 page 2 Foreword

http://www.open-std.org/jtc1/sc22/wg14/www/docs/dr_260.htm
http://cerberus.cl.cam.ac.uk/cerberus

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

with WG14 (in multiple meetings) and at the March 2019 Cologne meeting of WG21, in SG12 UB &

Vulnerabilities. Both of these have approved the overall direction, subject to implementation experi-
ence. It has also been discussed with the Clang/LLVM and GCC communities, with presentations
and informal conversations at EuroLLVM and the GNU Tools Cauldron in 2018.

5 To the best of our knowledge and ability, the proposal reconciles the various demands of existing
implementations and the corpus of existing C code.

6 This Technical Speci�cation does not address subobject provenance.

2. Scope

1 This document speci�es the form and establishes the interpretation of programs written in the C
programming language. It is not a complete speci�cation of that language but amends ISO/IEC
9899:2018 by providing a Technical Speci�cation that constrains and clari�es the Memory Object
Model implicit there.

Implementations that conform to this document shall behave as if these indicated di�erences to
ISO/IEC 9899:2018 had been integrated into ISO/IEC 9899.

3. Normative References

1 The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies.
For undated references, the latest edition of the referenced document (including any amendments)
applies.

ISO/IEC 2382, Information technology � Vocabulary

ISO/IEC 9899:2018, Programming languages � C

ISO 80000�2, Quantities and units � Part 2: Mathematical signs and symbols to be used in
the natural sciences and technology.

4. Terms, de�nitions, and symbols

1 For the purposes of this document, the terms and de�nitions given in ISO/IEC 9899:2018, and the
following apply.

2 Change to C17:

After 3.16 parameter, insert the following, renumbering subsequent items:

3 3.17
pointer provenance

provenance

an entity that is associated to a pointer value in the abstract machine, which is either
empty, or the identity of a storage instance

After 3.19 runtime-constraint, insert the following, renumbering all subsequent items:

4 3.20
storage instance

storage instance

the inclusion-maximal region of data storage in the execution environment that is created
when either an object de�nition or an allocation is encountered

Terms, definitions, and symbols modifications to ISO/IEC 9899:2018, § 4 page 3

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

5 Note 1 to entry: Storage instances are created and destroyed when speci�c language constructs (6.2.4)
are met during program execution, including program startup, or when speci�c library functions (7.22.3)
are called.

6 Note 2 to entry: A given storage instance may or may not have a memory address, and may or may not
be accessible from all threads of execution.

7 Note 3 to entry: Storage instances have identities which are unique across the program execution.

8 Note 4 to entry: A storage instance with a memory address occupies a region of zero or more bytes of
contiguous data storage in the execution environment.

9 Note 5 to entry: One or more objects may be represented within the same storage instance, such as two
subobjects within an object of structure type, two const-quali�ed compound literals with identical object
representation, or two string literals where one is the terminal character sequence of the other.

10 Replace 3.21.2 indeterminate value with the following:

11 3.21.2
indeterminate representation

object representation that either represents an unspeci�ed value or is a non-value repre-
sentation

12 Remove Note 1 from entry 3.21.3 unspeci�ed value

13 Replace 3.21.4 trap representation with the following:

14 3.21.4
non-value representation

an object representation that does not represent a value of the object type

5. Environment

1 This section describes changes to ISO/IEC 9899:9899, 5 Environment, covering the translation en-

vironment and execution environment.

Change to C17:
2 In item 5.1.2.3 Program execution paragraph 5, second sentence, change the word value to repre-

sentation.

3 In item 5.2.4.1 Sizes of integer types <limits.h>, replace the �rst paragraph with:

4 The values given below shall be replaced by constant expressions. If the value and promoted
type is in the range of the type intmax_t (for a signed type) or uintmax_t (for an unsigned
type), see 7.20.1.5, the expression shall be suitable for use in #if preprocessing directives.

6. Language

1 This section speci�es changes to the C language speci�ed in C17, ISO/IEC 9899:2018 in order to
support a provenance-aware memory model.

6.1 Concepts

6.1.1 Storage duration of objects
Change to C17:

1 Replace section 6.2.4 Storage durations of objects with the following, taking care to update the
relevant footnotes:

6.2.4 Storage duration and object lifetimes
2 The lifetime of an object has a start and an end, which both constitute side e�ects in the

abstract state machine, and is the set of all evaluations that happen after the start and
before the end. An object exists, has a storage instance that is guaranteed to be reserved

modifications to ISO/IEC 9899:2018, § 6.1.1 page 4 Language

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

for it, 1) has a constant address, 2) if any, and retains its last- stored value throughout its
lifetime. 3)

3 The lifetime of an object is determined by its storage duration. There are four storage
durations: static, thread, automatic and allocated. Allocated storage and its duration are
described in 7.22.3.

4 The storage instance of an object whose identi�er is declared without the storage-class
speci�er _Thread_local, and either with external or internal linkage, or with the storage-
class speci�er static, has static storage duration, as do storage instances for string literals
and some compound literals. 4) The object's lifetime is the entire execution of the program
and its stored value is initialized only once, prior to program startup.

5 The storage instance of an object whose identi�er is declared with the storage-class speci�er
_Thread_local has thread storage duration. The object's lifetime is the entire execution
of the thread for which it is created, and its stored value is initialized when the thread is
started. There is a distinct instance of the object and distinct associated storage instance
per thread, and use of the declared name in an expression refers to the object associated
with the thread evaluating the expression. The result of attempting to indirectly access
an object with thread storage duration from a thread other than the one with which the
object is associated is implementation-de�ned.

6 The storage instance of an object whose identi�er is declared with storage-class speci�er
static has automatic storage duration, as do storage instances of temporary objects and
some compound literals. The result of attempting to indirectly access an object with
automatic storage duration from a thread other than the one with which the object is
associated is implementation-de�ned.

7 For such an object that does not have a variable length array type, its lifetime extends
from entry into the block with which it is associated until execution of that block ends in
any way. (Entering an enclosed block or calling a function suspends, but does not end,
execution of the current block.) If the block is entered recursively, a new instance of the
object and associated storage is created each time. The initial representation of the object
is indeterminate. If an initialization is speci�ed for the object, it is performed each time
the declaration or compound literal is reached in the execution of the block; otherwise, the
representation of the object becomes indeterminate each time the declaration is reached.

8 For such an object that does have a variable length array type, its lifetime extends from the
declaration of the object until execution of the program leaves the scope of the declaration.
5) If the scope is entered recursively, a new instance of the object and associated storage
is created each time. The initial representation of the object is indeterminate.

9 A non-lvalue expression with with structure or union type, where the structure or union
contains a member with array type (including, recursively, members of all contained struc-
tures and unions) refers to a temporary object with automatic storage duration and tem-

porary lifetime 6) Its lifetime begins when the expression is evaluated and and its initial
value is the value of the expression. Its lifetime ends when the evaluation of the containing
full expression ends. Any attempt to modify an object with temporary lifetime results in
unde�ned behavior. An object with temporary lifetime behaves as if it were declared with
the type of its value for the purposes of e�ective type. Such an object need not have a
unique address.

Forward References: array declarations(6.7.6.2), compound literals(6.5.2.5), declara-

1)String literals, compound literals or certain objects with temporary lifetime may share a storage instance with other such objects
2)The term "constant address" means that two pointers to the object constructed at possibly different times will compare equal.

The address can be different during two different executions of the same program.
3)In the case of a volatile object, the last storage need not be explicit in the program.
4)Such are for example compound literals that are evaluated in file scope or that are const qualified and have only constant

expressions as initializers
5)Leaving the innermost block containing the declaration, or jumping to a point in that block or an embedded block prior to the

declaration, leaves the scope of the declaration.
6)The address of such an object is taken implicitly when an array member is accessed.

Language modifications to ISO/IEC 9899:2018, § 6.1.1 page 5

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

tors(6.7.6), function calls(6.5.2.2), initialization(6.7.9), statements(6.8), e�ective type(6.5).

10 Replace the �fth dashed bullet point of 6.2.5 Types paragraph 20 with:

� A pointer type may be derived from a function type, called the referenced type. A pointer type
describes an object whose value provides a reference to an entity of the referenced type. If the
type is an object type, the pointer also carries a provenance, typically identifying the storage
instance holding the corresponding type, if any; its value is valid if and only if it has non-empty
provenance, there is a live storage instance for that textit provenance, and the address is either
within or one-past the addresses of that storage instance. A pointer-to-function is valid if it
refers to a valid function de�nition of the program. Pointers may additionally have a special
value null that is di�erent from the address of any storage instance and has no provenance (for
object pointers) 7), or from the address of any function of the program (for function pointers).
If a pointer value is neither valid, nor null, it is invalid. A pointer type derived from the
referenced type T is sometimes called a "pointer to T". The construction of a pointer type
from a reference type is called "pointer type derivation". A pointer type is a complex object
type. 8) Under certain circumstances a pointer value can have an address that is the end
address of one storage instance and the start address of another. It (and any pointer value
derived from it by means of arithmetic operations) shall then not be used in ways that require
(in di�erent usages) more than one of these provenances.

11 Replace the last sentence of paragraph 28 with:

It is implementation-de�ned whether other groups of pointer types have the same repre-
sentation or alignment requirements. (54)

6.1.2 Representation of types

6.1.2.1 General

Change to C17:
1 Replace the content of section 6.2.6.1 General with the following:

2 The representation of all types are unspeci�ed except as stated in 6.2.5 and in this sub-
clause. An object is represented (or held) by a storage instance (or part thereof) that is
either created by an allocation (for allocated storage storage duration), at program startup
(for static storage duration), at thread startup (for thread storage duration), or when the
lifetime of the object starts (for automatic storage duration).

3 An addressable storage instance9) of size m provides access to a byte array of length m.
Each byte of the array has an abstract address, which is a value of type uintptr_t that
is determined in an implementation-de�ned manner by pointer-to-integer conversion. The
abstract addresses of the bytes are increasing with the ordering within the array, and they
shall be unique and constant during the lifetime. The address of the �rst byte of the
array is the start address of the storage instance, the address address one element beyond
the array at index m is its end address. The abstract addresses of bytes of all storage
instances of a program execution form its address space. A storage instance Y follows

7)A pointer object can be null by implicit or explicit initialization or assignment with a null pointer constant or by another null
pointer value. A pointer value can be null if it is either a null pointer constant or the result of an lvalue conversion of a null pointer
object. A null pointer will not appear as the result of an arithmetic operation.

8)The provenance of a pointer value and the property that such a pointer value is valid or not are generally not observable.
In particular, in the course of the same program execution the same pointer object with the same representation bytes (6.2.6)
may sometimes represent valid values but with different provenance (and thus refer to different objects). Sometimes the object
representation may even be indeterminate, namely when the lifetime of the storage instance has ended and no new storage instance
uses the same address. Yet, this information is part of the abstract state machine and may restrict the set of operations that can be
performed on the pointer.

9)All storage instances that do not originate from an object definition with register storage class are addressable by using the
pointer value that was returned by their allocation (for allocated storage duration) or by applying the address-of operator & (6.5.3.2)
to the object that gave rise to their definition (for other storage durations).

modifications to ISO/IEC 9899:2018, § 6.1.2.1 page 6 Language

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

storage instance X if the start address of Y is greater or equal than the end address
of X, and it follows immediately if they are equal. If the lifetime of any two distinct
addressable storage instances X and Y overlaps, either Y follows X or X follows Y in the
address space. This document imposes no other constraints about such relative position
of addressable storage instances whenever they are created.10)

4 The object representation of a pointer object does not necessarily determine provenance
of a pointer value; at di�erent points of the program execution, identical values may refer
to distinct storage instances. Unless stated otherwise, a storage instance becomes exposed
when a pointer value p of e�ective type T* with this provenance is used in the following
contexts11):

� Any byte of the object representation of p is used in an expression.12)

� The byte array pointed-to by the �rst argument of a call to the fwrite library function
intersects with an object representation p.

� p is converted to an integer.

� p is used as an argument to a %p conversion speci�er of the printf family of library
functions.13)

5 Nevertheless, if the object representation of p is read through an lvalue of a pointer
type S* that has the same representation and alignment requirements as T*, that lvalue
has the same provenance as p and the provenance does not thereby become exposed.14)

Exposure of a storage instance is irreversible and constitutes a side e�ect in the abstract
state machine.

6 Unless stated otherwise, pointer value p is synthesized if it is constructed by one of the
following:15)

� Any byte of the object representation of p is changed

• by an explicit byte operation

• by type punning with a non-pointer object or with a pointer object that only
partially overlaps,

• or by a call to memcpy or similar function that does not write the entire pointer
or representation where the source object does not have an e�ective pointer type.

� The object representation of p intersects with a byte array pointed-to by the �rst
argument of a call to the fread library function.

� p is converted from an integer value.

� p is used as an argument to %p conversion speci�er of the scanf family of library
functions.

10)This means that no relative ordering between storage instances and the objects they represent can be deduced from syntactic
properties of the program (such as declaration order or order inside a parameter list) or sequencing properties of the execution (such
as one instantiation happening before another).

11)Pointer values with exposed provenance may alias in ways that cannot be predicted by simple data flow analysis.
12)The exposure of bytes of the object representation can happen through a conversion of the address of a pointer object containing

p to a character type and a subsequent access to the bytes, or by reading the representation of a pointer value p through a union with
a type that is not a pointer type (for example an integer type) or with a pointer type that has a different object representation than the
original pointer.

13)Passing a pointer value to a %s conversion, does not expose the storage instance
14)This means that pointer members in a union can be used to reinterpret representations of different character and void pointers,

different struct pointers, different union pointers or pointers with different qualified target types.
15)Synthesized pointer values may alias in ways that cannot be predicted by simple data flow analysis.

Language modifications to ISO/IEC 9899:2018, § 6.1.2.1 page 7

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

7 Special provisions in the respective clauses clarify when such a synthesized pointer is null,
valid or invalid.

8 Except for bit-�elds, objects are composed of contiguous sequences of one or bytes, the
number, order, and encoding of which are either explicitly de�ned or implementation-
de�ned.

9 Values stored in unsigned bit-�elds and objects of type unsigned char shall be repre-
sented using a pure binary notation.16)

10 Value stored in non-bit-�eld objects of any other object type are represented using
n x CHAR_BITS, where n is the size of that object type, in bytes. Converting a pointer of
such an object to a pointer to a character type or void yields a pointer into the byte array
of the storage instance such that the values of the �rst n bytes determine the value of the
object; the position of the �rst byte of these in the byte array byte o�set of the object in
its storage instance, the converted address is called the byte address of the object, and the
range of bytes within the byte array is called the object representation of the value. The
object representation may be used to copy the value of the object into another object (e.g.,
by memcpy). Values in bit-�elds consist of m bits, where m is the size speci�ed for the
bit-�eld. The object representation is the range of m bits the bit-�eld comprises in the
addressable storage unit holding it. Two values (other than NaNs) with the same object
representation compare equal, but values that compare equal may have di�erent object
representations. The object representations of pointers and how they relate to the abstract
addresses they represent are not further speci�ed by this document.

11 Certain object representations need not represent a value of the object type. If such a
representation is produced by a side e�ect that modi�es all or any part of the object by
an lvalue expression that does not have character type, the behavior is unde�ned17). Such
a representation is called a non-value representation.

12 When a value is stored in an object of structure or union type, including in a member
object, the bytes of the object representation that corresponds to any padding bytes take
unspeci�ed values.18) The object representation of a structure or union object is never a
non-value representation, even though the byte range corresponding to a member of the
structure or union object may be a non-value representation for that member.

13 When a value is stored in a member of an object of union type, the bytes of the object
representation that do not correspond to that member but do correspond to other members
take unspeci�ed values.

14 Where an operator is applied to a value that has more than one object representation,
which object representation is used shall not a�ect the value of the result. 19) Where the
value is stored in an object using a type that has more than one object representation for
that value, it is unspeci�ed which representation is used, but a non-value representation
shall not be generated.

15 Loads and stores of objects with atomic types are done with memory_order_seq_cst
semantics.

Forward references: declarations (6.7), expressions (6.5), address and indirection operators
(6.5.3.2), lvalues, arrays and function designators (6.3.2.1), order and consistency (7.17.3),
integer types capable of holding object pointers (7.20.1.4), input/output (7.21)

16)A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive bits
are additive, begin with 1, and are multiplied by successive integral powers of 2, except perhaps the bit with the highest position.
(Adapted from the American National Dictionary for Information Processing Systems.) A byte contains CHAR_BITS bits, and the values
of type unsigned char range from 0 to 2CHAR

_BIT−1.
17)Thus, an automatic variable can be initialized to trap representation without causing undefined behavior, but the value of the

variable cannot be used until a proper value is stored in it
18)Thus, for example, structure assignment need not copy the padding bits.
19)It is possible for objects x and y with the same effective type T to have the same value when they are accessed as objects of

type T, but to have different values in other contexts. In particular, if == is defined for type T, then x == y does not imply that
memcmp(&x, &y, sizeof (T))== 0. Furthermore, x == y does not necessarily imply that x and y have the same value; other
operations on values of type T might distinguish between them.

modifications to ISO/IEC 9899:2018, § 6.1.2.1 page 8 Language

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

6.1.2.2 Integer Types

Change to C17:
1 In section 6.2.6.2 Integer Types:

� paragraph 2, second last sentence, replace the word trap with non-value.

� paragraph 5, replace the second sentence with:

A valid object representation of a signed integer type that represents a value
where the sign bit is zero is a valid object representation of the corresponding
unsigned type, and shall represent the same value.

6.2 Conversion

6.2.1 Other operands

6.2.1.1 Lvalues, arrays and function designators

Change to C17:
1 In section 6.3.2.1 Lvalues, arrays and function designators replace the text paragraph 2 and 3 with:

2 Except when it is the operand of the sizeof operator, the unary & operator, the ++
operator, the-- operator, or the left operand of the . operator or an assignment operator,
an lvalue that does not have array type is converted to the value stored in the designated
object (and is no longer an lvalue); this is called lvalue conversion. If the lvalue has
quali�ed type, the value has the unquali�ed version of the type of the lvalue; additionally,
if the lvalue has atomic type, the value has the non-atomic version of the type of the lvalue;
otherwise, the value has the type of the lvalue. The behavior is unde�ned if the lvalue has
an incomplete type, if the object representation is a non-value representation for the type,
20), or if the lvalue designates an object of automatic storage duration that could have
been declared with the register storage class (never had its address taken), and that the
object is uninitialized (not declared with an initializer and no assignment to it has been
performed prior to use).

3 Additionally, if the type is a pointer type T*, a pointer value and associated provenance,
if any, is determined as follows:

� If the object representation represents a null pointer the result is a null pointer.

� If the last store to the representation array was with a pointer type S* that has the
same representation and alignment requirements as T*, the result is the same address
and provenance as the stored value.

� Otherwise, the object representation of the lvalue shall represent a byte address within
(or one-past) the object representation of an exposed storage instance, such that the
exposure happened before this lvalue conversion, and the result has that address and
provenance. 21)

4 The behavior is unde�ned if the pointer object has an indeterminate representation, in
particular if the lvalue conversion does not happen during the lifetime of the provenance
that was associated to the stored pointer value, the represented address is not a valid
address (or one-past) for the associated provenance, or the represented address is not
correctly aligned for the type.

20)Character types have no non-value representation, thus reading representation bytes of an addressable live storage instance is
always defined.

21)If the address corresponds to more than one provenance, only one of those shall be used in the sequel, see 6.2.5

Language modifications to ISO/IEC 9899:2018, § 6.2.1.1 page 9

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

6.2.1.2 Pointers

Change to C17:
1 Replace 6.3.2.3 Pointers paragraph 5, 6 and 7 with the following:

2 An integer may be converted to any pointer type. If the source type is signed, the operand
is �rst converted to the corresponding unsigned type. The result is then determined in the
following order:

� The operand value could have been the result of the conversion of a null pointer value.
The result is a null pointer.

� The operand value is an abstract address within or one past a live or exposed storage
instance, such that the exposure happened before this integer-to-pointer conversion.
The conversion synthesizes a pointer value with that address, provenance and target
type. 22)

� The pointer value is invalid.

3 Except as previously speci�ed, the result is implementation-de�ned, might not be correctly
aligned, might not point to an entity of the referenced type, might be invalid, and might
produce an indeterminate representation when stored into an object.

4 Any pointer type may be converted to an integer type. For a null pointer, the result is
chosen from a non-empty set of implementation-de�ned values. 23) If the pointer value
is valid, its provenance is henceforth exposed. Except as previously speci�ed, the result
is the abstract address (which has type uintptr_t) converted to the target type. If the
target type has a width that is less than the width of uintptr_t, the behavior is unde�ned.
If the target type is a signed type and the abstract address is larger than the maximum
value of of that type the implementation-de�ned conversion from uintptr_t to the target
type as speci�ed in 6.3.1.3 is applied. 24) If the pointer is null or valid, the integer result
converted back to the pointer type shall compare equal to the original pointer. 25) For
two valid pointer values that compare equal, conversion to the same integer type yields
identical values.

5 A pointer to an object type may be converted to a pointer to a di�erent object type,
retaining its provenance. If the resulting pointer is not correctly aligned 26) for the reference
type, the behavior is unde�ned. Otherwise, when converted back again, the result shall
compare equal to the original pointer. When a pointer to an object is converted to a
pointer to a character type or void, the result is the byte address of the object.

6 Insert the following NOTE at the end of the section as as paragraph 9:

7 NOTE If the result p of an lvalue conversion or integer-to-pointer conversion is the end
address of an exposed storage instance A and the start of another exposed storage instance
B that happens to follow immediately in the address space, a conforming program must
only use one of these provenances in any expressions that are derived from p, see 6.2.5.

The following three cases determine if p is used with either A or B and must hence not be
used otherwise:

� Operations that constitute a use of p with either A or B do not prohibit a use with the
other:

22)If the address corresponds to more than one provenance, only one of these shall be used in the sequel, see 6.2.5
23)It is recommended that 0 is a member of that set.
24)Thus, the result is an implementation-defined signal is raised.
25)Although such a round-trip conversion may be the identity for the pointer value, the side effect of exposing a storage instance

still takes place.
26)In general, the concept "correctly aligned" is transitive: if a pointer to type A is correctly aligned for a pointer to B, which in turn

is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

modifications to ISO/IEC 9899:2018, § 6.2.1.2 page 10 Language

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

• any relational operator or pointer subtraction where the other operand q may have
both provenances, that is where q is also the result of a similar conversion where
p == q;

• q == p and q != p regardless of the provenance of q;

• addition or subtraction of the value 0;

• conversion to integer;

For the latter, A and B must have been exposed before, and so any choice of provenance,
that would otherwise have exposed one of the storage instances, is consistent with any
other use.

� Operations that, if otherwise well de�ned, constitutes a use of p with A and prohibits
any use with B :

• Any relational operator or pointer subtraction where the other operand q has
provenance A and cannot have provenance B.

• p + n and p[n], where n is an integer strictly less than 0.

• p - n, where n is strictly greater than 0.

� Operations that, if otherwise well de�ned, constitutes a use of p with B and prohibit
any use with A:

• Any relational operator or pointer subtraction where the other operand q has
provenance B and cannot have provenance A.

• p + n and p[n], where n is strictly greater than 0.

• p - n, where n is strictly less than 0.

• operations that access an object in B, that is indirection (*p or p[n] for n == 0)
and member access (p->member).

6.3 Lexical elements

6.3.1 String literals
Change to C17:

1 Insert the following footnote into paragraph 7 of 6.4.5 String literals:

2 It is unspeci�ed whether these arrays are distinct provided their elements have the ap-
propriate values.27) If the program attempts to modify such an array, the behavior is
unde�ned.

6.4 Expressions

6.4.1 Post�x operators

6.4.1.1 Structure and union members

1 Apply the following changes to 6.5.2.3 Structure and union members:

� In paragraph 3, in the footnote attached to the second sentence, replace the word trap with
non-value.

� In paragraph 4, insert the following sentence after the �rst sentence:

The pointer value shall be valid, not be the end address of its provenance, and be
correctly aligned for the structure or union type.

27)This allows implementations to share storage instances for string literals and constant compound literals (6.5.2.5) with the same
or overlapping presentations.

Language modifications to ISO/IEC 9899:2018, § 6.4.1.1 page 11

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

6.4.1.2 Compound literals

1 In section 6.5.2.5 Compound literals make the following changes:

� Change the footnote attached to the end of paragraph 7 to read:

This allows implementations to storage instances for string literals and constant
compound literals with the same or overlapping representations.

� In paragraph 13, EXAMPLE 6, insert the word instance after the word storage so that the
end of the sentence reads: if the literals' storage instance is shared.

� Replace paragraph 16 with:

Note that if an iteration statement were used instead of an explicit goto and a
labeled statement, the lifetime of the unnamed object would be the body of the loop
only, and on entry next time around p would have an indeterminate representation.
The behavior of the lvalue conversion of p in the assignment to q would then be
unde�ned.

6.4.2 Unary operators

6.4.2.1 Unary arithmetic operators

1 In section 6.5.3.3 Unary arithmetic operators replace the last sentence of paragraph 4 with the
following, retaining the existing footnote:

2 The pointer value shall be valid, not be the end address of its provenance, and be correctly
aligned for "type".

6.4.3 Additive operators
1 In section 6.5.6 Additive operators replace paragraphs 8 thru 11 with the following, adding the

additional paragraph:

2 When an expression that has integer type is added to or subtracted from a pointer, the
result has the type of the pointer operand. If the pointer operand points to an element
of an array object, and the array is large enough, the result points to an element o�set
from the original element such that the di�erence of the subscripts of the resulting and
original array elements equals the integer expression. If both the pointer operand and the
result point to elements of the same array object, or one past the last element of the array
object, the evaluation shall not produce an over�ow; otherwise, the behavior is unde�ned.
If the result points one past the last element of the array object, it shall not be used as
the operand of a unary * operator that is evaluated. The result pointer has the same
provenance as the pointer operand.28)

3 When two pointers are subtracted, both shall be valid and point to elements of the same
array object, or one past the last element of the array objects; 29) the result is the di�erence
of the subscripts of the two array elements. The size of the result is implementation-de�ned,
and its type (a signed integer type) is ptrdiff_t de�ned in the <stddef.h> header. If
the result is not representable in an object of that type, the behavior is unde�ned.

4 NOTE 1 If the expression P points to the i -th element of an array object, the expressions
(P)+N (equivalently N+(P)) and (P)-N (where N has the value n) point to, respectively,
the i+n-th and i-n-th elements of the array object, provided they exist. Moreover, if the
expression P points to the last element of an array object, the expression (P)+1 points one

28)If the pointer operand P had been the result of an integer-to-pointer or scanf conversion that could have two possible prove-
nances, and the integer value added or subtracted is not 0, the provenance S for the additive operation (and henceforth other
operations with P) must be such that the result lies in S (or one beyond).

29)This implies that they also have the same provenance.

modifications to ISO/IEC 9899:2018, § 6.4.3 page 12 Language

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

past the last element of the array object, and if the expression Q points one past the last
element of an array object, the expression (Q)-1 points to the last element of the array
object.

5 NOTE 2 If the expressions P and Q points to, respectively the i -th and j -th elements of an
array object, the expression (P)-(Q) has the value i - j provided the value �ts in an object
of type ptrdiff_t. Moreover, if the expression P points either to an element of an array
object or one past the last element of an array object, and the expression Q points to the
last element of the same array object, the expression (Q)+1-(P) has the same values as
((Q)-(P))+ 1 and as-((P)-((Q)+1)) , and has the value zero if the expression P points
one past the the last element of the array object, even though the expression (Q)+1 does
not point to an element of the array object.

6 NOTE 3 Another way to approach the pointer arithmetic is �rst to convert the pointer(s)
to character pointer(s): In this scheme the integer expression added to or subtracted from
the converted pointer is �rst multiplied by the size of the object originally pointed to, and
the resulting pointer is converted back to the original type. For pointer subtraction, the
result of the di�erence between the character pointers is similarly divided by the size of
the object originally pointed to.

7 When viewed in this way, an implementation need only provide one extra byte (which can
overlap another object in the program) just after the end of the object in order to satisfy
the "one past the last element" requirements.

6.4.4 Relational operators
1 In section 6.5.8 Relational operators, replace paragraph 5 with the following:

2 When two pointers are compared, they shall both be valid and have the same provenance.
The result depends on the relative ordering of their abstract addresses.

6.4.5 Equality operators
1 In section 6.5.9 Equality operators, add the following after the �rst sentence of paragraph 3:

2 None of the operands shall be an invalid pointer value.

3 Replace paragraph 6 with the following:

4 If one operand is null they compare equal if and only if the other operand is null. Otherwise,
if both operands are pointers to function type they compare equal if and only if they refer
to the same function. Otherwise, they are pointers to objects and compare equal if and
only if they have the same abstract address.

6.4.6 Assignment operators
1 In 6.5.16 Assignment operators insert the following after the �rst sentence in paragraph 3:

2 If a non-null pointer is stored by an assignment operator, either directly or within a
structure or union object, the stored pointer object has the same provenance as the original.

6.4.7 Declarations
1 In section 6.7 Declarations replace the �rst item of the itemized list under paragram 5 with:

� for an object, causes a unique storage instance to be resolved for that object;

Language modifications to ISO/IEC 9899:2018, § 6.4.7 page 13

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

6.4.7.1 Structure and union specifiers

1 In section 6.7.2.1 Structure and union speci�ers, paragraph 18, replace the word object with storage

instance.

2 Replace paragraph 25 with the following:

The assignment:

*s1 = *s2;

only copies the member n; if any of the array elements are within the �rst
sizeof (struct s) bytes of the structure, they are set to an indeterminate repre-
sentation, that may or may not coincide with a copy of the representation of the elements
of the source array.

6.4.8 Declarators

6.4.8.1 Array declarations

1 In section 6.7.6.2 Array declarations, paragraph 8, insert the word instance after the word storage.

6.4.9 Initialization
1 In section 6.7.9 Initialization, replace the following:

� In paragraph 9, replace indeterminate value with indeterminate representation.

� In paragraph 10, replace its value is indeterminate with its representation is indeterminate.

6.5 Statements and blocks
1 In section 6.8 Statements and block, paragraph 3, replace the text between the parenthesis with:

the representation of objects without an initializer becomes indeterminate

6.5.1 Selection statements

6.5.1.1 The switch statement

1 In section 6.8.4.2 The switch statement, paragraph 7, replace indeterminate value with object with

an indeterminate representation.

6.6 External de�nitions
1 In section 6.9 External de�nitions, replace the last sentence of paragraph 4 with:

As discussed in 5.1.1.1, a declaration that also causes a storage instance to be reserved for
an object or provides the body of a function named by the identi�er is a de�nition.

6.6.1 Function de�nitions
In section 6.9.1 Function de�nitions, replace paragraph 9 with

Each parameter has automatic storage duration; its identi�er is an lvalue. 30)

7. Library

1 This section speci�es changes to the standard library speci�ed in C17, ISO/IEC 9899:2018 in order
to support a provenance-aware memory model.

30)A parameter identifier cannot be redeclared in the function body except in an enclosed block. As any object with automatic
storage duration, each parameter gives rise to a unique storage instance representing it. Thus the relative layout of parameters in the
address space is unspecified.

modifications to ISO/IEC 9899:2018, § 7 page 14 Language

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

7.1 Introduction

7.1.1 Use of library functions
1 In section 7.1.4 Use of library functions, paragraph 1, �rst bullet point, replace the text in the

parenthesis with:

such as a value outside the domain of the function, or a pointer outside the address space
of the program, or a null pointer, or a pointer to a non-modi�able storage instance when
the corresponding parameter is not const-quali�ed

2 After paragraph 6, insert the following as paragraph 7 with the relevant footnote:

3 Unless otherwise speci�ed, library functions by themselves do not expose storage instances,
but library functions that execute application speci�c callbacks31) may expose storage
instances through calls into these callbacks.

7.2 Errors <errno.h>
1 In section 7.5 Errors <errno.h>, paragraph 3, replace the text in the parenthesis with:

2 initially representation of the object corresponding to errno in any other thread is inde-
terminate

7.3 Nonlocal jumps <setjmp.h>

7.3.1 Restore calling environment

7.3.1.1 The longjmp function

1 In section 7.13.2.1 The longjmp function, paragraph 3, replace:

� the word values with representation.

� the second last word, are, with is.

2 In paragraph 5, replace the word memory with the storage instance.

7.4 Signal handling <signal.h>

7.4.1 Specify signal handling

7.4.1.1 The signal function

1 In section 7.14.1.1 The signal function, paragraph 5, bullet point 6, replace the text segment:

the value of errno is indeterminate.

with:

the object designated by errno has an indeterminate representation.

whilst retaining the attached footnote.

7.5 Variable arguments <stdarg.h>
1 In section 7.16 Variable arguments <stdarg.h>, paragraph 3, replace the word value with the word

representation.

31)The following library functions call application specific functions that they or related functions receive as arguments: bsearch,
call_once, exit (for atexit handlers), qsort, quick_exit (for at_quick_exit handlers) and thrd_exit (for thread specific
storage).

Language modifications to ISO/IEC 9899:2018, § 7.5 page 15

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

7.6 Atomics <stdatomic.h>

7.6.1 Initialization

7.6.1.1 The ATOMIC_VAR_INIT macro

1 In 17.7.2.1 The ATOMIC_VAR_INIT macro, paragraph 2, replace the section is initially in an indeter-

minate state with has initially an indeterminate representation.

7.6.2 Atomic �ag type and operations
1 In 17.7.8 Atomic �ag type and operations, paragraph 4, replace the second sentence with:

2 An atomic_flag that is not explicitly initialized with ATOMIC_FLAG_INIT has initially
an indeterminate representation.

7.7 Integer types <stdint.h>

7.7.1 Integer types

7.7.1.1 Exact-width integer types

1 In section 7.20.1.1 Exact-width integer types, replace paragraph 3 with:

2 If an implementation provides standard or extended integer types with a particular width,
no padding bits, and (for the signed types) that have a two's complement representation,
it shall de�ne the corresponding typedef names.

7.7.1.2 Integer types capable of holding object pointers

1 Replace 7.20.1.4 Integer types capable of holding object pointers with the following:

2 The following type designates a signed integer type with the property that any valid
pointer to void can be converted to this type, then converted back to pointer to void, and
the result will compare equal to the original pointer:

intptr_t

3 The following type designates the corresponding unsigned integer type with the property
that any valid pointer to void can be converted to this type, then converted back to pointer
to void, and the result will compare equal to the original pointer:

uintptr_t

These types are required.

4 NOTE 1 The types intptr_t and uintptr_t are possibly wider than the types intmax_t
and uintmax_t (7.20.1.5). This exception is intended to accommodate implementations
that otherwise would not be able to specify intptr_t and uintptr_t consistent with the
rules for these types.

5 NOTE 2 Although these integer types allow roundtrip conversions of values of type pointer
to void and therefore guarantee that such conversions do not lose information, arithmetic
on these types is not necessarily consistent with arithmetic on pointer to character types,
nor can properties of pointer values such as alignment be portably deduced from the bit
pattern of the integer result of a conversion.

6 On the other hand, the rules for abstract addresses in 6.2.6.1, 6.5.8 and 6.5.9 impose
that two values of type uintptr_t that originate from conversions of two pointers to
the same storage instance compare the same for relational and equality operators as the
original pointer values. Also, the reconstruction of all the bits of a valid abstract address
that has previously been exposed gives rise to an integer value that converts back to the
corresponding byte address.

modifications to ISO/IEC 9899:2018, § 7.7.1.2 page 16 Language

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

7.7.1.3 Greatest-width integer types

1 Replace 7.20.1.5 Greatest-width integer types with the following:

2 The following type designates a signed integer type capable of representing any value of
any signed integer type with the possible exception of signed extended integer types that
are wider than long long and that are referred by the type de�nition for an exact width
integer type or for intptr_t:

intmax_t

3 The following type designates the unsigned integer type that corresponds to intmax_t:32)

uintmax_t

7.7.2 Macros for integer constants
1 In 7.20.4 Macros for integer constants replace paragraph 3 with:

2 Each invocation of one of these macros shall expand to an integer constant expression. The
type of the expression shall have the same type as would an expression of the corresponding
type converted according to the integer promotions. The value of the expression shall be
that of the argument. If the value and promoted type is in the range of the type intmax_t
(for a signed type) or uintmax_t (for an unsigned type), see 7.20.1.5, the expression is
suitable for use in #if preprocessing directives.

7.8 Input/output <stdio.h>

7.8.1 Streams
1 In 7.21.2 Streams, paragraph 5, replace the text in the second bullet point with:

2 For wide-oriented streams, after a successful call to a �le-positioning function that leaves
the �le position indicator prior to the end-of-�le, a wide character output function can
overwrite a partial multibyte character; any �le contents beyond the byte(s) written may
henceforth not consist of valid multibyte characters.

7.8.2 Files
1 In 7.21.3 Files replace paragraph 4 with:

2 A �le may be disassociated from a controlling stream by closing the �le. Output streams
are �ushed (any unwritten bu�er contents are transmitted to the host environment) before
the stream is disassociated from the �le. The lifetime of a FILE object ends when the
associated �le is closed (including the standard text streams). Whether a �le of zero
length (on which no characters have been written by an output stream) actually exists is
implementation-de�ned.

7.8.3 File access functions

7.8.3.1 The setvbuf function

1 In section 7.21.5.6 The setvbuf function, replace the last sentence of paragraph 2 with:

2 The members of the array at any time have unspeci�ed values.

32)Thus this type is capable of representing any value of any unsigned integer type with the possible exception of particular extended
integer types that are wider than unsigned long long.

Language modifications to ISO/IEC 9899:2018, § 7.8.3.1 page 17

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

7.8.3.2 The fprintf function

1 In section 7.21.6.1 The fprintf function, paragraph 8, replace the text for the p speci�er with:

2 The argument shall be a pointer to void. The value of the pointer shall be valid or null.
It is converted to a sequence of printing characters, in implementation-de�ned manner. If
the value of the pointer is valid its provenance is henceforth exposed.

7.8.3.3 The fscanf function

1 In section 7.21.6.2 The fscanf function, paragraph 12, replace the text for the p speci�er with:

2 Matches the same implementation-de�ned set of sequences of characters that may be
produced by the %p conversion of the fprintf function. The corresponding argument ptr
shall be a pointer to a pointer to void.

- If the input sequence could have been printed from a null pointer value, a null pointer
value is stored in *ptr .

- Otherwise, if the input sequence could have been printed from a valid pointer x and
if the address x currently refers to an exposed storage instance, a representation of a
valid pointer address x and the provenance of that storage instance is synthesized in

*ptr .
33)

- Otherwise the representation of *ptr becomes indeterminate.

7.8.3.4 The fgets function

1 In section 7.21.7.2 The fgets function, paragraph 3, replace the last sentence with:

2 If a read error occurs during the operation, the members of the array have unspeci�ed
values and a null pointer is returned.

7.8.3.5 The ungetc function

1 In section 7.21.7.10 The ungetc function, paragraph 5, replace the last sentence with:

2 For a binary stream, its �le position indicator is decremented by each successful call to the
ungetc function if its value was zero before a call, it has an indeterminate representation
after the call.

7.8.4 Direction input/output functions

7.8.4.1 The fread function

1 In section 7.21.8.1 The fread function, paragraph 2, replace the last 2 sentences with:

2 If an error occurs, the resulting representation of the �le position indicator for the stream
is indeterminate. If a partial element is read, its representation is indeterminate.

7.8.4.2 The fwrite function

1 In section 7.21.8.2 The fwrite function, paragraph 2, replace the last sentence with:

2 If an error occurs, the representation of the �le position indicator for the stream is inde-
terminate.

3 And insert paragraph 3 after paragraph 2 as:

4 If the object (or part thereof) corresponding to the �rst size*nmemb bytes referred by
ptr contains a valid pointer value with provenance x, the fwrite function exposes x.

33)Thus, the constructed pointer value has a valid provenance. Nevertheless, because the original storage instance might be dead
and a new storage instance might live at the same address, the provenance can be different from the provenance that gave rise to the
printf operation. If x can be an address with more than one provenance, only one of these shall be used in the sequel, see 6.2.5.

modifications to ISO/IEC 9899:2018, § 7.8.4.2 page 18 Language

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

7.9 General utilities <stdlib.h>

7.9.1 Storage management functions
1 In section 7.22.3 Memory management functions, replace the header with Storage management

functions. Then, replace the �rst paragraph with:

2 If the allocation succeeds, the pointer to a storage instance returned by a call to
aligned_alloc, calloc, malloc, or realloc is suitably aligned so that it may be as-
signed to a pointer to any type of object with a fundamental alignment requirement and
size less than or equal to the size requested. It may then be used to access such asn ob-
ject or array of such objects in the storage instance allocated (until the storage instance
is explicitly deallocated). The lifetime of an allocated storage instance extends from the
allocation until the deallocation. Each such allocation shall yield a pointer to a storage
instance that is disjoint from any other storage instance. The pointer returned points
to the start address of the allocated storage instance. If the storage instance cannot be
allocated, a null pointer is returned. If the size of the storage instance required is zero, the
behavior is implementation-de�ned: either a null pointer is returned to indicate an error,
or the address of a storage instance of size zero is returned. For the latter, the returned
pointer shall not be used to access an object.

3 For the purposes of determining the existence of a data race, memory allocation functions
behave as though they accessed only storage instances accessible through their arguments
and not other static duration storage instances. These functions may, however, visibly
modify the storage instance that they allocate or deallocate. Calls to these functions that
allocate or deallocate storage instances in a particular region of the address space shall
occur in a single total order, and each such deallocation call shall synchronize with the
next allocation (if any) in this order.34)

7.9.1.1 The aligned_alloc function

1 In 7.22.3.1 The aligned_alloc function, replace the �rst sentence of paragraph 2 with:

2 The aligned_alloc function allocates a storage instance whose alignment is speci�ed by
alignment, whose size is speci�ed by size, and whose representation is indeterminate.

3 Replace paragraph 3 with:

4 The aligned_alloc functions returns either a null pointer or a pointer to the allocated
storage instance.

7.9.1.2 The calloc function

1 In 7.22.3.2 The calloc function, replace paragraph 2, while retaining the existing footnote, with:

2 The calloc function allocates a storage instance for an array of nmemb objects, each of
whose size is size. The storage instance is initialize to all bits zero.

3 Replace paragraph 3 with:

4 The calloc function returns either a null pointer or a pointer to the allocated storage
instance.

7.9.1.3 The free function

1 In 7.22.3.3 The free function, replace paragraph 2 with:

2 The free function causes the storage instance pointed to by ptr to be deallocated, that is,
made available for further use. 35) If ptr is a null pointer, no action occurs. Otherwise, if

34)This means that an implementation may only reuse a valid address that is computed from an allocated storage instance for a
different allocated storage instance if the calls to allocate and deallocate the storage instances synchronize.

35)

Language modifications to ISO/IEC 9899:2018, § 7.9.1.3 page 19

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

the argument does not match a pointer earlier returned by a storage management function,
or if the storage instance has been deallocated by a call to free or realloc, the behavior
is unde�ned.

7.9.1.4 The malloc function

1 In 7.22.3.4 The malloc function, replace paragraphs 2 and three with:

Description
2 The malloc function allocates a storage instance whose size is speci�ed by size and

whose representation is indeterminate.

Returns
3 The malloc function returns either a null pointer or a pointer to the allocated storage

instance.

7.9.1.5 The realloc function

1 Replace 7.22.3.5 The realloc function with:

Synopsis

23 #include <stdlib.h>
void *realloc(void *ptr, size_t size);

Description
4 The realloc function deallocates the old storage instance pointed to by ptr and returns

a pointer to a new storage instance that has the size speci�ed by size. The bytes of the
old storage instance up to the lesser of the new and old sizes are copied as if by memcpy
to the initial bytes of the new storage instance. Any bytes in the new storage instance
beyond the size of the old object have unspeci�ed values.

5 If ptr is a null pointer, then the realloc function behaves like the malloc function for
the speci�ed size. Otherwise, if ptr does not match a pointer earlier returned by a storage
management function, or if the storage instance has been deallocated by a call to the
free or realloc function, the behavior is unspeci�ed. If size is nonzero and no storage
instance is allocated, the old storage instance is not deallocated. If size is zero and no
storage instance is allocated, it is implementation-de�ned whether the old storage instance
is deallocated. If the old storage instance is not deallocated, it shall be unchanged.

Returns
6 The realloc function returns a pointer to the new storage instance (which may have the

same value as a pointer to the old storage instance), or a null pointer if no new storage
instance has been allocated.

7 NOTE If a call to realloc is successful, the initial part of the new storage instance
represents objects with the same value and e�ective type as the initial part of the old
storage instance, if any. Nevertheless, the new storage instance has to be considered to be
di�erent from the old one:

- Even if both storage instances have the same address, all pointers to the old storage
instance (stored within or outside the storage instance) are invalid because that storage
instance ceases to exist.

- Copies of objects in the new storage instance that have hidden state and need explicit
initialization (such as variable argument lists, atomic objects, mutexes, or condition
variables) may have indeterminate representation.

- Resources reserved for the original objects in the old storage instance that have hid-
den state and need destruction (such as variable argument lists, mutexes or condition
variables) may be squandered.

modifications to ISO/IEC 9899:2018, § 7.9.1.5 page 20 Language

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

7.9.2 Multibyte/wide character conversion functions
1 In section 7.22.7 Multibyte/wide character conversion functions, paragraph 1, replace the last

sentence with:

2 Changing the LC_TYPE category causes the internal object describing the conversion state
of these functions to have an indeterminate representation.

7.10 String handling <string.h>

7.10.1 Copying functions
1 In 7.24.2 Copying functions, insert the following as paragraph 1:

2 If the representation of a pointer object is copied by a copying function, either directly
or within an aggregate or union object, the pointer copy has the same provenance as the
original.

7.10.2 Comparison functions

7.10.2.1 The strxfrm function

1 In 7.24.4.5 The strxfrm function, paragraph 3 (Returns), replace the second sentence with:

2 If the value returned is n or more, the contents of the members of the array pointed to by
s1 have an indeterminate representation.

7.11 Threads <threads.h>

7.11.1 Thread-speci�c storage functions

7.11.1.1 The tss_create function

1 In section 7.26.6.1 The tss_create function, paragraph 6 (Returns), replace the last word value, with
representation.

7.11.1.2 The tss_set function

1 In section 7.26.6.4 The tss_set function, add the following paragraph after paragraph 3 in the
Description section:

2 If val is a valid pointer, its provenance is henceforth exposed.

7.12 Date and time <time.h>

7.12.1 Time conversion functions

7.12.1.1 The strftime function

1 In section 7.27.3.5 The strftime function, paragraph 8, replace the last sentence with:

2 Otherwise, zero is returned and the members of the array have an indeterminate represen-
tation.

7.13 Extended multibyte and wide character utilities <wchar.h>

7.13.1 Formatted wide character input/output functions

7.13.1.1 The fwprintf function

1 In section 7.29.2.1 The fwprintf function, paragraph 8, replace the description of the conversion
speci�er p with:

2 The argument shall be a pointer to void. The value of the pointer shall be valid or null.
It is converted to a sequence of printing wide characters, in an implementation-de�ned
manner. If the value of the pointer is valid its provenance is henceforth exposed.

Language modifications to ISO/IEC 9899:2018, § 7.13.1.1 page 21

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

7.13.1.2 The fwscanf function

1 In section 7.29.2.2 The fwscanf function, paragraph 12, replace the description of the conversion
speci�er p with the following, including the footnote:

2 Matches the same implementation-de�ned set of sequences of wide characters that may
be produced by the %p conversion of the fwprintf function. The corresponding argument
ptr shall be a pointer to a pointer to void.

- If the input sequence could have been printed from a null pointer value, a null pointer
value is stored in *ptr .

- Otherwise, if the input sequence could have been printed from a valid pointer x and
if the address x currently refers to an exposed storage instance, a representation of a
valid pointer with address x and the provenance of that storage instance is synthesized
in *ptr .

36)

- Otherwise the representation of *ptr becomes indeterminate.

7.13.2 Wide character input/output functions

7.13.2.1 The fgetws function

1 In Section 7.29.3.2 The fgetws function, paragraph 3, replace the last sentence with:

2 If a read or encoding error occurs during the operation, the array members have an
indeterminate representation and a null pointer is returned.

7.13.3 General wide string utilities

7.13.3.1 The wscxfrm function

1 In section 7.29.4.4 The wscxfrm function, paragraph 3, replace the last sentence with:

2 If the value returned is n or greater, the array elements pointed to by s1 have an indeter-
minate representation.

7.13.4 Wide character time conversion functions

7.13.4.1 The wscftime function

1 In section 7.29.5.1 The wcsftime function, paragraph 3, replace the last sentence with:

2 Otherwise, zero is returned and the members of the array have an indeterminate repre-
sentation.

36)Thus, the constructed pointer value has a valid provenance. Nevertheless, because the original storage instance might be dead
and a new storage instance might live at the same address, this provenance can be different from the provenance that gave rise to the
print operation. If x can be an address with more than one provenance, only one of these shall be used in the sequel, see 6.2.5.

modifications to ISO/IEC 9899:2018, § 7.13.4.1 page 22 Language

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

Annex A
(informative)

Language syntax summary

1 There are no changes to the Language syntax summary annex.

Language syntax summary modifications to ISO/IEC 9899:2018, § A page 23

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

Annex B
(informative)

Library summary

1 There are no changes to the Library summary annex.

modifications to ISO/IEC 9899:2018, § B page 24 Library summary

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

Annex C
(informative)

Sequence points

1 There are no changes to the Sequence points annex.

Sequence points modifications to ISO/IEC 9899:2018, § C page 25

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

Annex D
(normative)

Universal character names for identi�ers

1 There are no changes to the Universal character names for identi�ers annex.

modifications to ISO/IEC 9899:2018, § D page 26 Universal character names for identifiers

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

Annex E
(informative)

Implementation limits

1 There are no changes to the Implementation limits annex.

Implementation limits modifications to ISO/IEC 9899:2018, § E page 27

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

Annex F
(normative)

IEC 60559 �oating-point arithmetic

1 There are no changes to the IEC 60559 �oating-point arithmetic annex.

modifications to ISO/IEC 9899:2018, § F page 28 IEC 60559 floating-point arithmetic

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

Annex G
(normative)

IEC 60559-compatible complex arithmetic

1 There are no changes to the IEC 60559-compatible complex arithmetic annex.

IEC 60559-compatible complex arithmetic modifications to ISO/IEC 9899:2018, § G page 29

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

Annex H
(informative)

Language independent arithmetic

1 There are no changes to the Language independent arithmetic annex.

modifications to ISO/IEC 9899:2018, § H page 30 Language independent arithmetic

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

Annex I
(informative)

Common warnings

1 There are no changes to the Common warnings annex.

Common warnings modifications to ISO/IEC 9899:2018, § I page 31

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

Annex J
(normative)

Portability issues

J.1 Unspeci�ed behavior
1 In section J.1 Unspeci�ed behavior, paragraph 1, insert an item after the item

- Many aspects of the representation of types (6.2.6)

that reads:

- The relative order of any two storage instances in the address space (6.2.6.1).

2 Remove the following items:

- The layout of storage for function parameters (6.9.1)

- The order and contiguity of storage allocated by successive calls to the calloc, malloc,
realloc, or aligned_alloc functions (7.22.3).

3 Modify the item:

- The amount of storage allocated by a successful call to the calloc, malloc, realloc, or
aligned_alloc function when 0 bytes was requested.

to read:

- If a call to the calloc, malloc, realloc, or aligned_alloc function requesting 0 bytes fails
or returns a storage instance of size zero (7.22.3).

J.2 Unde�ned behavior
1 In section J.2 Unde�ned Behavior, paragraph 1, change the following three adjacent items:

- The value of an object with automatic storage duration is used while it is indeterminate ((6.2.4,
6.7.9, 6.8))

- A trap value representation is read by an lvalue expression that does not have character type
(6.2.6.1).

- A trap representation is produced by a side e�ect that modi�es any part of the object using
an lvalue expression that does not have character type (6.2.6.1).

to read:

- The value of an object with automatic storage duration is used while the object has an inde-
terminate representation ((6.2.4, 6.7.9, 6.8))

- A non-value value representation is read by an lvalue expression that does not have character
type (6.2.6.1).

- A non-value representation is produced by a side e�ect that modi�es any part of the object
using an lvalue expression that does not have character type (6.2.6.1).

2 Modify the following adjacent items:

modifications to ISO/IEC 9899:2018, § J.2 page 32 Portability issues

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

- The value of a pointer that refers to space deallocated by a call to free or realloc function
is used (7.22.3).

- The pointer argument to the free or realloc function does not match a pointer earlier
returned by a memory management function, or the space has been deallocated by a call to
free or realloc (7.22.3.3, 7.22.3.5).

to read:

- The value of a pointer that refers to a storage instance deallocated by a call to free or realloc
function is used (7.22.3).

- The pointer argument to the free or realloc function does not match a pointer earlier
returned by a storage management function, or the storage instance has been deallocated by
a call to free or realloc (7.22.3, 7.22.5).

J.3 Implementation-de�ned behavior

J.3.1 Integers
In section J.3.5 Integers, paragraph 1, second item, replace trap with non-value.

J.3.2 Library functions
1 In section J.3.12 Library functions, paragraph 1, replace the following item:

- Whether the calloc, malloc, realloc, and aligned_alloc functions return a null pointer
or a pointer to an allocated object when the size requested is zero (7.22.3).

with:

- Whether the calloc, malloc, realloc, and aligned_alloc functions return a null pointer
or a pointer to a storage instance when the size requested is zero (7.22.3).

Portability issues modifications to ISO/IEC 9899:2018, § J.3.2 page 33

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

Annex K
(informative)

Bounds checking interfaces

K.1 Library

K.1.1 General utilities stdlib.h

K.1.1.1 Multibyte/wide character conversion functions

1 In section K.3.6.4 Multibyte/wide character conversion functions, paragraph 1, replace the last
sentence with:

2 Changing the LC_TYPE category causes the internal object describing the conversion state
of these functions to have an indeterminate representation.

modifications to ISO/IEC 9899:2018, § K.1.1.1 page 34 Bounds checking interfaces

ISO/IEC TS 6010:Working Draft — 2024-03-04 N3226

Annex L
(informative)

Analyzability

L.1 De�nitions

L.1.1
1 In section L.2.2, replace paragraph 3 with:

2 Note 2 to entry: Any values produced or stored might be unspeci�ed values, and the
representation of objects that are written to might become indeterminate.

Analyzability modifications to ISO/IEC 9899:2018, § L.1.1 page 35

	Introduction
	Scope
	Normative References
	Terms, definitions, and symbols
	Environment
	Language
	Concepts
	Storage duration of objects
	Representation of types
	General
	Integer Types

	Conversion
	Other operands
	Lvalues, arrays and function designators
	Pointers

	Lexical elements
	String literals

	Expressions
	Postfix operators
	Structure and union members
	Compound literals

	Unary operators
	Unary arithmetic operators

	Additive operators
	Relational operators
	Equality operators
	Assignment operators
	Declarations
	Structure and union specifiers

	Declarators
	Array declarations

	Initialization

	Statements and blocks
	Selection statements
	The [basicstyle=]`switch` statement

	External definitions
	Function definitions

	Library
	Introduction
	Use of library functions

	Errors <errno.h>
	Nonlocal jumps <setjmp.h>
	Restore calling environment
	The [basicstyle=]`longjmp` function

	Signal handling <signal.h>
	Specify signal handling
	The [basicstyle=]`signal` function

	Variable arguments <stdarg.h>
	Atomics <stdatomic.h>
	Initialization
	The [basicstyle=]`ATOMICVARINIT` macro

	Atomic flag type and operations

	Integer types <stdint.h>
	Integer types
	Exact-width integer types
	Integer types capable of holding object pointers
	Greatest-width integer types

	Macros for integer constants

	Input/output <stdio.h>
	Streams
	Files
	File access functions
	The [basicstyle=]`setvbuf` function
	The [basicstyle=]`fprintf` function
	The [basicstyle=]`fscanf` function
	The [basicstyle=]`fgets` function
	The [basicstyle=]`ungetc` function

	Direction input/output functions
	The [basicstyle=]`fread` function
	The [basicstyle=]`fwrite` function

	General utilities <stdlib.h>
	Storage management functions
	The [basicstyle=]`alignedalloc` function
	The [basicstyle=]`calloc` function
	The [basicstyle=]`free` function
	The [basicstyle=]`malloc` function
	The [basicstyle=]`realloc` function

	Multibyte/wide character conversion functions

	String handling <string.h>
	Copying functions
	Comparison functions
	The [basicstyle=]`strxfrm` function

	Threads <threads.h>
	Thread-specific storage functions
	The [basicstyle=]`tsscreate` function
	The [basicstyle=]`tssset` function

	Date and time <time.h>
	Time conversion functions
	The [basicstyle=]`strftime` function

	Extended multibyte and wide character utilities <wchar.h>
	Formatted wide character input/output functions
	The [basicstyle=]`fwprintf` function
	The [basicstyle=]`fwscanf` function

	Wide character input/output functions
	The [basicstyle=]`fgetws` function

	General wide string utilities
	The [basicstyle=]`wscxfrm` function

	Wide character time conversion functions
	The [basicstyle=]`wscftime` function

	Annex A (informative) Language syntax summary
	Annex B (informative) Library summary
	Annex C (informative) Sequence points
	Annex D (normative) Universal character names for identifiers
	Annex E (informative) Implementation limits
	Annex F (normative) IEC 60559 floating-point arithmetic
	Annex G (normative) IEC 60559-compatible complex arithmetic
	Annex H (informative) Language independent arithmetic
	Annex I (informative) Common warnings
	Annex J (normative) Portability issues
	Unspecified behavior
	Undefined behavior
	Implementation-defined behavior
	Integers
	Library functions

	Annex K (informative) Bounds checking interfaces
	Library
	General utilities stdlib.h
	Multibyte/wide character conversion functions

	Annex L (informative) Analyzability
	Definitions
	

