Programming languages -
A Provenance-aware memory object model for C

Technical Specification

Jens Gustedt!, Peter Sewell?, Kayvan Memarian?, Victor B. F. Gomes?, Martin Uecker?

'INRIA and ICube, Université de Strasbourg, France
*University of Cambridge, UK
3University Medical Center, Gottingen, Germany

ISO TC1/SC22/WG14

document number: N3057

document date: 2022-09-20
Changes:

2020-10-4: WG14 N2577, orginal version
2021-3-24: WG14 N2676

+ Change in terminology. Instead of using the confusing “indeterminate value”, change to “invalid
value” for pointer values and to “indeterminate state” to describe certain object representations.

Synchronized with WG14 N2668.
2022-6-15: WG14 N3005
+ Integrate changes of documents that are agreed by WG14 for the new revision of ISO/IEC

9899:2023.

N2861 Indeterminate Values and Trap Representations
N2888 Exact-width Integer Type Interfaces

+ As agreed by WG14, integrate N2889, “Pointers and integer types”, and adapt the proposed text
to refer to uintptr_t for abstract addresses.

« Numerous editorial improvements.
2023-01-29: WG14 N3057, this version

+ make document ready for TDS ballot
« make page numbering consistent

+ implement ISO style requirements



ISO/IEC TS 6010:2023(E)

first two pages to be replaced by ISO

ii ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

Contents

Foreword

Introduction

1 Scope

2 Normative references
3 Terms and definitions

4 Specifications

4.1 General . .. .. ... ...
4.2 Provenance-aware objectmodels . .. ... ... .. ... .....
4.3 Operationsonpointers . ... .....................

Annex A (informative) Examples

A1 General . ... ... ...
A2 Basicpointer provenance . . . . . . . . . ..o
A.3 Tracking provenance throughintegers . . ... ... ........
A4 Operations on pointer values and representations . . .. ... ..
A.5 Implications of provenance semantics for optimizations . . . . . .
A.6 Testing the example behavior in Cerberus . . ... .........

A7 Testing the example behavior in mainstream C implementations

Annex B (informative) Detailed semantics

B.1 General .. .... ... ... ..
B.2 The PNVI-ae-udi, PNVI-ae, PNVI-plain, and PVI semantics . . . . .
B.3 The memory object modelstate . . ... ...............

Annex C (normative) Differences to ISO/IEC 9899:2018

Bibliography

©ISO/IEC 2023 - All rights reserved

iv

iii



ISO/IEC TS 6010:2023(E)

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Com-
mission) form the specialized system for worldwide standardization. National bodies that are members of
ISO or IEC participate in the development of International Standards through technical committees estab-
lished by the respective organization to deal with particular fields of technical activity. ISO and IEC technical
committees collaborate in fields of mutual interest. Other international organizations, governmental and
non-governmental, in liaison with ISO and IEC, also take part in the work.

The procedures used to develop this document and those intended for its further maintenance are de-
scribed in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the different
types of document should be noted. This document was drafted in accordance with the editorial rules of the
ISO/IEC Directives, Part 2 (see www.iso.org/directives or www.iec.ch/members_experts/refdocs).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO and IEC shall not be held responsible for identifying any or all such patent rights. Details
of any patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received (see www. iso.org/patents) or the IEC list of patent declarations
received (see https://patents.iec.ch).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and expres-
sions related to conformity assessment, as well as information about ISO’s adherence to the World Trade Or-
ganization (WTO) principles in the Technical Barriers to Trade (TBT) see www. iso.org/iso/foreword.html.
In the IEC, see www. iec.ch/understanding-standards.

This document was prepared by Joint Technical Committee ISO/IEC JTC 1, Information technology, Sub-
committee SC 22, Programming languages, their environments and system software interfaces.

Any feedback or questions on this document should be directed to the user’s national standards
body. A complete listing of these bodies can be found at www.iso.org/members.html and www.iec.ch/
national-committees.

iv ©ISO/IEC 2023 - All rights reserved


www.iso.org/directives
www.iec.ch/members_experts/refdocs
www.iso.org/patents
https://patents.iec.ch
www.iso.org/iso/foreword.html
www.iec.ch/understanding-standards
www.iso.org/members.html
www.iec.ch/national-committees
www.iec.ch/national-committees

ISO/IEC TS 6010:2023(E)

Introduction
This document is divided into several subdivisions:

« preliminary elements (Clauses 1-3);

+ The specification of a provenance-based memory object model of the C programming language
(Clause 4);

+ A set of executable examples that illustrate properties of this model (Annex A);
+ A description of detailed semantics of this model in closed mathematical form (Annex B);

« Alist of textual differences to ISO/IEC 9899:2018 that describe the memory object model that is spec-
ified by this document (Annex C).

The Working Group responsible for this document (WG 14) maintains a site on the World Wide Web
athttp://www.open-std.org/JTC1/SC22/WG14/ containing ancillary information that may be of interest to
some readers such as transitional documents and minutes of discussions that are the base for many of the
decisions made during its preparation.

This document originates from various sources which are listed in the bibliography.

+ The numbered clauses and Annex C have been prepared in the memory object model study group of
WG 14. The main contributors are Victor B. F. Gomes, Jens Gustedt, Kayvan Memarian, Peter Sewell,
and Martin Uecker.

+ Annex A is derived from “C provenance semantics: examples.”

+ Annex B is derived from “Exploring C semantics and pointer provenance.”

©ISO/IEC 2023 - All rights reserved v


http://www.open-std.org/JTC1/SC22/WG14/

ISO/IEC TS 6010:2023(E)

Programming languages -
A Provenance-aware memory object model for C.

1 Scope

This document defines a provenance-aware memory object model for the C programming language. It com-
plements ISO/IEC 9899:2018, which defines most aspects of C but which leaves some aspects of its memory
object model open. This document is therefore expressed as an extension to ISO/IEC 9899:2018, described
in Section 4 and Annex C. Implementations that conform to this document shall behave as if these indicated
differences to ISO/IEC 9899:2018 had been integrated into ISO/IEC 9899.

©ISO/IEC 2023 - All rights reserved 1



ISO/IEC TS 6010:2023(E)

2 Normative references

The following documents are referred to in the text in such a way that some or all of their content constitutes
requirements of this document. For dated references, only the edition cited applies. For undated references,
the latest edition of the referenced document (including any amendments) applies.

ISO/IEC 2382, Information technology - Vocabulary
ISO/IEC 9899:2018, Programming languages — C

ISO 80000-2, Quantities and units — Part 2: Mathematics

2 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

3 Terms and definitions

For the purposes of this document, the terms and definitions given in ISO/IEC 2382, ISO/IEC 9899:2018,
ISO 80000-2, and the following apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:

+ ISO Online browsing platform: available at https://www.iso.org/obp

+ IEC Electropedia: available at http://www.electropedia.org/

3.1

pointer provenance

provenance

an entity that is associated to a pointer value in the abstract machine, which is either empty, or the identity
of a storage instance

3.2

storage instance

the inclusion-maximal region of data storage in the execution environment that is created when either an
object definition or an allocation is encountered

©ISO/IEC 2023 - All rights reserved 3


https://www.iso.org/obp
http://www.electropedia.org/

ISO/IEC TS 6010:2023(E)

4 Specifications

This document defines a provenance-aware memory object model for the C programming language. It com-
plements ISO/IEC 9899:2018, which defines most aspects of C but which leaves some aspects of its memory
object model open. This document is therefore expressed as an extension to ISO/IEC 9899:2018, described
in Section 4 and Annex C. Implementations that conform to this document shall behave as if these indicated
differences to ISO/IEC 9899:2018 had been integrated into ISO/IEC 9899.

4.1 General

In addition to the newly introduced terms (Clause 3), for the scope of this document the use of some terms
of ISO/IEC 9899:2018 is replaced as listed in Annex C. Their meaning is as given there.

NOTE In particular the terms indeterminate value and trap representation are not used by this document. Instead, refined terms
such as indeterminate representation and non-value representation are used as indicated.

Prior to that annex, Annex A and B provide executable examples and detailed semantics, respectively,
for the different variants of the memory model that are discussed in this clause.

4.2 Provenance-aware object models

C pointer values are typically represented at runtime as simple concrete numeric values, but current imple-
mentations routinely exploit information about the provenance of pointers to reason that they cannot alias,
and hence to justify optimizations. This document specifies a provenance semantics for simple cases of the
construction and use of pointers.

ISO/IEC 9899:2018 does not explicitly speak to this: it is ambiguous there whether some programming
idioms are allowed or not, and exactly what compiler alias analysis and optimization are allowed to do.
EXAMPLE For example, consider the well-known test casell %% %8 pelow. This and many of the examples below are edge-cases,

exploring the boundaries of what different semantic choices allow, and sometimes what behavior existing compilers exhibit; they
are not all intended as desirable code idioms.

1 |#include <stdio.h>

2 |#include <string.h>

3 |int y=2, x=1;

4 |int main() {

5 int *xp = &x + 1;

6 int *q = &y;

7 printf (”Addresses: p=%p g=%p\n”,(voidx)p,(voidx)q);
8 if (memcmp (&p, &q, sizeof(p)) == @) {

9 *p = 11; // does this have undefined behaviour?
10 printf (”x=%d y=%d xp=%d *q=%d\n” ,x,y,*p,*q);

11 3}

12 |3}

Depending on the implementation, x and y can in some executions happen to be allocated in adjacent memory, in which case
&x+1 and &y will have bitwise-identical representation values, the memcmp will succeed, and p (derived from a pointer to x) will have
the same representation value as a pointer to a different object, y, at the point of the update xp=11.

This occurs in practice, e.g. with GCC 12.2.0 -02 on some platforms. Its output of

x=1 y=2 *p=11 *q=2
suggests that the implementation is reasoning that *p does not alias with y or *q, and hence that the initial value of y=2 can be
propagated to the final printf. The ICC implementation, e.g. ICC 19 -02, also optimizes here (for a variant with x and y swapped),
producing

x=1 y=2 *p=11 *q=11.

In contrast, Clang 15.0.2 -02 just outputs the

x=1 y=11 *p=11 *q=11

4 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

that would be given by a concrete semantics.

Note that this example does not involve type-based alias analysis, and the outcome is not affected by implementation specific
flags such as GCC or ICC’s -fno-strict-aliasing. Moreover, the mere formation of the &x+1 one-past pointer is explicitly permitted
by ISO/IEC 9899:2018, and, because the *p=11 access is guarded by the memcmp conditional check on the representation bytes of
the pointer, it will not be attempted (and hence flag undefined behavior) in executions in which the two storage instances are not
adjacent.

These GCC and ICC outcomes are not correct with respect to a concrete semantics, and so to make the existing behavior sound
it is necessary for this program to be deemed to have undefined behavior.

4.2.1 Basic provenance semantics for pointer values

For simple cases of the construction and use of pointers, capturing the basic intuition in a precise semantics
is straightforward: a provenance is associated with every pointer value, identifying the original storage
instance that the pointer is derived from:

+ An abstract-machine pointer value shall be a pair (7, a), adding a provenance 7, either @i where i is
a storage instance ID, or the empty provenance @empty, to their concrete address a.

+ On every creation of a storage instance (of objects with static, thread, automatic, and allocated storage
duration), the abstract machine shall nondeterministically choose a fresh storage instance ID ¢ (unique
across the entire execution), and the resulting pointer value shall carry that single storage instance ID
as its provenance @s.

+ Provenance shall be preserved by pointer arithmetic that adds or subtracts an integer to a pointer.

 Atany access via a pointer value, its byte address shall be consistent with its provenance; it has unde-
fined behavior otherwise. In particular:

- The access via a pointer value which has provenance a single storage instance ID @i shall be
within the byte array of the corresponding original storage instance. That storage instance shall
still be live.

- All other accesses, including those via a pointer value with empty provenance, have undefined
behavior.

NOTE This undefined behavior is what justifies optimization based on provenance alias analysis.

EXAMPLE Below is a provenance-semantics memory-state snapshot (from the Cerberus GUI) for the program example above, just
before the invalid access via p, showing how the provenance mismatch makes it undefined behavior: at the attempted access via
p, its pointer-value address Ox4c is not within the storage instance with the ID @5 (the provenance of the allocation of x) of the
provenance of the value of p.

p: signed int* [@7, 0x50] x: signed int [@5, 0x48]

1

@35, Ox4c

y: signed int [@6, Ox4c]

q: signed int* [@8, 0x58] u 2

@6, Ox4c

NOTE This specification concerns the abstract machine as defined in ISO/IEC 9899:2018: implementations may rely on provenance
in their alias analysis and optimization, but they are not expected to record or manipulate provenance at runtime; provenances

©ISO/IEC 2023 - All rights reserved 5



ISO/IEC TS 6010:2023(E)

therefore do not necessarily have program-accessible runtime representations in the abstract machine. Nevertheless, dynamic or
static analysis tools and non-standard or bug-finding-tool implementations may provide such access to provenance.

ISO/IEC 9899:2018 provides many other ways to construct and manipulate pointer values: casts to and
from integers, copying with memcpy, manipulation of their representation bytes, type punning, I/0, copying
with realloc, and constructing pointer values that embody knowledge established from linking.

This document specifies the

provenance not via integers
exposed-address
user-disambiguation

model, abbreviated as PNVI-ae-udi. This model is a refinement of two other, less restrictive models:

« PNVI-plain is a semantics that tracks provenance via pointer values but not via integers. At integer-
to-pointer cast points, the given address shall point within a live storage instance and, if so, the corre-
sponding provenance is recreated.

+ PNVI-ae (PNVI exposed-address) is a variant of PNVI that allows integer-to-pointer casts to recreate
provenance only for storage instances that have previously been exposed. Here, a storage instance is
said to be exposed by a conversion to an integer type of a pointer to it, or by a read (at non-pointer
type) of the representation of the pointer, or by a formatted output of the pointer using the format
specifier %p.

+ PNVI-ae-udi (PNVI exposed-address user-disambiguation) is a further refinement of PNVI-ae to
support roundtrip casts, from pointer to integer and back, of pointers that are one-past a storage in-
stance. In some circumstances such pointers can be ambiguous, referring either to one-past one stor-
age instance or to the start of another adjacent storage instance. PNVI-ae-udi permits such ambiguity
until some use of the pointer resolves it.

4.2.2 Storage instance IDs

An addressable storage instance is the byte array that is created when either an object starts its lifetime (for
static, automatic and thread storage duration) or an allocation function is called (malloc, calloc etc). In
addition to the abstract address, addressable storage instances shall have a unique ID throughout the whole
execution.

NOTE There are also storage instances that are not addressable, namely for register variables, but since provenance needs point-
ers, these play no role in the following and are not discussed further.

Once the lifetime of an addressable storage instance ends, the implementation may attribute the same abstract address to a
storage instance that is created thereafter, but never the same ID.

4.2.3 Provenance of pointers

The provenance of a valid pointer shall be the ID of the specific storage instance to which the pointer refers
(or one-past).

NOTE As defined above, this ID is a genuine component of the pointer value in C’s abstract machine, but it does not necessarily
take part in the object representation of the pointer; in general the provenance of a pointer is not directly observable.

Valid pointers shall keep provenance to the encapsulating storage instance of the referred object. When
the storage instance dies (falls out of scope, the thread ends, or free is called) the pointer value becomes
invalid, and any stored representations of the pointer value become indeterminate.

Some valid pointers that are obtained by other means than by the unary & operator or as the return
value of storage allocation functions can temporarily have two provenances; these are discussed in 4.2.6.
Otherwise, valid pointers shall have a unique provenance.

6 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

4.2.4 Abstract address

The concept of abstract address lifts the implementation-defined mapping required for pointer-to-integer
conversions, to the level of the memory model.

- Each byte of a storage instance shall have an abstract address, which is a positive integer of type
uintptr_t that is constant during the whole lifetime of the storage instance.

+ Abstract addresses shall be increasing within a storage instance.
« Storage instances shall be strictly ordered by the induced order of their abstract addresses.
+ Storage instances and the ranges of their abstract addresses shall not overlap.

An implementation that conforms to this document shall define the types uintptr_t and intptr_t (speci-

fied as optional in ISO/IEC 9899:2018). If necessary these types may be wider than uintmax_t and intmax_t.
The set of all abstract addresses is said to be the address space of the execution. No other ordering

constraints than the above between any pair of storage instances are implied.

NOTE This means in particular that no syntactic features (declaration order) or runtime features (order of allocation) imply a

specific relative position of storage instances in the address space.

This concept is completely independent of the object representation of pointers: it is up to any implementation to define the
relation between the two in any way that suits best. In particular, the address offset between consecutive bytes does not need to be
1 (or any other constant). There can be bumps (corresponding to segments, for example) and strides, and address sharing on the
boundary between the one-past pointer of one storage instance and the start address of the next.

Compared to ISO/IEC 9899:2018, the type uintptr_t is made mandatory, here. On “usual” architectures where uintptr_t
exists already, the abstract address of a pointer value p is just (uintptr_t)p. Architectures that do not yet have uintptr_t may
define an abstract address that is consistent with the other operations that they allow on pointers; this document allows this type
to be wider than uintmax_t.

4.2.5 Pointer exposure and synthesis

Tracking provenance for the sake of aliasing analysis can fail if pointers can acquire an abstract address
with an arbitrary provenance of which the implementation is not aware. With the above specifications for
abstract addresses such a possibility stems from a leak of information about a storage instance A, if:

« the abstract address of A has been made known, or
« the object representation of a pointer to A is inspected.

In such a case it is said that A has been exposed. Exposure of a storage instance constitutes a side effect in
the abstract state machine.

NOTE The latter guarantees sequencing and synchronization properties of allocations and deallocations even though the side effect
itself might not be directly observable.

In ISO/IEC 9899:2018 there are only very restricted contexts that construct pointer values p that are
not directly deduced from the address of a storage instance, i.e. either by using the unary & operator on a
defined object or by using a pointer that is returned by an allocation function. In such a case, p is said to be
synthesized; a storage instance of such a synthesized pointer shall have been previously exposed.

NOTE This ensures that all storage instances that have not been exposed can be subject to a rigorous alias analysis, whereas
pointers to potentially exposed storage instance acquire a clear “warning label” that tell the implementation to be cautious about
them.

Operations that expose storage instances and synthesize pointers are described in 4.3.

4.2.6 Ambiguous Provenance of synthesize pointers

There is one special case where a synthesized pointer p can have two different provenances, A and B, referred
to as ambiguous provenance. This happens when:

+ pisthe end address (one past) pointer of a storage instance A and the start address of another storage
instance B, and

©ISO/IEC 2023 - All rights reserved 7



ISO/IEC TS 6010:2023(E)

+ both storage instances A and B are exposed.

In such a situation, both A and B are valid choices for the provenance in future operations on the pointer.
Only one or the other (but not both) provenance shall be used for a given synthesized pointer value.
4.3 Operations on pointers

In the following, additional requirements for pointer operations that require or produce provenance are
described. If a pointer value has ambiguous provenance before a pointer operation that makes use of prove-
nance, one of these provenances is determined and shall be used henceforth in all pointer operations that op-
erate on the same valid pointer. Details and consequences of such a disambiguation relative to clauses 6.2.5
p20 and 6.3.2.3 p9 of ISO/IEC 9899:2018 are presented in Annex C.

4.3.1 Exposing and non-exposing operations

A storage instance is exposed once information from any valid pointer with this provenance has leaked into
other parts of the program state. The following five operations in ISO/IEC 9899:2018 provide information
about the address of a storage instance A.

+ A pointer value to A is converted to integer.
+ A pointer value is passed as second argument to a call to tss_set.
+ printf (or similar) with %p is used to print a pointer value.

+ A byte of a pointer representation is accessed directly.

A byte of a pointer representation is written with fwrite.

They are said to expose such a storage instance. No other library function shall expose storage instances,
unless a callback function specified by the application that does so is called implicitly. NOTE Function pointer

arguments to functions qSOrt or atexit constitute such application callbacks.
This requirement implies that library functions that receive pointers do not leak information about these pointers into global
state.

4.3.2 Synthesizing operations

Valid pointer values are said to be synthesized if they originate from one of the following operations.
« An integer value has been converted to a pointer value.

. The representation of a pointer has been stored with a formatted input function (scanf or similar
functions with %p).

+ The representation of a pointer has been assembled by partial stores to representation bytes.
+ The representation of a pointer has been read, even partially, with fread.

For the first, the pointer value of such a synthesizing operation shall refer to a byte (or one-past) of a
live storage instance that previously had been exposed. The provenance of the result is then that storage
instance.

For the other three, the object representation shall be a representation of a valid address (or one past)
of a live storage instance that has been previously exposed. An Ivalue conversion of such a representation
shall return the corresponding pointer value and shall attribute that storage instance as the provenance to
the pointer value.

8 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

4.3.3 Copying operations

Storing a pointer value by assignment in an object representation does not expose the corresponding storage
instance. If the pointer value is not synthesized the resulting pointer representation is not synthesized.
Library functions that copy all bytes of an object representation of a pointer shall behave consistently
with respect to the abstract state machine’s notion of provenance. That is, if they copy the object represen-
tation of a pointer, they shall transfer provenance information consistently to the target. They do not expose
the corresponding storage instance and the written object representation is not synthesized if the source
representation is not synthesized.
NOTE Library functions that successfully transfer provenance without exposure are for example memcpy, realloc or
atomic_compare_exchange_weak.
Byte-wise copy in application code is special, here, because there is no tool to indicate a transfer of a pointer value including

provenance to the implementation. Therefore such a byte copy uses exposure, that is a pointer value that is copied byte-wise is
first exposed (because the bytes of the object representation are accessed) and then synthesized as before by lvalue conversion.

4.3.4 Pointer inquiry

Pointer inquiry by equality or relational operations does not expose storage instances. Two valid pointers
shall be equal if their abstract addresses are the same, two null pointers shall be equal, and a valid pointer
value and a null pointer shall be unequal. Relational operators between two valid pointer values shall be
such that the two pointers have the same provenance. The result is the relative position of the abstract
addresses.

In all other cases the behavior is undefined.
NOTE Note that provenance is not used for the equality relation on pointers; indeed two pointers that have different provenance

where one is the end address of one storage instance and the other is the start address of another can compare equal. In contrast to
that, using a relational operator with pointer operands of different provenance or where one pointer is null has undefined behavior.

4.3.5 Pointer arithmetic

Pointer arithmetic does not expose storage instances and a pointer result of such arithmetic is not synthe-
sized unless the source operand is synthesized.

Pointer arithmetic by addition or subtraction of integers shall preserve provenance and the resulting
pointer shall be within (or one-past) the corresponding storage instance.

Pointer difference shall only be applied to pointers with the same provenance and that refer to elements
within the same array.
NOTE The former is necessary because the one-past element of an array can be the first element of another storage instance that

just happens to follow in the address space. The latter is necessary because pointer difference is not accounted in bytes but in
number of elements of an array.

©ISO/IEC 2023 - All rights reserved 9



ISO/IEC TS 6010:2023(E)

Annex A
(informative)

Examples

A.1 General

This annex gives a sequence of small test programs, designed to illustrate the semantic design questions
and consequences of this Technical Specification as concisely as possible. Some are “natural” examples, of
desirable C code that are found in applications, but many are intentionally pathological or are corner cases,
to explore just where the defined /undefined-behavior boundary is.

ISO/IEC 9899:2018 is a prose document, and thus is not executable as a test oracle. To explore these
examples (and variations) interactively, one can use the Cerberus tool!®), This automatically computes the
sets of allowed behaviors for each, including the detection of undefined behavior in some cases.

Making the tests concise, to illustrate semantic questions, also means that most are not written to trigger
interesting behavior of translators. Moreover, conventional implementations cannot and do not report all
instances of undefined behavior. Hence, only in some cases is there anything to be learned from the experi-
mental compiler behavior. Clause A.7 gives an overview of the outcome of test runs on commonly available
implementations.

For any executable semantics or analysis tool, on the other hand, all the tests should have instructive
outcomes.

In addition to the three variants of the provenance-not-via-integer (PNVI) model that were introduced in
clause 4.2.1 - the main PNVI-ae-udi variant specified by this TS, and two others, a provenance-via-integers
(PVI) model is discussed. This is done to illustrate, by contrast, the exact design of, and motivation for,
PNVI-ae-udi.

A.2 Basic pointer provenance
A.2.1 Pointer values that are out-of-bounds by more than one

Consider the example below, where q is transiently (more than one-past) out of bounds but brought back
into bounds before being used for access. With ISO/IEC 9899:2018 6.5.6p8, constructing such a pointer
value is clearly stated to be undefined behavior. This can be captured using the provenance of the pointer
value to determine the relevant bounds. There are cases where such pointer arithmetic would go wrong
on some implementations (some now exotic), e.g. where pointer arithmetic subtraction overflows, or if the
transient value is not aligned and only aligned values are representable at the particular pointer type, or
for hardware that does bounds checking, or where pointer arithmetic might wrap at values less than the
obvious word size (e.g. “near” or “huge” pointers on the 8086 processor architecture).
// cheri_03_ii.c

1 |int x[2];

2 |int *p = &x[0];

3 |int *q = p + 11; // defined behaviour?
419 =9 - 10;

S5 |*xq = 1;

A.2.2 Inter-object pointer arithmetic

The example in 4.2 relied on guessing (and then checking) the offset between two storage instances. What if
one instead calculates the offset, with pointer subtraction — enables that to move between objects, as below?

// pointer_offset_from_ptr_subtraction_global xy.c

#include <stdio.h>
#include <string.h>
#include <stddef.h>
int x=1, y=2;
int main() {

int *p = &x;

U WN

10 ©ISO/IEC 2023 - All rights reserved


https://cerberus.cl.cam.ac.uk/cerberus?defacto/cheri_03_ii.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_from_ptr_subtraction_global_xy.c

ISO/IEC TS 6010:2023(E)

7 int *q = &y;

8 ptrdiff_t offset = q - p;

9 int *r = p + offset;

10 if (memecmp (&r, &g, sizeof(r)) == @) {
11 *r = 11; // is this free of UB?

12 printf (”y=%d *xq=%d *r=%d\n”,y,*q,*r);
13 3

14 |3}

In ISO/IEC 9899:2018, the pointer arithmetic q-p has undefined behavior as it is a pointer subtraction
between pointers to different objects. So the above program clearly has undefined behavior.

Even if the calculation were replaced with an educated guess about the offset value, in the model speci-
fied here either the expression p+offset (if of fset>1) or the access *r (if of fset==1) would have undefined
behavior.

A.2.3 Pointer equality comparison and provenance

This document reduces pointer equality tests to simple comparisons of the underlying abstract addresses,
thus in general to numeric comparisons. For the following example, assume that x and y have consecutive
abstract addresses.

// provenance_equality_global_xy.c

1 |#include <stdio.h>

2 |#include <string.h>

3 |int x=1, y=2;

4 1int main() {

5 int *p = &x + 1;

6 int *q = &y;

7 printf (”Addresses: p=%p g=%p\n”,(voidx*)p, (void*)q);
8 _Bool b = (p==q);

9 // can this be false even with identical addresses?
10 printf (”(p==q) = %s\n”, b?”true”:”false”);

11 return 0;

12 |}

Some existing implementations (including for example GCC 8.1 with -O2 optimization) sometimes re-
gards two pointers with the same address but different provenance as non-equal. This happens in some
circumstances but not others, e.g. if the test is pulled into a simple separate function, but not if in a separate
compilation unit.

So within the proposed model, pointer equality alone is not suitable to determine that two pointers
have different provenance. To the contrary, two pointers that have the same abstract address necessarily
compare equal even if they have different provenance. Thus, implementations as described above are not
conforming to this document.

A.3 Tracking provenance through integers

A different model of provenance also tracks provenance through integers and integer operations. It was
motivated by observing the behavior and documentation of some implementations foruintptr_t analogues
of the first test of A.2.

PVI: a semantics that tracks provenance via integer computation, associating a prove-
nance with all integer values (not just pointer values), preserving provenance through integer/
pointer casts, and making some particular choices for the provenance results of integer and pointer
+/- integer operations.

This model is only used here for the examples and in Annex B for semantics to clarify the differences to
the models introduced in clause 4.2.1.

©ISO/IEC 2023 - All rights reserved 11


https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_equality_global_xy.c

ISO/IEC TS 6010:2023(E)

A.4 Operations on pointer values and representations
A.4.1 Pointer/integer casts

ISO/IEC 9899:2018 (6.3.2.3) leaves conversions between pointer and integer types implementation-
defined, except for conversion of integer constant expressions of value 0 (which are null pointer constants)
and for the optional intptr_t and uintptr_t types, for which it guarantees that any valid pointer to void
may be converted and back, and that the result will compare equal to the original pointer. The PNVI-ae-udi
model specified in by this document supports the assignment and Ivalue conversion of *q for the following
example by reconstructing the original provenance (the other variants of PNVI-* and PVI introduced above
also support this example).

// provenance_roundtrip_via_intptr_t.c

1 |#include <stdio.h>
2 |#include <inttypes.h>
3 |int x=1;
4 |int main() {
5 int *p = &x;
6 intptr_t i = (intptr_t)p;
7 int *g = (int *)i;
8 *q = 11; // is this free of undefined behaviour?
9 printf (”*p=%d *q=%d\n”,*p,*q);
10 |}

A.4.2 Inter-object integer arithmetic

Below is a uintptr_t analogue of the example from clause A.2.2, attempting to move between objects with
uintptr_t arithmetic. In PNVI-*, this has defined behavior. For PNVI-plain: the integer values are pure
integers, and at the intx cast the value of ux+offset matches the address of y (live and of the right type), so
the resulting pointer value takes on the provenance of the y storage instance. For PNVI-ae and PNVI-ae-udi,
the storage instance for y is marked as exposed at the cast of &y to an integer, and so the above is likewise
permitted there.

// pointer_offset_from_int_subtraction_global_xy.c

1 |#include <stdio.h>

2 |#include <string.h>

3 |#include <stdint.h>

4 |#include <inttypes.h>

5 |int x=1, y=2;

6 |int main() {

7 uintptr_t ux = (uintptr_t)&x;

8 uintptr_t uy = (uintptr_t)&y;

9 uintptr_t offset = uy - ux;
10 printf (”Addresses: &x=%"PRIUPTR” &y=%"”PRIUPTR\
11 ” offset=%"PRIUPTR” \n”,ux,uy,offset);
12 int *p = (int *) (ux + offset);
13 int xqg = &y;
14 if (memcmp (&p, &g, sizeof(p)) == 0) {
15 *p = 11; // is this free of UB?
16 printf (”x=%d y=%d xp=%d *q=%d\n” ,x,y,*p,*q);
17 }
18 |}

In PVI, this has undefined behavior. First, the integer values of ux and uy have the provenances of the
storage instances of x and y respectively. Then of fset is a subtraction of two integer values with non-equal
single provenances; the result of such an operation is defined to have the empty provenance. Adding that
empty-provenance result to ux preserves the original x-storage instance provenance of the latter, as does
the cast to int*. Then the final *p=11 access is via a pointer value whose address is not consistent with its
provenance.

Similarly, in the following PNVI-* allows (contrary to current GCC/ICC 02) a uintptr_t analogue of the
first test of A.2. PVI forbids this test.

12 ©ISO/IEC 2023 - All rights reserved


https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_roundtrip_via_intptr_t.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_from_int_subtraction_global_xy.c

ISO/IEC TS 6010:2023(E)

OO U WN

e T = o e T ]
0O U WN R OV

// provenance_basic_using_uintptr_t_global_xy.c

#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
int x=1, y=2;
int main() {
uintptr_t ux = (uintptr_t)&x;
uintptr_t uy = (uintptr_t)&y;
uintptr_t offset = 4;
ux = ux + offset;
int *p = (int *)ux; // does this have UB?
int *q = &y;
printf (”Addresses: &x=%p p=%p &y=%" PRIXPTR ”\n”, (voidx)&x, (voidx)p, uy);
if (memcmp (&p, &q, sizeof(p)) == 0) {
*p = 11; // does this have undefined behaviour?
printf (”x=%d y=%d xp=%d *xgq=%d\n”, x, y, *p, *q);
3

}

Thus PVI permits more aggressive alias analysis for pointers computed via integers (though those may be

relatively uncommon), while PNVI-* will allow not just this test, which as written is probably not idiomatic
desirable C, but also the essentially identical XOR doubly linked list idiom, using only one pointer per node
by storing the XOR of two, as in the following.

0 JO0 Ul WN =

[ e e T T
NO Uk WwN B+ O VO

// pointer_offset_xor_global.c

#include <stdio.h>

#include <inttypes.h>

int x=1;

int y=2;

int main() {
int *p = &x;
int *xqg = &y;
uintptr_t i = (uintptr_t)p;
uintptr_t j = (uintptr_t)q;
uintptr_t k = i * j;
uintptr_t 1 = k * i;

int *r = (int *)1;

// are r and g now equivalent?

*r = 11; // does this have defined behaviour?

_Bool b = (r==q);

printf (”x=%i y=%i xr=%i (r==p)=%s\n”, x, y, *r, (b ? ”true” : ”false”));

There are other real-world but rare cases of inter-object arithmetic, e.g. in the implementations of Linux

and FreeBSD per-CPU variables, in fixing up pointers after a realloc, and in dynamic linking (though ar-
guably some of these are not between C abstract-machine objects). These are rare enough that it seems
reasonable to require additional source annotation, or some other mechanism, to prevent compilers implic-
itly assuming that uses of such pointers as undefined.

A.4.3 Pointer provenance for pointer bit manipulations

It is a common idiom in systems code to use otherwise unused bits of pointers: low-order bits for pointers
known to be aligned, and/or high-order bits beyond the addressable range. The example below assumes

+ that _Alignof(int)>= 4,
« that the cast of a pointer to uintptr_t effectively has the two low-order bits of the result as 0, and

+ that low-order bits are left untouched by casts in both directions between pointers and integers.

©ISO/IEC 2023 - All rights reserved 13


https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_basic_using_uintptr_t_global_xy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_offset_xor_global.c

ISO/IEC TS 6010:2023(E)

It casts a pointer to uintptr_t and back, using bitwise logical operations on the integer value to store a tag
bit and to mask it out before the back cast to the pointer.

Under the above assumptions, in PNVI-* the intermediate value of q will have empty provenance, but
the value of r used for the access will re-acquire the correct provenance at cast time. In PVI the binary
operations used here (combining an integer value that has some provenance ID with a pure integer) preserve
that provenance.

// provenance_tag_bits_via_uintptr_t_1.c

1 |#include <stdio.h>

2 |#include <stdint.h>

3 |int x=1;

4 1int main() {

5 int *p = &x;

6 // cast &x to an integer

7 uintptr_t i = (uintptr_t) p;

8 // set low-order bit

9 i =1/ 1u;

10 // cast back to a pointer

11 int *qg = (int *) i; // does this have UB?

12 // cast to integer and mask out low-order bits
13 uintptr_t j = ((uintptr_t)q) & ~((uintptr_t)3u);
14 // cast back to a pointer

15 int *r = (int *x) j;

16 // are r and p now equivalent?

17 *r = 11; // does this have UB?

18 _Bool b = (r==p); // is this true?

19 printf (”x=%i *r=%i (r==p)=%s\n”,x,xr,b?”t”:7f”);
20 |}

Note that in ISO/IEC 9899:2018 the result of the cast (intx)i is implementation-defined, per
6.3.2.3p{5,6} and 7.20.1.4, and only works here because of the strong assumptions made above. An analo-
gous example that only uses uintptr_t to store tagged pointer values and always mask such integer values
before back conversion

13 uintptr_t j = i & ~((uintptr_t)3u);

is guaranteed to work with the model specified in this document even without the third assumption in the
list above.

A.4.4 Algebraic properties of integer operations

The PVI definitions of the provenance results of integer operations, chosen to make example A.4.2 forbid-
den and example A.4.3 allowed, have an unfortunate consequence: they make those operations no longer
associative. Compare the examples below:

// pointer_arith_algebraic_properties_2_global.c

#include <stdio.h>

#include <inttypes.h>

int y[2]1, x[2];

int main() {
int *p=(intx) (((uintptr_t)&(x[0]1)) +

(CCuintptr_t)&(y[11))-((uintptr_t)&(yl[01))));

*p = 11; // is this free of undefined behaviour?
printf (”x[1]1=%d *xp=%d\n”,x[1],*p);
return 0;

O VWO IO UTd WN

[y

}

// pointer_arith_algebraic_properties_3_global.c

#include <stdio.h>
#include <inttypes.h>
int y[2], x[2];
int main() {
int *p=(intx*)(
((Cuintptr_t)&(x[01)) + ((uintptr_t)&(y[11)))

U WN

14 ©ISO/IEC 2023 - All rights reserved



https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_tag_bits_via_uintptr_t_1.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_arith_algebraic_properties_2_global.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_arith_algebraic_properties_3_global.c

ISO/IEC TS 6010:2023(E)

-((uintptr_t)&(yl[0l)) );
*p = 11; // is this free of undefined behaviour?
9 //(equivalent to the &x[0]+(&(y[1])-&(y[0@])) version?)
10 printf (”x[1]=%d *p=%d\n”,x[1],*p);
11 return 0;

The latter has undefined behavior in PVI. The PNVI-ae-udi model specified by this document and the other
PNVI-* models do not suffer from this problem.

A.4.5 Copying pointer values with memcpy

The presented model allows this and makes the results usable for accessing memory, since memcpy and sim-
ilar functions have to preserve the original provenance.
// pointer_copy_memcpy.c

1 [#include <stdio.h>

2 |#include <string.h>

3 |int x=1;

4 1int main() {

5 int *p = &x;

6 int *q;

7 memcpy (&q, &p, sizeof p);

8 *xq = 11; // is this free of undefined behaviour?
9 printf (”*p=%d *q=%d\n” ,*p,*q);

10 |}

A.4.6 Copying pointer values bytewise, with user-memcpy

One of the key aspects of C is that it supports manipulation of object representations, e.g. as in the following
naive user implementation of a memcpy-like function, which constructs a pointer value from copied bytes.
// pointer_copy_user_dataflow_direct_bytewise.c

1 |#include <stdio.h>

2 |#include <string.h>

3 |int x=1;

4 |void user_memcpy(unsigned charx dest,

5 unsigned char *src, size_t n) {
6 while (n > 0) ({

7 *dest = *xsrc;

8 src += 1; dest += 1; n -= 1;

9 3

10 |}

11 |int main() {
12 int *p = &x;
13 int *q;

14 user_memcpy ((unsigned charx*)&q,

15 (unsigned charx*)&p, sizeof(int *));
16 *q = 11; // is this free of undefined behaviour?
17 printf (”*p=%d *q=%d\n”,*p,*q);

18 |}

The presented PNVI-plain model makes this valid: the representation bytes have no provenance, but when
reading a pointer value from the copied memory, the read will be from multiple representation-byte writes.
The same semantics for such reads are the same as for integer-to-pointer casts: checking at read-time that
the address is within a live object, and giving the result the corresponding provenance.

PNVI-ae and PNVI-ae-udi, as specified by this document, mark storage instances as exposed whenever
representation bytes of pointers to them are read, and use the same semantics for reads of pointer values
from representation-byte writes as for integer-to-pointer casts. This means that integer-to-pointer casts
become permitted for all storage instances for which a pointer has been copied via user_memcpy.

PVI makes user-memcpy legal by regarding each byte (as an integer value) as having the provenance of
the original pointer, and the result pointer, being composed of representation bytes of which at least one
has that provenance and none have a conflicting provenance, as having the same.

©ISO/IEC 2023 - All rights reserved 15


https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_memcpy.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_user_dataflow_direct_bytewise.c

ISO/IEC TS 6010:2023(E)

A.4.7 Pointer provenance for bytewise pointer representation manipulations

To examine the possible semantics for pointer representation bytes more closely, especially for PNVI-ae and
PNVI-ae-udi, consider the following.

// provenance_tag_bits_via_repr_byte_1.c

1 |#include <assert.h>

2 |#include <stdio.h>

3 |#include <stdint.h>

4 |int x=1;

5 |int main() {

6 int *p=&x, *q=8&x;

7 // read low-order (little endian) representation byte of p
8 unsigned char i = x(unsigned charx*)&p;

9 // check the bottom two bits of an int* are not used

10 assert (_Alignof (int) >= 4);

11 assert((i & 3u) == 0Qu);

12 // set the low-order bit of the byte

13 i =1/ 1u;

14 // write the representation byte back

15 *(unsigned char*)&p = i;

16 // [p might be passed around or copied here]

17 // clear the low-order bits again

18 *(unsigned char*)&p = (*(unsigned charx)&p) & ~((unsigned char)3u);
19 // are p and g now equivalent?
20 *p = 11; // does this have defined behaviour?
21 _Bool b = (p==q); // is this true?
22 printf (”x=%i *p=%i (p==q)=%s\n”,x,*p,b?”true”:”false”);
23 |}

As in A.4.3, this manipulates the low-order bits of a pointer value, but now it does so by manipulating one
of its representation bytes instead of by casting to uintptr_t and back. In PNVI-plain and PVI this will
just work, respectively reconstructing the original provenance and tracking it through the (changed and
unchanged) integer bytes.

In PNVI-ae and PNVI-ae-udi, the storage instance of x is regarded as having been exposed by the read
of the low-order representation byte of the pointer object p (with non-empty provenance in its abstract
bytes in memory). Then the last reads of the value of p, from a combination of the original p=&x write and
later integer byte writes, use the same semantics as integer-to-pointer casts, and thus recreate the original
provenance.

A.4.8 Copying pointer values via control flow

Consider the exotic versions of memcpy in the two following examples that make a control-flow choice on the
value of each bit or each byte, reconstructing each with constants in each control-flow branch.

// pointer_copy_user_ctrlflow_bytewise_abbrev.c

1 [#include <stdio.h>

2 |#include <string.h>

3 |#include <assert.h>

4 |#include <limits.h>

5 |int x=1;

6 |unsigned char control_flow_copy(unsigned char c) {
7 assert (UCHAR_MAX==255);

8 switch (c¢) {

9 case 0: return(9);

10 case 1: return(1);

11 case 2: return(2);

12 -

13 case 255: return(255);

14 }

15 |}

16 | void user_memcpy2(unsigned char* dest, unsigned char #*src, size_t n) {
17 while (n > 0) {

18 *dest = control_flow_copy(*src);

16 ©ISO/IEC 2023 - All rights reserved



https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_tag_bits_via_repr_byte_1.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_user_ctrlflow_bytewise_abbrev.c

ISO/IEC TS 6010:2023(E)

19
20
21
22
23
24
25
26
27
28
29
30

0 JO0 Ul WN

src += 1;
dest += 1;
n -=1;
3
3
int main() {
int *p = &x;
int *q;
user_memcpy2 ((unsigned charx)&q, (unsigned charx)&p, sizeof(p));
*q = 11; // does this have undefined behaviour?
printf (”*p=%d *q=%d\n”, xp, *q);
3
// pointer_copy_user_ctrlflow_bitwise.c
#include <stdio.h>
#include <inttypes.h>
#include <limits.h>
int x=1;
int main() {
int *p = &x;
uintptr_t i = (uintptr_t)p;
int uintptr_t_width = sizeof(uintptr_t) * CHAR_BIT;
uintptr_t bit, j;
int k;
j=0;
for (k=0; k<uintptr_t_width; k++) {
bit = (i & (((uintptr_t)1) << k)) >> k;
if (bit == 1)
j =3 | (Cuintptr_t)1 << k);
else
j=3;
3
int *xqg = (int =*)j;
*q = 11; // is this free of undefined behaviour?
printf (”*p=%d *q=%d\n”,*p,*q);
3

In all PNVI variants both examples are valid. In particular, for the model proposed in this document the first
exposes the storage instance of the copied pointer value by representation-byte reads and the second by a
pointer-to-integer cast.
For PVI, both examples have empty-provenance pointer values and hence the behavior is undefined.

A.4.9 Pointer provenance and union type punning

Pointer values can also be constructed in C by type punning, e.g. writing a pointer-type union member, read-
ingitasauintptr_t union member, and then casting back to a pointer type. The following example assumes
that the object representation of the pointer and the object representation of the result of the cast to integer

are identical.

// provenance_union_punning_3_global.c

This property is not guaranteed by ISO/IEC 9899:2018, but holds for many implementations.

0O U WN

<stdio.h>
<string.h>
<inttypes.h>

#include
#include
#include
int x=1;
typedef union { uintptr_t ui;
int main() {

int *up; } un;

un u;
int *p = &x;

u.up = p;

uintptr_t i = u.ui;

int *q = (int*)i;

*q = 11; // does this have UB?

printf (”x=%d *p=%d xq=%d\n”,x,*p,*q);
return 0;

©ISO/IEC 2023 - All rights reserved

17



https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_copy_user_ctrlflow_bitwise.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_union_punning_3_global.c

ISO/IEC TS 6010:2023(E)

For PNVI-ae and PNVI-ae-udi, the same semantics as for representation-byte reads also makes this case

valid: the storage instance is exposed by the read of the representation bytes by the non-pointer-type read.
The integer-to-pointer cast then recreates the provenance of x.

A.4.10 Pointer provenance via I0

Consider now pointer provenance flowing via I0, e.g. writing the address of an object to a string or stream
and reading it back in. There are three possibilities: one using fprintf/fscanf and the %p format, one using
fwrite/fread on the pointer representation bytes, and one converting the pointer to and from uintptr_t
and using fprintf/fscanf on that value with the PRIUPTR/SCNuPTR formats. The following examples corre-
spond to these three cases.

// provenance_via_io_percentp_global.c

OO U WN -

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>

int x=1;
int main() {
int *p = &x;

FILE *f = fopen(”provenance_via_io_percentp_global.tmp”,”w+b”);
printf (”Addresses: p=%p\n”, (voidx*)p);
// print pointer address to a file
fprintf (f, ”%p\n”, (void=*)p);
rewind(f);

void *xrv;

int n = fscanf(f, ”"%p\n”, &rv);

int *xr = (int *)rv;

if (n !'= 1) exit(EXIT_FAILURE);

printf (”Addresses: r=%p\n”, (voidx)r);
// are r and p now equivalent?

*r=12; // is this free of undefined behaviour?
_Bool b1 = (r==p); // do they compare equal?
_Bool b2 = (@0==memcmp (&r,&p,sizeof(r))); // same representations?

printf (”x=%i *r=%i bl1=%s b2=%s\n”, x, *r, bl ? ”true” : ”false”, b2 ? ”true” : ”false”)

’

// provenance_via_io_bytewise_global.c

00O U WN

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
int x=1;
int main() {
int *p = &x;
FILE *xf = fopen(”provenance_via_io_bytewise_global.tmp”, "w+b”);
printf (”Addresses: p=%p\n”, (voidx)p);
// output pointer address to a file
int nw = fwrite(&p, 1, sizeof(int x), f);
if (nw != sizeof (int =*)) exit(EXIT_FAILURE);
rewind(f);
int *r;
int nr = fread(&r, 1, sizeof(int x), f);
if (nr != sizeof(int %)) exit (EXIT_FAILURE);
printf (”Addresses: r=%p\n”, (voidx)r);
// are r and p now equivalent?

*r=12; // is this free of undefined behaviour?
_Bool b1 = (r==p); // do they compare equal?
_Bool b2 = (0==memcmp (&r,&p,sizeof (r))); //same representations?

printf (”x=%i *r=%i bl=%s b2=%s\n”, x, *r, bl ? ”true” : ”false”, b2 ? ”true” : ”false”)

’

18

©ISO/IEC 2023 - All rights reserved



https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_via_io_percentp_global.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_via_io_bytewise_global.c

ISO/IEC TS 6010:2023(E)

// provenance_via_io_uintptr_t_global.c

1 |#include <stdio.h>

2 |#include <stdlib.h>

3 |#include <string.h>

4 |#include <inttypes.h>

5 |int x=1;

6 |int main() {

7 int *p = &x;

8 uintptr_t i = (uintptr_t)p;

9 FILE *f = fopen(”provenance_via_io_uintptr_t_global.tmp”, ”w+b”);
10 printf (”Addresses: i=%”"PRIuUPTR” \n”, i);

11 // print pointer address to a file

12 fprintf(f, ”%” PRIUPTR ”\n”, i);

13 rewind(f);

14 uintptr_t k;

15 // read a pointer address from the file

16 int n = fscanf(f, ”%” SCNuPTR ”\n”,&k);

17 if (n != 1) exit(EXIT_FAILURE);

18 printf (”Addresses: k=%” PRIUPTR ”\n”,k);

19 int *r = (int *)k;

20 // are r and g now equivalent?

21 *r=12; // is this free of undefined behaviour?
22 _Bool b1 = (r==p); // do they compare equal?
23 _Bool b2 = (0==memcmp (&r,&p,sizeof(r))); //same representations?
24 printf (”x=%i *r=%i bl1=%s b2=%s\n”, x, *r, bl ? ”true” : ”false”, b2 ? ”true” : ”false”)
25 |}

Somewhat exotic though they are, these idioms are used in practice: in graphics code for serialization/de-
serialization (using %p), in xlib (using SCNuPTR), and in debuggers.

For fprintf and fscanf with the %p specifier, ISO/IEC 9899:2018 clearly permits this and the pointer
value that is read is the same as the original one.

For the provenance in PNVI-ae and PNVI-ae-udi, the associated storage instance is exposed by the output,
and the same semantics as for integer-to-pointer casts is used to attribute the same provenance to the input.

If the pointer value transits through uintptr_t or through representation-bytes, the storage instance
are exposed the same.

A.5 Implications of provenance semantics for optimizations

In an ideal world, a memory object semantics for C would be consistent with all existing mainstream code
usage and compiler behavior. In practice, it appears that these have diverged, making some compromise
required. As already stated above, the PNVI-* semantics make some currently observed behavior on some
implementations unsound, though at least some already regard that behavior as an unfixed bug, due to the
lack of integer/pointer type distinctions in the internal representation. The following sections consider
some other important cases, by example.

A.5.1 Optimization based on equality tests

All PNVI-* and PVI models let p==q hold for some pointer values p and q in cases where interchanging them
would in fact have undefined behavior. In the context of the LLVM intermediate representation!”! this can
limit optimizations such as global value numbering based on pointer equality tests. PVI suffers from this
problem also for integer comparisons (hence much more severely), wherever the integers might have prove-
nance information and are then eventually cast back to a pointer.

A.5.2 Can afunction parameter alias local variables of the function?

An access through a function parameter to a local variable inhibits a number of optimizations, therefore one
goal of this document is to mark such an access as undefined behavior. Consider first the example below,

©ISO/IEC 2023 - All rights reserved 19


https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_via_io_uintptr_t_global.c

ISO/IEC TS 6010:2023(E)

where main() guesses the address of f()’s local variable, passing it in as a pointer, and f () checks it before
using it for an access. Here some implementations optimize away the if and the store operation *p=7, even
in executions where the ADDRESS_PFI_1PG constant is the same as the abstract address of j. A goal of the
specification in this document is to make such an optimization valid, so, in a situation where equality holds, it
deems this program to have undefined behavior. In other words, programs may not rely on implementation
facts about the allocation addresses of C variables.

// pointer_from_integer_lpg.c

1 |#include <stdio.h>

2 |#include <stdint.h>

3 |#include ”charon_address_guesses.h”
4 |void f(int *p) {

5 int j=5;

6 if (p==&j)

7 *p=7;

8 printf(”j=%d &j=%p\n”,j,(void*)&j);
9 |2

10 |int main() ¢

11 uintptr_t i = ADDRESS_PFI_1PG;

12 int *p = (int*)i;

13 f(p);

14 |}

In the PNVI-* semantics as proposed by this document the behavior is undefined because at the point of
the (intx)i castthe j storage instance does not yet exist, so the cast gives a pointer with empty provenance;
any execution that goes into the if would thus be undefined. The PVI semantics has undefined behavior for
the simple reason that j is created with the empty provenance, and hence p inherits that.

Varying to do the cast to intx in f() instead of main(), passing in an integer i instead of a pointer, this
becomes defined in PNVI-plain, as j exists at the point of the (intx)i cast. But in PNVI-ae and PNVI-ae-udi,
the storage instance of j is not exposed, so the cast to int* gives a pointer with empty provenance. The
access via this pointer is thus undefined and optimizations as indicated above are thus valid.

// pointer_from_integer_1lig.c

1 |#include <stdio.h>

2 |#include <stdint.h>

3 |#include ”charon_address_guesses.h”
4 |void f(uintptr_t i) ¢

5 int j=5;

6 int *p = (int*)i;

7 if (p==&j)

8 *p=7;

9 printf(”j=%d &j=%p\n”,j,(void*)&j);
10 |}

11 |int main() {

12 uintptr_t j = ADDRESS_PFI_1IG;

13 f(3);

14 |}

In PVI, this example also has undefined behavior.

A.5.3 Variants of integer to pointer conversions

Note that both of the previous examples take the address of j to guard their xp=7 accesses. Removing the
conditional guards gives the two tests below, for which this document aims that that behavior is undefined
if u holds the abstract address of j:

// pointer_from_integer_1p.c

#include <stdio.h>
#include <stdint.h>
#include ”charon_address_guesses.h”
void f(int *p) {
int j=5;
*p=7;
printf (”j=%d\n”,j);

NON U WN

20 ©ISO/IEC 2023 - All rights reserved



https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1pg.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ig.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1p.c

ISO/IEC TS 6010:2023(E)

—

10
11
12
13

0 JO Ul WN

— e
W N = O VO

}

int main() {
uintptr_t u = ADDRESS_PFI_1P;
int *p = (int*)u;
f(p);

3

// pointer_from_integer_li.c

#include <stdio.h>
#include <stdint.h>
#include ”charon_address_guesses.h”
void f(uintptr_t i) {
int j=5;
int *p = (int*)i;
*p=7;

printf (”j=%d\n”,j);

3

int main() ¢
uintptr_t u = ADDRESS_PFI_1I;
flu);

}

Both are undefined in PVI for the same reason as before, and the first is forbidden in PNVI-*, again be-

cause j does not exist at the cast point. The second is undefined as intended for PNVI-ae and PNVI-ae-udi
because the storage instance of j is never exposed.

To change the second example such that it is valid when u holds the abstract address of j the storage

instance has to be exposed, for example by taking the address:

OO U WN

— e
B W N~ O Vo

// pointer_from_integer_lie.c

#include <stdio.h>
#include <stdint.h>
#include ”charon_address_guesses.h”
void f(uintptr_t i) {
int j=5;
uintptr_t k = (uintptr_t)&j;
int *p = (int*)i;
*xp=7;
printf (”j=%d\n”,j);
3
int main() {
uintptr_t u = ADDRESS_PFI_11I;
flu);
3

A.5.4 Access local variables of a parent function call

Similar to the above, access to a local variable from a called function inhibits a number of optimizations,
therefore one goal of this document is to mark such an access as undefined behavior. In executions where
the ADDRESS_PFI_2 constant is the abstract address of j, in PVI the example below again has undefined
behavior for the simple reason that p has the empty provenance. The same holds for PNVI-ae and PNVI-ae-
udi, because j is never exposed.

// pointer_from_integer_2.c

O 0 00O Ul b WN =

#include <stdio.h>
#include <stdint.h>
#include ”charon_address_guesses.h”
void f() {
uintptr_t i=ADDRESS_PFI_2;
int *xp = (int*)i;
*p=7;
}
int main() {
int j=5;

©ISO/IEC 2023 - All rights reserved 21



https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1i.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_1ie.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2.c

ISO/IEC TS 6010:2023(E)

11 fO;
12 printf(”j=%d\n”,j);
13 |}

In contrast to that, in PNVI-ae and PNVI-ae-udi the following program has defined behavior, because the

j storage instance is exposed by the (uinptr_t)&j cast.
// pointer_from_integer_2g.c

1 |#include <stdio.h>

2 |#include <stdint.h>

3 |#include ”charon_address_guesses.h”
4 |void f() {

5 uintptr_t i=ADDRESS_PFI_2G;

6 int *p = (int*)i;

7 *p=7;

8 |32

9 |int main() {

10 int j=5;

11 if ((uintptr_t)&j == ADDRESS_PFI_2G)
12 fO;

13 printf (”j=%d &j=%p\n”,j,(void*)&j);
14 |}

This does not match the behavior of some implementations that do not yet follow the specification of
this document. For example, current Clang at optimization levels 02 or 03, assumes that j does not alias
and prints j=5 unconditionally.

A.5.5 Possible loss of exposure information between translation paths

The PVNI-ae-udi model specified by this document has the property of identifying undefined behaviors
without requiring examination of multiple executions. It has the disadvantage that whether a storage in-
stance has been exposed is a fragile syntactic property, and is e.g. not preserved by dead code elimination.
Here, examples like the one below [Richard Smith, personal communication], in which the code correctly
guesses the abstract address of a storage instance and adds that to a zero-valued quantity have defined

behavior.
// provenance_lost_escape_1.c

1 |#include <stdio.h>

2 |#include <string.h>

3 |#include <stdint.h>

4 |#include ”charon_address_guesses.h”

5 |int x=1; // assume allocation ID @1, at ADDR_PLE_1

6 |int main() {

7 int *p = &x;

8 uintptr_t i1 = (intptr_t)p; // (@1,ADDR_PLE_1)
9 uintptr_t i2 = i1 & 0x0QQ0QQQOFFFFFFFF;//

10 uintptr_t i3 = i2 & OxFFFFFFFF00000000;// (@1,0x0)

11 uintptr_t i4 = i3 + ADDR_PLE_1; // (@1 ,ADDR_PLE_1)
12 int *qg = (int x)i4;

13 printf (”Addresses: p=%p\n”,(voidx)p);

14 if (memcmp (&i1, &i4, sizeof(il)) == 0) {

15 *q = 11; // does this have defined behaviour?

16 printf (”x=%d *p=%d *q=%d\n”,x,*p,*q);

17 }

18 |}

This code is valid for the model proposed here, because the address of x is both taken and cast to an
integer type. However, implementations may perform algebraic optimizations before alias analysis, and
those optimizations may erase the &x operation and subsequent cast, replacing it and all the calculation of
i3 by zero. But then alias analysis is not unable to see that x has been exposed and thus that it is valid that
*Q accesses X.

If these semantics were used for alias analysis in an intermediate language after such optimization, this
would require the optimization passes to record which addresses have been taken and cast to integer (or
otherwise exposed) in eliminated code, to be explicitly passed in to alias analysis.

22 ©ISO/IEC 2023 - All rights reserved


https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_integer_2g.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_lost_escape_1.c

ISO/IEC TS 6010:2023(E)

A.5.6 One-pastinteger-to-pointer casts

PNVI-ae-udi is designed to permit a cast of a one-past pointer to integer and back to recover the original
provenance, replacing the integer-to-pointer semantic check that xq is properly within the footprint of the
storage instance by a check that it is properly within or one-past.

// provenance_roundtrip_via_intptr_t_onepast.c

0O U WN

=
N = O O

printf (”*p=%d *q=%d\n”,xp,*q);

#include <stdio.h>
#include <inttypes.h>
int x=1;
int main() {
int *p = &x;
p=p+1;
intptr_t i = (intptr_t)p;
int *g = (int *)1i;
q=q-1;
*q = 11; // is this free of undefined behaviour?

The PNVI-ae-udi approach specified in this document is to leave the provenance of pointer values re-
sulting from such casts ambiguous (see 4.2.6) until the first operation (e.g. an access, pointer arithmetic, or
pointer relational comparison) that disambiguates them. This makes the following two examples, each of
which uses the result of the cast in one consistent way, well defined:

// pointer_from_int_disambiguation_1.c

1 |#include <stdio.h>

2 |#include <string.h>

3 |#include <stdint.h>

4 |#include <inttypes.h>

5 |int y=2, x=1;

6 |int main() {

7 int *p = &x+1;

8 int *q = &y;

9 uintptr_t i = (uintptr_t)p;

10 uintptr_t j = (uintptr_t)q;

11 if (memcmp (&p, &g, sizeof(p))
{

12 int *xr = (int =*)i;

13 *r=11; // is this free of UB?

14 printf (”x=%d y=%d xp=%d *q=%d *r
=%d\n” X,y ,*p,*q,*r);

15 }

16 |3}

= O OV 00O U b WN =

—

13
14
15

16
17

// pointer_from_int_disambiguation_2.c

#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <inttypes.h>
int y=2, x=1;
int main() {
int *xp = &x+1;
int *q = &y;
uintptr_t i = (uintptr_t)p;
uintptr_t j = (uintptr_t)q;

if (memcmp(&p, &q, sizeof(p)) == 0)

{
int *r = (int *)i;
r=r-1; // is this free of UB?
*r=11; // and this?
printf (”x=%d y=%d *p=%d *q=%d *r
=%d\n” ,x,y,*p,*q,*r);

while making the behavior of the following, which tries to use the result of the cast to access both objects,

undefined.
// pointer_from_int_disambiguation_3.c
1 [#include <stdio.h>
2 |#include <string.h>
3 |#include <stdint.h>
4 |#include <inttypes.h>
5 |int y=2, x=1;
6 |int main() {
7 int *p = &x+1;
8 int *q = &y;
9 uintptr_t i = (uintptr_t)p;
10 uintptr_t j = (uintptr_t)q;
11 if (memcmp (&p, &g, sizeof(p)) ==
12 int *r = (int *)i;
13 *xr=11;
14 r=r-1; // is this free of UB?
15 *r=12; // and this?

©ISO/IEC 2023 - All rights reserved

23



https://cerberus.cl.cam.ac.uk/cerberus?defacto/provenance_roundtrip_via_intptr_t_onepast.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_int_disambiguation_1.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_int_disambiguation_2.c
https://cerberus.cl.cam.ac.uk/cerberus?defacto/pointer_from_int_disambiguation_3.c

ISO/IEC TS 6010:2023(E)

16
17
18 |3

printf (”x=%d y=%d xp=%d *q=%d *r=%d\n” ,x,y,*p,*q,*r);

3

In this, the assignment *r=11 will first disambiguate the provenance of the pointer value in one way
(choosing the storage instance of y). Then the pointer arithmetic of r-1 steps out-of-bounds before the ad-
dress range of that storage instance and the operation thus has undefined behavior.

A.6 Testing the example behavior in Cerberus

Executable versions of the PNVI-plain, PNVI-ae, and PNVI-ae-udi models have been implemented in

Cerberus!

9,10, 8

I closely following the detailed semantics of Annex B. This makes it possible to interactively

or exhaustively explore the behavior of the examples, confirming that they are allowed or not as intended.

intended behaviour

observed behaviour
Cerberus (decreasing allocator)

test family test PNVI-plain PNVI-ae PNVI-ae-udi PNVI-plain PNVI-ae PNVI-ae-udi
provenance_basic_global_xy.c not triggered
provenance_basic_global_yx.c UB (line 9)

1 X uB N
provenance_basic_auto_xy.c not triggered
provenance_basic_auto_yx.c UB (line 9)

2 cheri_03_ii.c uB UB (except with permissive_pointer_arith switch)
pointer_offset_from_ptr_subtraction_global_xy.c X X
pointer_offset_from_ptr_subtraction_global_yx.c . . UB (pointer subtraction)

3 . . UB (pointer subtraction) Or
po!nter_offset_from_ptr_subtract!on_auto_xy.c UB (out-of-bound store with permissive_pointer_arith switch)
pointer_offset_from_ptr_subtraction_auto_yx.c
provenance_equality_global_xy.c not triggered
provenance_equality_global_yx.c defined (ND except with strict pointer equality switch)
provenance_equality_auto_xy.c . not triggered

4 provenance_equality_auto_yx.c defined, nondet defined (ND except with strict pointer equality switch)
provenance_equality_global_fn_xy.c not triggered
provenance_equality_global_fn_yx.c defined (ND except with strict pointer equality switch)

5 pro _roundtrip_via_intptr_t.c defined defined
provenance_basic_using_uintptr_t_global_xy.c not triggered
provenance_basic_using_uintptr_t_global_yx.c X defined

6 . . . defined )
provenance_basic_using_uintptr_t_auto_xy.c not triggered
provenance_basic_using_uintptr_t_auto_yx.c defined
pointer_offset_from_int_subtraction_global_xy.c defined

7 pointer_offset_from_int_subtraction_global_yx.c defined defined
pointer_offset_from_int_subtraction_auto_xy.c defined
pointer_offset_from_int_subtraction_auto_yx.c defined
pointer_offset_xor_global.c X defined

8 pointer_offset_xor_auto.c defined defined

9 provenance_tag_bits_via_uintptr_t_1.c defined defined

10 pointer_arith_algebraic_properties_2_global.c defined defined

1" pointer_arith_algebraic_properties_3_global.c defined defined

12 pointer_copy_memcpy.c defined defined

13 pointer_copy_user_dataflow_direct_bytewise.c defined defined

13 pro _tag_bits_via_repr_byte_1.c defined defined

15 pointer_copy_user_ctriflow_bytewise.c defined defined

16 pointer_copy_user_ctriflow_bitwise.c defined defined
provenance_equality_uintptr_t_global_xy.c not triggered
provenance_equality_uintptr_t_global_yx.c X defined (true)

17 ) ) defined :
provenance_equality_uintptr_t_auto_xy.c not triggered
provenance_equality_uintptr_t_auto_yx.c defined (true)
provenance_union_punning_2_global_xy.c defined UB (line 16, deref) | UB (line 16, store) not triggered

18 provenance_union_punning_2_global_yx.c defined UB (line 16, deref) | UB (line 16, store) defined \ UB (line 16, deref) \ UB (line 16, store)
provenance_union_punning_2_auto_xy.c defined UB (line 16, deref) | UB (line 16, store) not triggered
provenance_union_punning_2_auto_yx.c defined UB (line 16, deref) | UB (line 16, store) defined \ UB (line 16, deref) \ UB (line 16, store)

19 pro _union_punning_3_global.c defined defined
provenance_via_io_percentp_global.c

20 provenance_via_io_bytewise_global.c filesystem and scanf() are not currently supported by Cerberus
provenance_via_io_uintptr_t_global.c
pointer_from_integer_1pg.c UB (line 7) UB in one exec (line 7)
pointer_from_integer_1ig.c defined (j=7) | UB (line 8) defined (j=7) | UB (line 8)
pointer_from_integer_1p.c UB (line 6) UB (line 6)

1 pointer_from_integer_1i.c defined (j=7) | UB (line 7) defined (j=7) | UB (line 7)
pointer_from_integer_1ie.c defined (j = 7) defined (j=7)
pointer_from_integer_2.c defined (j=7) | UB (line 7) defined (j=7) | UB (line 7)
pointer_from_integer_2g.c defined (j = 7) defined (j = 7)
pro _lost_escape_1.c defined defined

22 pro _roundtrip_via_intptr_t_onepast.c UB (line 10) I defined UB (line 10) I defined
pointer_from_int_disambiguation_1.c _ defined (y = 11)
pointer_from_int_disambiguation_1_xy.c defined (y = 11) not triggered

23 poinfer_from_int_d‘!sambiguat!on_z.c UB (line 14) defined UB (line 14) . \ defined (x = 11)
P ~_from_int_ 1ation_2_xy.c not triggered
pointer_from_int_di: iguation_3.c . . UB (line 15)
pointer_from_int_disambiguation_3_xy.c UB (line 15) UB (line 15) not triggered \

(bold = tests mentioned in the document)

green = Cerberus behaviour matches intent

blue = Cerberus behaviour matches intent (witch permissive_pointer_arith switch)
grey = Cerberus’ allocator doesn'’t trigger the interesting behaviour

A.7 Testing the example behavior in mainstream C implementations

Some tests rely on address coincidences for the interesting execution; for these sometimes multiple variants
were included, tuned to the allocation behavior in the implementations that were considered. Where this
has not been done, some of the experimental data is not meaningful.

24

©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

The detailed data is available via the Cerberus tool®), and summarized in the table below.

Compilers
Observed behaviour (compilers), sound w.r.t PNVI-*? (relying on UB or ND?)
gcc-8.3 clang-7.0.1 icc-19
test family test PNVI-plain PNVI-ae PNVI-ae-udi PNVI-plain PNVl-ae PNVI-ae-udi PNVI-plain PNVl-ae PNVI-ae-udi
lprovenance_basic_global_xy.c y (n) y (n) y (y for 02+)

1 provenance_basic_global_yx.c y (y for O2+) not triggered not triggered
provenance_basic_auto_xy.c y(n) y(n) y (y for O2+)
lprovenance_basic_auto_yx.c y (n) y (n) y (y for O2+)

2 cheri_03_ii.c y (n) y (n) y (n)
pointer_offset_from_ptr_subtraction_global_xy.c y(n)

3 pointer_offset_from_ptr_subtraction_global_yx.c v(n) v () y (n)
pointer_offset_from_ptr_subtraction_auto_xy.c y (y for O2+)
pointer_offset_from_ptr_subtraction_auto_yx.c y (y for O2+)
lprovenance_equality_global_xy.c y (n)
lprovenance_equality_global_yx.c y (y for O2+)

T i e e o o

> ¢ _auto_yx. y (n)
lprovenance_equality_global_fn_xy.c y(n)
lprovenance_equality_global_fn_yx.c y (y for O2+)

5 lprovenance_roundtrip_via_intptr_t.c y (n) y (n) y (n)
lprovenance_basic_using_uintptr_t_global_xy.c y (n) y (n) n(y)

6 provenance_basic_using_uintptr_t_global_yx.c n(y) not triggered not triggered
lprovenance_basic_using_uintptr_t_auto_xy.c y(n) not triggered n(y)
lprovenance_basic_using_uintptr_t_auto_yx.c y (n) y (n) n (y)
pointer_offset_from_int_subtraction_global_xy.c

7 pointer_offset_from_int_subtraction_global_yx.c
pointer_offset_from_int_subtraction_auto_xy.c y(n) vy (") y(n)
pointer_offset_from_int_subtraction_auto_yx.c
pointer_offset_xor_global.c

8 pointer_offset_xor_auto.c y(n) y(n) y(n)

9 lprovenance_tag_bits_via_uintptr_t 1.c y (n) y (n) y (n)

10 pointer_arith_: ic_properties_2_global.c y (n) y (n) y (n)

11 pointer_arith_: ic_properties_3_global.c y (n) y (n) y (n)

12 pointer_copy_| .C y (n) y (n) y (n)

13 pointer_copy_user_t _direct_bytewise.c y (n) y (n) y (n)

13 lprovenance_tag_bits_via_repr_byte_1.c y (n) y (n) y (n)

15 pointer_copy_user_ctriflow_bytewise.c y (n) y (n) y (n)

16 pointer_copy_user_ctriflow_bitwise.c y (n) y (n) y (n)
provenance_equality_uintptr_t_global_xy.c
lprovenance_equality_uintptr_t_global_yx.c

7 provenance_equality_uintptr_t_auto_xy.c y () y(n) vy ()
provenance_equality_uintptr_t_auto_yx.c
provenance_union_punning_2_global_xy.c (n) y (n) n(y) y (y for O2+)

18 provenance_union_punning_2_global_yx.c n(y) y (y for O2+) not triggered not triggered
lprovenance_union_punning_2_auto_xy.c y (n) n(y) y (y for 02+)
lprovenance_union_punning_2_auto_yx.c y (n) ym n(y) y (y for 02+)

19 pr _union_| _3_global.c y (n) y (n) y (n)
lprovenance_via_io_percentp_global.c

20 provenance_via_io_bytewise_global.c NO OPT NO OPT NO OPT
lprovenance_via_io_uintptr_t_global.c
pointer_from_integer_1pg.c y (y for O0+) y (y for 02+) y (y for O2+)
pointer_from_integer_1ig.c n(y) y (y for 02+) n(y) y (y for O2+) n(y) y (y for O2+)
pointer_from_integer_1p.c

21 po!nter_from_!nteger_ N can't test with charon
pointer_from_integer_1ie.c
pointer_from_integer_2.c
pointer_from_integer_2g.c y (n) n(y) y (n)

Pr _lost_escape_1.c y (n) y (n) n (y for 02+)

22 pr ance_roundtrip_via_intptr_t_ c y (n) y (n) y (n)
pointer_from_int_disambiguation_1.c n(y) not triggered not triggered
pointer_from_| not triggered y (n) n (y for 02+)

23 pointer_from_i g! y (n) not triggered not triggered
pointer_from_int_disambiguation_2_xy.c not triggered y (n) y (n)
pointer_from_int_disambiguation_3.c y (n) not triggered not triggered
pointer_from_int_di: i ion_3_xy.c not triggered y (n) y (y for 02+)
(bold = tests mentioned in the document)

Page 2

©ISO/IEC 2023 - All rights reserved

25



ISO/IEC TS 6010:2023(E)

Annex B
(informative)

Detailed semantics

B.1 General

This annex gives detailed mathematical semantics for four variants of C provenance semantics PNVI-plain,
PNVI-ae, PNVI-ae-udi, as specified in clause 4.2.1, and PVI, as specified in annex A.3. The term PNVI-*
denotes the PNVI-plain, PNVI-ae, and PNVI-ae-udi.

The PNVI-ae and PNVI-ae-udi variants of PNVI permit bytewise copy of a pointer to an initially unex-
posed object, but leaves it marked as exposed.

B.2 The PNVI-ae-udi, PNVI-ae, PNVI-plain, and PVI semantics

These semantic definitions are manually typeset mathematics simplified from the executable-as-test-oracle
Cerberus source (expressed in the pure-functional Lem definition language!!!!). Most subobject details,
function pointers, and some options, have been removed. Neither the typeset models or the Lem source
consider linking, or pointers constructed via I/0 (e.g. via %p or representation-byte I/0).

The memory object semantics is designed to be combined with a semantics for the thread-local seman-
tics of the rest of C (expressed in Cerberus as a translation from C source to the Core intermediate language,
together with an operational semantics for Core) to give a complete semantics for a large fragment of se-
quential C.

For simplicity, this assumes that pointer representations are the two’s complement representation of
their addresses (and identical to the two’s complement representations of their conversions to sufficiently
wide integer types), assume null pointers have address (and representation) 0, and allow null pointers to
be constructed from any empty-provenance integer zero, not just integer constant expressions.

At present, the mathematical model does not include the semantics of ISO/IEC 9899:2018 that makes all
pointers to an object or region invalid at the end of its lifetime, and it permits equality comparison between
pointers irrespective of whether the objects of their provenances are live, but it permits pointer subtraction,
relational comparison, array offset, member offset, and casts to integer only for pointers to live objects for
which the address is within or one past the object footprint. These are all deliberate choices. One could
instead check only that the addresses are within or one past the original object footprint (and not check the
object is live), or go further towards a concrete-address view of pointer values and not check that either.
Sketching out some of the options:

+ zombie-pointers-become-indeterminate For the current semantics of ISO/IEC 9899:2018, at the end
of every storage instance’s lifetime any pointer value referring to it becomes invalid. After that, ev-
ery memory footprint containing a pointer value with that provenance (result of the store of such a
pointer value) has an indeterminate representation. With this, the live-object evaluations and checks
for equality, relational comparison, subtraction, array offset member offset, and casts to integers all
become moot.

+ zombie-pointers-allow-equality-only This is what the maths below details.

+ zombie-pointers-allow-all-in-bounds-arithmetic For this, one would retain metadata for the bounds
of lifetime-ended pointers and check against that for non-load/store operations.

+ zombie-pointers-allow-all-arithmetic For this, one would remove the lifetime and bounds checks for
non-load/store operations.

« all-pointers-allow-all-arithmetic This would make all the non-load/store operations operate just on
abstract addresses, ignoring provenance and storage instance metadata.

26 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

B.2.1 The memory object model interface

In Cerberus, the memory object model is factored out from Core with a clean interface!’ 'Fig. 2]Cerberus-
PLDI16. This provides functions for memory operations:

- allocate_object (for objects with automatic or static storage duration, i.e. global and local variables),

- allocate_region (for the results of malloc, calloc, and realloc, i.e. heap-allocated regions),

kill (for lifetime end of both kinds of allocation),
+ load, and
. store,

and for pointer/integer operations: arithmetic, casts, comparisons, offseting pointers by struct-member
offsets, etc. The interface involves types pointer_value (p), integer_value (x), floating_value, and
mem_value (v), which are abstract as far as Core is concerned. Distinguishing pointer and integer values
gives more precise internal types.

In PNVI-ae, PNVI, and PVI, a provenance 7 is either @i where i is a storage-instance ID, or the empty
provenance @empty. In PNVI-ae-udi a provenance may also be a symbolic storage instance ID ¢ (iota), ini-
tially associated to two storage instance IDs and later resolved to one or the other.

A pointer value may either be null or a pair (7, a) of a provenance 7 and address a. In PNVI*, an integer
value is simply a mathematical integer (within the appropriate range for the relevant C type), while in PV],
an integer value is a pair (7, n) of a provenance 7 and a mathematical integer n.

Memory values are the storable entities, either a pointer, integer, floating-point, array, struct, or union
value, or unspec for unspecified values, each together with their C type.

B.3 The memory object model state

In both PVI and PNVI*, a memory state is a pair (A, M ). The A is a partial map from storage-instance IDs to
either killed or storage-instance metadata (n, Topt, a, f, k, t):

+ sizen,

+ optional C type 7 (or none for allocated regions),

« base address a,

- permission flag fe{readWrite, readOnly},

« kind k€{object, region}, and

- for PNVI-ae and PNVI-ae-udi, a taint flag t€{unexposed, exposed}.
In PNVI-ae-udi, A also maps all symbolic storage instance IDs ¢, to sets of either one or two (non-symbolic)
storage instance IDs. One might also need to record a partial equivalence relation over symbolic storage
instance IDs, to cope with the pointer subtraction and relational comparison cases where one learns that

two provenances are equal but both remain ambiguous, but that is not spelt out in this document.

The M is a partial map from addresses to abstract bytes, which are triples of a provenance =, either
a byte b or unspec, and an optional integer pointer-byte index j (or none). The last is used in PNVI* to
distinguish between loads of pointer values that were written as whole pointer writes vs those that were
written byte-wise or in some other way.

©ISO/IEC 2023 - All rights reserved 27



ISO/IEC TS 6010:2023(E)

B.3.1 Mappings between abstract values and representation abstract-byte sequences

The M models the memory state in terms of low-level abstract bytes, but store and load take and return
the higher-level memory values. The two are related with functions repr(v), mapping a memory value to a
list of abstract bytes, and abst(7, bs), mapping a list of abstract bytes bs to its interpretation as a memory
value with C type 7.

The repr(v) function is defined by induction over the structure of its memory value parameter and re-
turns a list of sizeof(7) abstract bytes, where 7 is the C type of the parameter. The base cases are values
with scalar types (integer, floating and pointers) and unspecified values. For an unspecified value of type
T, it returns a list with abstract bytes of the form (@empty, unspec, none). Non-null pointer values are rep-
resented with lists of abstract bytes that each have the provenance of the pointer value, the appropriate
part of the two’s complement encoding of the address, and the 0.. sizeof(7) — 1 index of each byte. Null
pointers are represented with lists of abstract bytes of the form (@empty, 0, none). In PVI, integer values
are represented similarly to pointer values except that the third component of each abstract byte is none. In
PNVI*, integer values are represented by lists of abstract bytes, with each of their first components always
the empty provenance, and each of their third components again none. Floating-point values are similar, in
all the models, except that the provenance of the abstract bytes is always empty. For array and struct/u-
nion values the function is inductively applied to each subvalue and the resulting byte-lists concatenated.
The layout of structs and unions follow an implementation-defined ABI, with padding bytes like those of
unspecified values.

The abst(7, bs) function is defined by induction over 7. The base cases are again the scalar types. For
these, sizeof(7) abstract bytes are consumed from bs and a scalar memory value is constructed from their
second components: if any abstract byte has an unspec value, an unspecified value is constructed; otherwise,
depending on 7, a pointer, integer or floating-point value is constructed using the two’s complement or
floating-point encoding. For pointers with address 0, the provenance is empty. For non-0 pointer values and
integer values, in PVI the provenance is constructed as follows: if at least one abstract byte has non-empty
provenance and all others have either the same or empty provenance, that provenance is taken, otherwise
the empty provenance is taken. In PNVI*, when constructing a pointer value, if the third components of the
bytes all carry the appropriate index, and all have the same provenance (which will be guaranteed if pointer
types all have the same size), the provenance of the result is that provenance. Otherwise, the A part of
the memory state is examined to find whether a live storage instance exists with a footprint containing the
pointer value that is being constructed. If so, in PNVI-plain, its storage instance ID is used for the provenance
of the pointer value, otherwise the empty provenance is used.

+ InPNVI-ae and PNVI-ae-udi, when constructing a pointer value, if A has to be examined then, matching
the relevant integer-to-pointer cast semantics below, the storage instance has been exposed, other-
wise the result have the empty provenance.

+ In PNVI-ae-udi, if there are two such live storage instances, with IDs ¢; and is, the resulting pointer
value is given a fresh symbolic storage instance ID ¢, and A is updated to map ¢ to {i1,72}. This may
only happen if the two storage instances are adjacent and the address is one-past the first and at the
start of the second.

For array/struct types, abst() recurses on the progressively shrinking list of abstract bytes.

B.3.2 Memory operations

The successful semantics of memory operations is expressed as a transition relation between memory
states, with transitions labeled by the operation (including its arguments) and return value:

(A, M) 2 (a7, 0

For example, the transitions

(A, M) load(r,p)=v (A/,M/)

describe the semantics of aload (7, p) in memory state (A, M), returning value v and with resulting memory
state (A’, M'). The semantics also defines when each operation flags an out-of-memory (OOM) or undefined
behavior (UB) in a memory state (A, M).

28 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

B.3.2.1 Storage instance creation

When a new storage instance is created, either with allocate_region (for the results of malloc, calloc, and
realloc, i.e. heap-allocated regions), or with allocate_object (for objects with automatic or static storage
duration, i.e. global and local variables), in non-const and const variants: a fresh storage-instance ID i is
chosen; an address a is chosen from newAlloc(A, al, n), defined to be the set of addresses of blocks of size
n aligned by al that do not overlap with 0 or any other allocation in A; and the pointer value p = (@i, a)
is returned. In all three cases the storage-instance metadata A is updated with a new record for i. For
PNVI-ae this is initially marked as unexposed. In the allocate_object case the size n of the allocation is the
representation size of the C type 7. In the allocate_region(al, 7, readOnly(v)) case, the last of the three rules,
the memory M is updated to contain the representation of v at the addresses a..a + sizeof(7) — 1.

[label: allocate_region(al,n) = p]
i ¢ dom(A) a € newAlloc(A4, al,n)
p = (@i,a)
A, M — Ali — (n,none, a, readWrite, region, unexposed)|, M

[label: allocate_object(al, 7, readWrite) = p]
i ¢ dom(A) a € newAlloc(A4,al,n)
n = sizeof(7) p = (@i,a)
A, M — A(i — (n,T,a,readWrite, object, unexposed)), M

[label: allocate_object(al, 7, readOnly(v)) = p]
i ¢ dom(A) a € newAlloc(A4, al, n)
n = sizeof(7) p = (@i,a)
A, M — A(i — (n,T,a,readOnly, object, unexposed)), M ([a..a +n — 1] — repr(v))

B.3.2.2 Storage instance lifetime end

When the storage instance of a pointer value (@i, a) is killed, either by a free() for a heap-allocated region
or at the end of lifetime of an object with automatic storage duration, the storage-instance metadata A of
storage instance ¢ is updated to record that ¢ has been killed.

[label: kill(p, k)]
p=(@ia) k=F
A(i) = (n,a, f, K, )

A M — A(i — killed), M

B.3.2.3 Load

To load a value v of type 7 from a pointer value p = (@i, a), there is be a live storage instance for i in A,
the footprint of 7 at a is within the footprint of that allocation, and the value v is the abstract value obtained
from the appropriate memory bytes from M.

[label: load(r, p) = v]

p = (@i,a) A@) = (n,_,ad,_,_,_)
[a..a + sizeof(T) — 1] C [d’..d’ + n — 1]
v = abst(r, M|a..a + sizeof(7) — 1])
AM— A M

For PNVI-ae and PNVI-ae-udji, if the recursive-on-7 computation of abst(7, M [a..a + sizeof(7) — 1]) involves
a call of abst at any non-pointer scalar type for a region of M including an abstract byte with non-empty
provenance, and the corresponding storage instance is live, it is marked as exposed. This applies e.g. for
reads of pointer values via charx pointers, and for union type punning reads at uintptr_t of pointer values.

B.3.2.4 Store
To store a value v of type 7 to a pointer value p = (@1, a), there is be a live storage instance for i in A, which

©ISO/IEC 2023 - All rights reserved 29



ISO/IEC TS 6010:2023(E)

is writable, and the footprint of 7 at a is within the footprint of that allocation. The memory M is updated
with the representation bytes of the value v.

[label: store(7, p, v)]

p= (@i, a) A(i) = (n,_,d',readWrite, _, )
[a..a + sizeof(T) — 1] C [d’..d’ + n — 1]

A, M — A, M([a..a + sizeof(T) — 1] — repr(v))

For PNVI-ae-udi, the kill, load, and store rules above are adapted. If p = (¢,a) and A(:) = {i}, the
other premises and conclusion of the appropriate above rule apply. If A(¢) = {i1,42} and the premises are
satisfied for one of the two, say ¢}, the rest of the rule applies except that in the final state A is additionally
updated to map ¢ to {7;}.

The memory operations flag out-of-memory (OOM) and undefined behavior (UB) as follows:

allocate_region(al, n) / allocate_object(al, 7, readwrite) / allocate_object(al, 7, readOnly(v)):
OOM out of memory  if newAlloc(A4, al,n) = {} or newAlloc(4, al, sizeof(7)) = {}
load(r,p) / store(r, p,v) / kill(p):
UB null pointer ifp = null
UB empty provenance ifp = (@empty,a)
UB killed provenance ifp = (@i,a) and A(7) = killed
load(r, p) / store(r,p,v):

UB out of bounds ifp = (@i,a), Ai) = (n,_,d, f,k,_),and [a..a + sizeof(T) — 1] € [a'..a’ + n — 1]
store(T,p,v):

UB read-only ifp = (@i,a) and A(¥) = (n,_,a’,readonly, k, )
kill(p):

UB non-alloc-address  ifp = (@i,a), A7) = (n,_,a’, f,k,_),and a # @’

For PNVI-ae-udi, the rules above are adapted. In the case where p = (¢, a) and A(¢) = {i}, the semantics
is exactly as for p = (i, a), while if A(¢) = {i1, 72}, one has UB only if the conditions above apply to both i;
and 7o.

B.3.3 Pointer / Integer operations

B.3.3.1 Pointer subtraction
Pointers p = (@i,a) and p’ = (@i, ') may be subtracted if they have the same provenance (i = '), there
is a live storage instance for i in A, and both a and o’ are within or one-past the footprint of that allocation
(in ISO/IEC 9899:2018 the last will always hold, otherwise UB would have been flagged in earlier pointer
arithmetic). Otherwise UB. The result is the numerical difference o — o’ divided by sizeof(dearray(7))),
where dearray(7) returns 7 if it is not an array type, and otherwise returns its element type. Note that
this disallows subtraction for which one or both arguments are null pointers, which is the semantics of
ISO/IEC 9899:2018.

This rule is stated for PNVI and PNVI-ae, returning pure integer. For PVI, diff_ptrval constructs the same
integer but with @empty provenance.

For PNVI-ae-udi, because subtraction of pointers with different provenance is UB:

« if both the two pointers have either a provenance @i (resp. @i’) or a symbolic storage instance ID ¢
(resp. /') mapped by A to a singleton {7} (resp. {¢'}), then i = ¢/, otherwise UB.

- if one of the two pointers has a symbolic storage instance ID ¢, mapped by A to {i;, i3}, while the other
either has a provenance @i’ or an .’ mapped to a singleton {7}, then ¢’ is either i; or iy, and ¢ is resolved
to that in the A of the final state. Otherwise UB.

- If both pointers are ambiguous, say mapped to {i1, 42} and {¢},,}, then if those two sets share ex-
actly one element which satisfies the other rule preconditions, both symbolic storage instance IDs are
resolved to that. Otherwise UB.

« If both pointers are ambiguous and those sets share two elements that satisfy the other conditions
(which is believed to only happen if the addresses are equal), then subtraction is permitted but the
symbolic storage instance IDs are left unresolved. Otherwise UB.

30 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

For example, suppose p and q have been produced by separate casts from an integer which is ambigu-
ously one-past one allocation and at the start of another. Then after p-q or p<q they have the same
provenance, but any of the two is possible. (Alternatively, one could change the semantics to record an
identity relation over symbolic storage instance IDs, and additional modifications to the rules below
beyond what is in this document, but that seems to be unwarranted complexity).

[label: diff ptrval(r, p,p’) = z]
p=(@i,a) P = (@, d) i =1 A(i) = (n,_,a,_,_,_)
x = (a — a')/ sizeof(dearray(7)) a € [a..a + nj a € [a..a + n]
AM — A M

B.3.3.2 Pointer relational comparison
Pointers p = (@i,a) and p’ = (@i',a’) may be compared with a relational operator (<, <=, etc.) if they
have the same provenance (i = 4’). The result is the Boolean result of the mathematical comparison of a
and a’. To make this analogous to pointer subtraction a storage instance for ¢ in A is alive, and both a and
a’ are within or one-past the footprint of that allocation. Otherwise UB. Note that this disallows relational
comparison against null pointers.

For PNVI-ae-udi, this has to be adapted in much the same way as the pointer subtraction rule above.

[label: rel_op_ptrval(p, p’, op) = b]
p=(@i,a) P = (@, d) i =1 A(i) = (n,_,a,_,_,_)
b= op(a,a) a € [a..a + n] a € [a..a + n] op € {<,<,>,>}
AM — A M

Relational comparison is used in practice between pointers to different objects. A variant which would
allow that, called allow-inter-object-relational-operators true, removes the : = 4’ test above and (in
the zombie-pointers-become-indeterminate and zombie-pointers-allow-equality-only variants) addition-
ally checks that 7/ maps to a live object with in-range address.

B.3.3.3 Pointer equality comparison

Pointers p and p’ may unconditionally be compared with an equality operator (=, !=). The result is true if
they are either both null or both non-null and have the same provenance and address; nondeterministically
either a = o’ or false if they are both non-null and have different provenances; and false otherwise.

For PNVI-ae-udi, because equality comparison is permitted (without UB) irrespective of the provenances
of the pointers, if the two pointers both have determined single provenances after looking up any symbolic
IDs in A, this shall give true, otherwise the middle (nondeterministic) clause shall apply. The final A shall
not resolve any symbolic IDs.

[label: eq_op_ptrval(p, p') = b]

b= true ifp=1p =
b— (0= d) o ( (b= () A Y = () A Au)—{m’)—{z‘})v)
(p=(@i,a) A p=(@j,d) Ni=7)
ANp = (d)N

p )
( p= (Lv CL)
be {(a=zd) false} if -(A() = A(V) = {i})

b = false otherwise
A M — A M

Note that the above nondeterminism appears to be necessary to admit the observable behavior of current
compilers, but a simpler provenance-oblivious semantics is arguably desirable:
[label: eq_op_ptrval(p, p’) = b]
b=true ifp=p =null
b=true ifp=(,a),p =(,d)anda=d
b = false otherwise
A M — A M

©ISO/IEC 2023 - All rights reserved 31



ISO/IEC TS 6010:2023(E)

These two options are called pointer-equality-provenance-nondet true and false.

B.3.3.4 Pointer array offset
Given a pointer p at C type 7, the result of offsetting p by integer x (either by array indexing or explicit
pointer/integer addition) is as follows, where x = n in PNVI*, or 2z = (7, n) in PVL For the operation to
succeed, p is some non-null (@i, a). Then there is a live storage instance for 7, and the numeric result of
the addition of a + n * sizeof(7) is within or one-past the footprint of that storage instance. Otherwise the
operation flags UB.

For PNVI-ae-udj, if p is ambiguous (i.e, p = (¢,a) and A(¢) = {41, 72} then if z is non-zero this will only
be defined behavior for (at most) one of the two, and then ¢ shall be resolved to that one in the final state. If
2 = 0 it does not resolve the ambiguity.

ifp = (@i, a) and
a’ = a + n * sizeof() and

@i, d

( ) A(Z) — (T'LN,_, CLH,_,_,_) and
a/ e [a//“a// + n//]

iso_array_offset_ptrval(A, p, 7,z) = < UB: out of bounds if all except the last conjunct

above hold
UB: empty prov if p = (@empty, a)
UB: killed prov ifp = (@i,a)and A(i) = killed
| UB: null pointer if p =null

B.3.3.5 Pointer member offset

Given a non-null pointer p at C type 7, which points to the start of a struct or union type object
(ISO/IEC 9899:2018 suggests this has to exist, writing “The value is that of the named member of the ob-
ject to which the first expression points”) with a member m, if p is (7, a), the result of offsetting the pointer
to member m has the same provenance 7 and the suitably offset a.

If p is null, the result is a pointer with empty provenance and the integer offset of /m within 7’s represen-
tation (this is de facto C behavior, in the sense that the GCC torture tests rely on it; it does not exactly match
ISO/IEC 9899:2018).

For the first case, in principle one might want p to point to the start of an object of type 7, with UB other-
wise, but without a subobject-aware effective-type semantics, which is beyond the scope of this document,
that cannot be checked. Instead, the definition just checks that there is a live storage instance of p’s prove-
nance such that the resulting address is within or one-past its a footprint. That makes this analogous to
pointer array offset.

ifp = (@i, a) and

, a’ = a + offsetof_ival(7, m) and
member_offset_ptrval(p, 7, m) = (), A(i) = (n",_,d",_,_,_) and
a/ c [a//“a// +n//]

(@empty, offsetof ival(r,m)), ifp = null.

B.3.3.6 Casts (PNVI-plain)

In PNVI-plain, a cast of a pointer value p to an integer value (at type 7) just converts null pointers to zero
and non-null pointer values to the address a of the pointer, if that is representable in 7, otherwise flagging
UB. The provenance of the pointer is discarded. At present the definition requires that the object is live and
that its address is within bounds.

0, if p = null;
a, ifp=(@i,a)and
cast_ptrval_to_ival(7,p) = A(i) = (n",_,d",_,_,_) and

a € [a"..a" +n"] and a € value_range(r)

UB, otherwise

32 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

In PNVI-plain, an integer-to-pointer cast of 0 returns the null pointer. For a non-0 integer x, casting to a
pointer to 7, if there is a storage instance 7 in the current memory model state (A, M) for which the address
of the pointer would be properly within the footprint of the storage instance, it returns a pointer (@1, 2) with
the provenance of that storage instance. (The “properly within” prevents the one-past ambiguous case.) If
there is no such storage instance, it returns a pointer with empty provenance.

cast_ival_to_ptrval(r, x)
null, ifz =0
=4 (@1, 2), if A(4) = (n,_,a, f,k,_)and z € [a..a +n — 1]
(@empty, x), ifthereisnosuchi

B.3.3.7 Casts (PNVI-ae)

In PNVI-ae, the result of a cast of a pointer value p to an integer value is exactly as in PNVI-plain. In addition,
for a cast of pointer value p = (@i, a) with provenance @i, where A(i) = (n, Topt, a, f, k,t) is the storage
instance metadata for ¢, the memory state (A, M) is updated to (A(i — (n, Topt, a, f, k, exposed)), M) to
mark the that storage instance as exposed.

In PNVI-ae, an integer-to-pointer cast of 0 returns the null pointer. For a non-0 integer z, casting to a
pointerto 7, if there is a storage instance i in the current memory model state (A, M ) for which the address of
the pointer would be properly within the footprint of the storage instance, and storage instance 7 is exposed,
itreturns a pointer (@1, x) with the provenance of that storage instance. If there is no such storage instance,
it returns a pointer with empty provenance.

cast_ival_to_ptrval(r, z)
null, ifr=0
= (@i, ), if A(3) = (n,_,a, f, k,exposed) and x € [a..a +n — 1]
(@empty, z), ifthereisnosuchi

B.3.3.8 Casts (PNVI-ae-udi)
In PNVI-ae-udi, a cast of a pointer value p to an integer is just like PNVI-ae.

Unlike PNVI-ae, PNVI-ae-udi permits a cast of a one-past pointer to integer and back to recover the orig-
inal provenance, replacing the integer-to-pointer check that x is properly within the footprint of the storage
instance by a check that it is properly within or one-past:

cast_ival_to_ptrval(7, =)
null, ifx=0
=4 (@1, 2), if A(4) = (n,_,a, f, k,exposed) and x € [a..a + n]
(@empty, z), ifthereisnosuchi

But then a PNVI-ae-udi cast of an integer value to a pointer might create a pointer with ambiguous prove-
nance (as in the definition of repr) : if it could be within or one-past two live storage instances, with IDs i
and i, and both storage instances have been marked as exposed, the resulting pointer value is given a fresh
symbolic storage instance ID ¢, and A is updated to map ¢ to {i1, i2 }. This may only happen if the two storage
instances are adjacent and the address is one-past the first and at the start of the second.

B.3.3.9 Casts (PVI)

cast_ival to_ptrval(r,z) =

null, ifx = (@empty,0)
(m,n), otherwise, wherex = (m,n)

(@empty,0), ifp =null;
cast_ptrval_to_ival(7,p) = (7, a), if p = (m,a)and a € value_range(7)

UB, otherwise

B.3.3.10 Integer operations (PVI)
In PVI one also has to define the provenance results of all the other operations returning integer values.

©ISO/IEC 2023 - All rights reserved 33



ISO/IEC TS 6010:2023(E)

These are given below for the basic operations, though they would also be needed for all the integer-
returning library functions. Most would give integers with empty provenance. One might or might not also
want to require that the objects of those provenances are live.

T, ifT =7’ or ' = @empty;
redr = <, if T = @empty;
@empty, otherwise.
op_ival(op, (m,n), (7';m)) = (7w @ n’',op(n,m)), whereop € {+,%,/,%,8&,|, A}
(@empty,n —m), ifr = @iand ' = @i, whetheri = i’ or not;
op_ival(—, (m,n), (7',m)) = < (@i,n—m), if T = @i and 7’ = @empty;
(@empty,n —m), ifr = @empty.
eq_ival((m,n), (7',m)) = (n=m)
It ival((m,n), (7',m)) = (n<m)
le_ival((m,n), (7',m)) = (n<m)

B.3.4 Provenance of other operations

In addition to the operations defined above, some operations are desugared/elaborated to simpler expres-
sions by the Cerberus pipeline. Their PVI results have provenance as follows; their PNVI* results are the
same except that there integers have no provenance:

34

the result of address-of (&) has the provenance of the object associated with the lvalue, for non-
function-pointers, or empty for function pointers.

prefix increment and decrement operators follow the corresponding pointer or integer arithmetic
rules.

the conditional operator has the provenance of the second or third operand as appropriate; simple as-
signment has the provenance of the expression; compound assignment follows the pointer or integer
arithmetic rules; the comma operator has the provenance of the second operand.

integer unary +, unary -, and ~ operators preserve the original provenance; logical negation ! has a
value with empty provenance.

sizeof and _Alignof operators give values with empty provenance.

bitwise shifts has the provenance of their first operand.

Atomic operations have to have their own specific provenance properties, not discussed here, as do
some library functions.

©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

Annex C
(normative)

Differences to ISO/IEC 9899:2018

Implementations that conform to this document, shall behave as if the differences from
ISO/IEC 9899:2018 described in this annex were applied to ISO/IEC 9899. This annex is organized
as follows:

+ Each page corresponds to a page with such differences in ISO/IEC 9899:2018.
+ Page numbers in the footer correspond to the page numbering within this document, here.

+ Page numbers in the inner footer correspond to an approximation of the page number in
ISO/IEC 9899:2018.

- Additions to the text are marked as shown.
+ Deletions of text are marked as shews.
+ If possible, numbers of clauses refer to the clauses of ISO/IEC 9899:2018.

+ Two new sub-clauses are introduced in clause 3 with numbers 3.17 (“pointer provenance”) and 3.20
(“storage instance”). The given context of ISO/IEC 9899:2018 and the numbering indicates the places
of insertion.

+ The subclause (here 3.21.2) “indeterminate—value” is modified and renamed to “indeterminate

+ The subclause (here 3.21.4) “trap—representation” is modified and renamed to “non-value

+ Clause 6.2.4 of ISO/IEC 9899:2018 is renamed from "Sterage-durations—of-ebjeets” to "Storage
durations and object lifetimes”.

+ Clause 7.22.3 of ISO/IEC 9899:2018 is renamed from "Memery-management-funetions” to "Storage

©ISO/IEC 2023 - All rights reserved 35



ISO/IEC TS 6010:2023(E)

contains four separate memory locations: The member a, and bit-fields d and e. ee are each separate memory locations,
and can be modified concurrently without interfering with each other. The bit-fields b and c together constitute the fourth
memory location. The bit-fields b and ¢ cannot be concurrently modified, but b and a, for example, can be.

3.15
1  object

region of data storage in the execution environment, the contents of which can represent values

2 Note 1 to entry: When referenced, an object can be interpreted as having a particular type; see 6.3.2.1.

3.16

1  parameter
formal parameter
DEPRECATED: formal argument

object declared as part of a function declaration or definition that acquires a value on entry to the
function, or an identifier from the comma-separated list bounded by the parentheses immediately
following the macro name in a function-like macro definition

3.17

1  pointer provenance

rovenance

an entity that is associated to a pointer value in the abstract machine, which is either empty, or the
identity of a storage instance

3.18
1 recommended practice

specification that is strongly recommended as being in keeping with the intent of the standard, but
that might be impractical for some implementations

3.19

1  runtime-constraint

requirement on a program when calling a library function

2 Note1to entry: Despite the similar terms, a runtime-constraint is not a kind of constraint as defined by 3.8, and need not be
diagnosed at translation time.

3 Note 2 to entry: Implementations that support the extensions in Annex K are required to verify that the runtime-constraints
for a library function are not violated by the program; see K.3.1.4.

4 Note 3 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.20

1  storage instance

the inclusion-maximal region of data storage in the execution environment that is created when
either an object definition or an allocation is encountered

2 Note 1 to entry: Storage instances are created and destroyed when specific language constructs (6.2.4) are met durin
rogram execution, including program startup, or when specific library functions (7.22.3) are called.

3 Note 2 to entry: A given storage instance may or may not have a memory address, and may or may not be accessible from

all threads of execution.

4 Note 3 to entry: Storage instances have identities which are unique across the program execution.

5 Note 4 to entry: A storage instance with a memory address occupies a region of zero or more bytes of contiguous data
storage in the execution environment.

6 Note 5 to entry: One or more objects may be represented within the same storage instance, such as two subobjects within
an object of structure type, two const-qualified compound literals with identical object representation, or two string literals
where one is the terminal character sequence of the other.

differences to ISO/IEC 9899:2018, § 3.20 page 6 General

36 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

3.21

value

precise meaning of the contents of an object when interpreted as having a specific type

3.21.1

implementation-defined value

unspecified value where each implementation documents how the choice is made

3.21.2

indeterminate representation

either-object representation that either represents an unspecified value or a-trap-is a non-value

representation

3.21.3
unspecified value
valid value of the relevant type where this document imposes no requirements on which value is

chosen in any instance An-unspecified-value-cannotbe-a-trap-representation—
3.21.4

non-value representation

an object representation that need-does not represent a value of the object type

3.21.5

perform a trap

interrupt execution of the program such that no further operations are performed

Note 1 to entry: In this document, when the word “trap” is not immediately followed by “representation”, this is the
intended usage.?

Note 2 to entry: Implementations that support Annex L are permitted to invoke a runtime-constraint handler when they
perform a trap.

3.22

[]

ceiling of =

the least integer greater than or equal to
EXAMPLE [2.4] is 3, [—2.4] is —2.

3.23
lz]
floor of =

the greatest integer less than or equal to =
EXAMPLE [2.4] is 2, |—2.4] is —3.

DFor example, “Trapping or stopping (if supported) is disabled ...” (F.8.2). Note that fetching a trap-non-value representa-
tion might perform a trap but is not required to (see 6.2.6.1).

General differences to ISO/IEC 9899:2018, § 3.23 page 7

©ISO/IEC 2023 - All rights reserved 37



ISO/IEC TS 6010:2023(E)

of those operations are all side effects,'? which are changes in the state of the execution environment.
Evaluation of an expression in general includes both value computations and initiation of side effects.
Value computation for an lvalue expression includes determining the identity of the designated
object.

3 Sequenced before is an asymmetric, transitive, pair-wise relation between evaluations executed by a
single thread, which induces a partial order among those evaluations. Given any two evaluations
A and B, if A is sequenced before B, then the execution of A shall precede the execution of B.
(Conversely, if A is sequenced before B, then B is sequenced after A.) If A is not sequenced before or
after B, then A and B are unsequenced. Evaluations A and B are indeterminately sequenced when A is
sequenced either before or after B, but it is unspecified which.!® The presence of a sequence point
between the evaluation of expressions A and B implies that every value computation and side effect
associated with A is sequenced before every value computation and side effect associated with B. (A
summary of the sequence points is given in Annex C.)

4 In the abstract machine, all expressions are evaluated as specified by the semantics. An actual
implementation need not evaluate part of an expression if it can deduce that its value is not used and
that no needed side effects are produced (including any caused by calling a function or accessing a
volatile object).

5  When the processing of the abstract machine is interrupted by receipt of a signal, the values of
objects that are neither lock-free atomic objects nor of type volatile sig_atomic_t are unspecified,
as is the state of the floating-point environment. The valuerepresentation of any object modified by
the handler that is neither a lock-free atomic object nor of type volatile sig_atomic_t becomes
indeterminate when the handler exits, as does the state of the floating-point environment if it is
modified by the handler and not restored to its original state.

6  The least requirements on a conforming implementation are:

— Accesses to volatile objects are evaluated strictly according to the rules of the abstract machine.

— At program termination, all data written into files shall be identical to the result that execution
of the program according to the abstract semantics would have produced.

— The input and output dynamics of interactive devices shall take place as specified in 7.21.3.
The intent of these requirements is that unbuffered or line-buffered output appear as soon as
possible, to ensure that prompting messages actually appear prior to a program waiting for
input.

This is the observable behavior of the program.
7 What constitutes an interactive device is implementation-defined.

8  More stringent correspondences between abstract and actual semantics may be defined by each
implementation.

9  EXAMPLE1 Animplementation might define a one-to-one correspondence between abstract and actual semantics: at every
sequence point, the values of the actual objects would agree with those specified by the abstract semantics. The keyword
volatile would then be redundant.

10 Alternatively, an implementation might perform various optimizations within each translation unit, such that the actual
semantics would agree with the abstract semantics only when making function calls across translation unit boundaries. In
such an implementation, at the time of each function entry and function return where the calling function and the called
function are in different translation units, the values of all externally linked objects and of all objects accessible via pointers
therein would agree with the abstract semantics. Furthermore, at the time of each such function entry the values of the
parameters of the called function and of all objects accessible via pointers therein would agree with the abstract semantics. In
this type of implementation, objects referred to by interrupt service routines activated by the signal function would require
explicit specification of volatile storage, as well as other implementation-defined restrictions.

2)The TEC 60559 standard for binary floating-point arithmetic requires certain user-accessible status flags and control
modes. Floating-point operations implicitly set the status flags; modes affect result values of floating-point operations.
Implementations that support such floating-point state are required to regard changes to it as side effects — see Annex F for
details. The floating-point environment library <fenv. h> provides a programming facility for indicating when these side
effects matter, freeing the implementations in other cases.

13)The executions of unsequenced evaluations can interleave. Indeterminately sequenced evaluations cannot interleave, but
can be executed in any order.

differences to ISO/IEC 9899:2018, § 5.1.2.3 page 12 Environment

38 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

— 12 pointer, array, and function declarators (in any combinations) modifying an arithmetic,
structure, union, or void type in a declaration

— 63 nesting levels of parenthesized declarators within a full declarator
— 63 nesting levels of parenthesized expressions within a full expression

— 63 significant initial characters in an internal identifier or a macro name(each universal charac-
ter name or extended source character is considered a single character)

— 31 significant initial characters in an external identifier (each universal character name specify-
ing a short identifier of 0000FFFF or less is considered 6 characters, each universal character
name specifying a short identifier of 00010000 or more is considered 10 characters, and each
extended source character is considered the same number of characters as the corresponding
universal character name, if any)!”

— 4095 external identifiers in one translation unit

— 511 identifiers with block scope declared in one block

— 4095 macro identifiers simultaneously defined in one preprocessing translation unit
— 127 parameters in one function definition

— 127 arguments in one function call

— 127 parameters in one macro definition

— 127 arguments in one macro invocation

— 4095 characters in a logical source line

— 4095 characters in a string literal (after concatenation)

— 65535 bytes in an object (in a hosted environment only)

— 15 nesting levels for #included files

— 1023 case labels for a switch statement (excluding those for any nested switch statements)
— 1023 members in a single structure or union

— 1023 enumeration constants in a single enumeration

— 63 levels of nested structure or union definitions in a single struct-declaration-list

5.2.4.2 Numerical limits

1 An implementation is required to document all the limits specified in this subclause, which are
specified in the headers <limits.h>and <float.h>. Additional limits are specified in <stdint.h>.

Forward references: integer types <stdint.h> (7.20).

5.2.4.2.1 Sizes of integer types <limits.h>

1 The values given below shall be replaced by constant expressions. If the value and promoted type
is in the range of the type intmax_t (for a siegned type) or uintmax_t (for an unsigned e), see
7.20.1.5, the expression shall be suitable for use in #if preprocessing directives.

Moreover, except for CHAR_BIT and MB_LEN_MAX, the following shall be replaced by expressions that
have the same type as would an expression that is an object of the corresponding type converted
according to the integer promotions. Their implementation-defined values shall be equal or greater
in magnitude (absolute value) to those shown, with the same sign.

— number of bits for smallest object that is not a bit-field (byte)

19See “future language directions” (6.11.3).

differences to ISO/IEC 9899:2018, § 5.2.4.2.1 page 20 Environment

©ISO/IEC 2023 - All rights reserved 39



ISO/IEC TS 6010:2023(E)

Forward references: enumeration specifiers (6.7.2.2), labeled statements (6.8.1), structure and union
specifiers (6.7.2.1), structure and union members (6.5.2.3), tags (6.7.2.3), the goto statement (6.8.6.1).

6.2.4 Storage durations and ob]ect lifetimes

1 The lifetime of an object
MMMMMM
set of all evaluations that happen after the start and before the end. An object exists, has a storage
instance that is guaranteed to be reserved for it—An-ebjeetexists;,>> has a constant address,* if any,
and retains its last-stored value throughout its lifetime.* #-

2 IAhNevlvifve\tAiAn}gpAfjn object is referred-to-outside of its lifetime  the behavior is undefined—Fhe value

rt%h%e’&medetermmed b its stomge dumtlon There are four storage duratrons static thread
automatic, and allocated. Allocated storage and its duration are described in 7.22.3.

3 An-The storage instance of an object whose identifier is declared without the storage-class specifier
_Thread_local, and either with external or internal linkage or with the storage-class specifier
static, has static storage duration —Its- as do storage instances for string literals and some compound
literals.3® The object’s lifetime is the entire execution of the program and its stored value is initialized
only once, prior to program startup.

4  An-The storage instance of an object whose identifier is declared with the storage-class specifier
_Thread_local has thread storage duration. Hts-The object’s lifetime is the entire execution of the
thread for which it is created, and its stored value is initialized when the thread is started. There is a
distinct objeetinstance of the object and distinct associated storage instance per thread, and use of
the declared name in an expression refers to the object associated with the thread evaluating the
expression. The result of attempting to indirectly access an object with thread storage duration from
a thread other than the one with which the object is associated is implementation-defined.

5 AnThe storage instance of an object whose identifier is declared with no linkage and without the
storage-class specifier static has automatic storage duration, as do storage instances of temporary
objects and some compound literals. The result of attempting to indirectly access an object with
automatic storage duration from a thread other than the one with which the object is associated is
implementation-defined.

6  For such an object that does not have a variable length array type, its lifetime extends from entry
into the block with which it is associated until execution of that block ends in any way. (Entering an
enclosed block or calling a function suspends, but does not end, execution of the current block.) If
the block is entered recursively, a new instance of the object and associated storage is created each
time. The-initialvalue The initial representation of the object is indeterminate. If an initialization is
specified for the object, it is performed each time the declaration or compound literal is reached in
the execution of the block; otherwise, the valuerepresentation of the object becomes indeterminate
each time the declaration is reached.

7 Forsuch an object that does have a variable length array type, its lifetime extends from the declaration
of the object until execution of the program leaves the scope of the declaration.’”) If the scope is
entered recursively, a new instance of the object and associated storage is created each time. The
initialvalue The initial representation of the object is indeterminate.

8 A non-lvalue expression with structure or union type, where the structure or union contains a

33)String literals, compound literals or certain objects with temporary lifetime may share a storage instance with other
such objects.

34The term “constant address” means that two pointers to the object constructed at possibly different times will compare
equal. The address can be different during two different executions of the same program.
)In the case of a volatile object, the last store need not be explicit in the program.

36)Such are for example compound literals that are evaluated in file scope or that are const qualified and have onl
constant expressions as initializers.

%) Leaving the innermost block containing the declaration, or jumping to a point in that block or an embedded block prior
to the declaration, leaves the scope of the declaration.

differences to ISO/IEC 9899:2018, § 6.2.4 page 30 Language

40 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

21

22

23

24

25

26

optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called “function returning T”. The construction of a function type from a return type is called
“function type derivation”.

— A pointer type may be derived from a function type or an object type, called the referenced
type. A pointer type describes an object whose value provides a reference to an entity

of the referenced type. If the type is an object type, the pointer also carries a provenance,
typically identifying the storage instance holding the corresponding object, if any; its value
is valid if and only if it has a non-empty provenance, there is a live storage instance for that
provenance, and the address is either within or one-past the addresses of that storage instance.
A pointer-to-function is valid if it refers to a valid function defintion of the program. Pointers
additionally may have a special value null that is different from the address of any storage
instance and has no provenance (for object pointers),” or from the address of any function
of the program (for function pointers). If a pointer value is neither valid nor null, it is invalid

. A pointer type derived from the referenced type T is sometimes called “pointer to T”. The
construction of a pointer type from a referenced type is called “pointer type derivation”. A

pointer type is a complete object type.>” Under certain circumstances a pointer value can have
an address that is the end address of one storage instance and the start address of another. It
and any pointer value derived from it by means of arithmetic operations) shall then not be

used in ways that require (in different usages) more than one of these provenances

— An atomic type describes the type designated by the construct _Atomic (type-name). (Atomic
types are a conditional feature that implementations need not support; see 6.10.8.3.)

These methods of constructing derived types can be applied recursively.

Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.>)

An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope.

A type has known constant size if the type is not incomplete and is not a variable length array type.

Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted above in the construction of derived types), or the type itself if the type consists of no
derived types.

Any type so far mentioned is an unqualified type. Each unqualified type has several qualified versions
of its type,52) corresponding to the combinations of one, two, or all three of the const, volatile,

49) A pointer object can be null by implicit or explicit initialization or assignment with a null pointer constant or by another

null pointer value. A pointer value can be null if it is either a null pointer constant or the result of an lvalue conversion of a
null pointer object; A null pointer will not appear as the result of an arithmetic operation.

*The provenance of a pointer value and the property that such a pointer value is valid or not are generally not observable.
In particular, in the course of the same program execution the same pointer object with the same representation bytes (6.2.6)
may sometimes represent valid values but with different provenance (and thus refer to different objects). Sometimes the
object representation may even be indeterminate, namely when the lifetime of the storage instance has ended and no new
storage instance uses the same address.. Yet, this information is part of the abstract state machine and may restrict the set of
operations that can be performed on the pointer.

51Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

5)See 6.7.3 regarding qualified array and function types.

Language differences to ISO/IEC 9899:2018, § 6.2.5 page 33

©ISO/IEC 2023 - All rights reserved

41



ISO/IEC TS 6010:2023(E)

and restrict qualifiers. The qualified or unqualified versions of a type are distinct types that
belong to the same type category and have the same representation and alignment requirements.>®
A derived type is not qualified by the qualifiers (if any) of the type from which it is derived.

27  Further, there is the _Atomic qualifier. The presence of the _Atomic qualifier designates an atomic
type. The size, representation, and alignment of an atomic type need not be the same as those of
the corresponding unqualified type. Therefore, this document explicitly uses the phrase “atomic,
qualified or unqualified type” whenever the atomic version of a type is permitted along with the
other qualified versions of a type. The phrase “qualified or unqualified type”, without specific
mention of atomic, does not include the atomic types.

28 A pointer to void shall have the same representation and alignment requirements as a pointer to a
character type.>® Similarly, pointers to qualified or unqualified versions of compatible types shall
have the same representation and alignment requirements. All pointers to structure types shall
have the same representation and alignment requirements as each other. All pointers to union types
shall have the same representation and alignment requirements as each other. Peinters-to-other
typesneednotlt is implementation-defined whether other groups of pointer types have the same

representation or alignment requirements.>¥

29 EXAMPLE1 The type designated as “float *” has type “pointer to float”. Its type category is pointer, not a floating type.
The const-qualified version of this type is designated as “float * const” whereas the type designated as “const float x”
is not a qualified type — its type is “pointer to const-qualified float” and is a pointer to a qualified type.

30 EXAMPLE 2 The type designated as “struct tag (*[5]) (float)” has type “array of pointer to function returning
struct tag”. The array has length five and the function has a single parameter of type float. Its type category is array.

Forward references: compatible type and composite type (6.2.7), declarations (6.7).

6.2.6 Representations of types

6.2.6.1 General
1 The representations of all types are unspecified except as stated in 6.2.5 and in this subclause.

An object is represented (or held) by a storage instance (or part thereof) that is either created by
an allocation (for allocated storage duration), at program startup (for static storage duration), at
thread startup (for thread storage duration), or when the lifetime of the object starts (for automatic
storage duration).

2 Anaddressable storage instance™of size m provides access to a byte array of length . Each byte
of the array has an abstract address , which is a value of type uintptr_t that is determined in an
implementation-defined manner by pointer-to-integer conversion. The abstract addresses of the
bytes are increasing with the ordering within the array, and they shall be unique and constant
during the lifetime. The address of the first byte of the array is the start address of the storage
instance, the address one element beyond the array at index m is its end address MIhs“aQSirﬁsi
addresses of the bytes of all storage instances of a program execution form its address space . A
storage instance Y follows storage instance X Mm&mm
end address of X, and it follows immediately if they are equal. If the lifetime of any two distinct
addressable storage instances X and Y overlaps, either " follows X or X follows Y in the address
space. This document imposes no other constraints about such relative position of addressable
storage instances whenever they are created.”

3 The object representation of a pointer object does not necessarily determine provenance of a pointer
value; at different points of the program execution, identical object representations of pointer
values may refer to distinct storage instances. Unless stated otherwise, a storage instance becomes
exposed when a pointer value p of effective type T* with this provenance is used in the following

53)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

> An implementation might represent all pointers the same and with the same alignment requirements.

>V All storage instances that do not originate from an object definition with register storage class are addressable by
using the pointer value that was returned by their allocation (for allocated storage duration) or by applying the address-of
operator & (6.5.3.2) to the object that gave rise to their definition (for other storage durations).

**This means that no relative ordering between storage instances and the objects they represent can be deduced from
syntactic properties of the program (such as declaration order or order inside a parameter list) or sequencing properties of

the execution (such as one instantiation happening before another).

differences to ISO/IEC 9899:2018, § 6.2.6.1 page 34 Language

42 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

contexts:””)

— Any byte of the object representation of p is used in an expression.”®

— The byte array pointed-to by the first arcument of a call to the fwrite library function
intersects with an object representation of p.

— pis converted to an integer.

— p_is used as an argument to a %p conversion specifier of the printf family of librar

functions.”

Nevertheless, if the object representation of p is read through an lvalue of a pointer type Sx that has
the same representation and alignment requirements as Tx*, that lvalue has the same provenance

as p and the provenance does not thereby become exposed.®”? Exposure of a storage instance is
irreversible and constitutes a side effect in the abstract state machine.

4 Unless stated otherwise, pointer value p is synthesized if it is constructed by one of the following:V

— Any byte of the object representation of p is changed

° an explicit byte operation

e by type punning with a non-pointer object or with a pointer object that only partiall
overlaps,

e or by a call to memc or similar function that does not write the entire pointer
representation or where the source object does not have an effective pointer type.

— The object representation of p intersects with a byte array pointed-to by the first argcument of
a call to the fread library function.

— pis converted from an integer value,
— pis used as an argument to a %p conversion specifier of the scanf family of library functions.

Special provisions in the respective clauses clarify when such a synthesized pointer is a null, valid,
orinvalid.

5  Except for bit-fields, objects are composed of contiguous sequences of one or more bytes, the number,
order, and encoding of which are either explicitly specified or implementation-defined.

6  Values stored in unsigned bit-fields and objects of type unsigned char shall be represented using a
pure binary notation.%?

7  Values stored in non-bit-field objects of any other object type eonsist-ef-are represented using n x

CHAR_BIT bits, where 7 is the size of an object of that type, in bytes. Thevalue maybe-copiedintoan
objeetof-type-Converting a pointer of such an object to a pointer to a character type or void yields
a pointer into the byte array of the storage instance such that the values of the first n JHegby-

57)
58)

Pointer values with exposed provenance may alias in ways that cannot be predicted by simple data flow analysis.

The exposure of bytes of the object representation can happen through a conversion of the address of a pointer object
containing p to a character type and a subsequent access to the bytes, or by reading the representation of a pointer value p.
through a union with a type that is not a pointer type (for example an integer type) or with a pointer type that has a different

*Passing a pointer value to a %s conversion, does not expose the storage instance.

*"'This means that pointer members in a union can be used to reinterpret representations of different character and void
pointers, different struct pointers, different union pointers or pointers with differently qualified target types.

*USynthesized pointer values may alias in ways that cannot be predicted by simple data flow analysis.

62)A positional representation for integers that uses the binary digits 0 and 1, in which the values represented by successive
bits are additive, begin with 1, and are multiplied by successive integral powers of 2, except perhaps the bit with the highest
position. (Adapted from the American National Dictionary for Information Processing Systems.) A byte contains CHAR_BIT bits,
and the values of type unsigned char range from 0 to 2CHARBIT _ 1

Language differences to ISO/IEC 9899:2018, § 6.2.6.1 page 35

©ISO/IEC 2023 - All rights reserved 43



ISO/IEC TS 6010:2023(E)

memepy);-the resulting set-of bytes bytes determine the value of the object; the position of the first
byte of these in the byte array is the byte offset of the object in its storage instance, the converted
address is called the byte address of the object, and the range of bytes within the byte array is called
the object representation of the value. The object representation may be used to copy the value of
the object into another object (e.g., by memcpy). Values stored in bit-fields consist of m bits, where

m is the size specified for the bit-field. The object representation is the setrange of m bits the
bit-field comprises in the addressable storage unit holding it. Two values (other than NaNs) with
the same object representation compare equal, but values that compare equal may have different

object representations. The object representations of pointers and how they relate to the abstract
addresses they represent are not further specified by this document.

8 Certam ob]ect representatlons need not represent a value of the ob]ect type If thestered—va}ueﬂ%aﬂ

uch a representatlon is produced by a side effect that modlfles
all or any part of the object by an lvalue expression that does not have character type, the behavior

is undefined.®® Such a representation is called a trap-representation—non-value representation.

9  When a value is stored in an object of structure or union type, including in a member object, the bytes
of the object representation that correspond to any padding bytes take unspecified values.®” The
value-object representation of a structure or union object is never a trap-non-value representation,
even though the value-of byte range corresponding to a member of the structure or union object

may be a trap-representation-non-value representation for that member.

10 When a value is stored in a member of an object of union type, the bytes of the object representation
that do not correspond to that member but do correspond to other members take unspecified values.

11 Where an operator is applied to a value that has more than one object representation, which object
representation is used shall not affect the value of the result.®” Where a value is stored in an object
using a type that has more than one object representation for that value, it is unspecified which
representation is used, but a trap-non-value representation shall not be generated.

12 Loads and stores of objects with atomic types are done with memory_order_seq_cst semantics.

Forward references: declarations (6.7), expressions (6.5), address and indirection operators (6.5.3.2),
Ivalues, arrays, and function designators (6.3.2.1), order and consistency (7.17.3), integer types

capable of holding object pointers (7.20.1.4), input/output (7.21).

6.2.6.2 Integer types

1 For unsigned integer types other than unsigned char, the bits of the object representation shall be
divided into two groups: value bits and padding bits (there need not be any of the latter). If there are
N value bits, each bit shall represent a different power of 2 between 1 and 2N-1 50 that objects of
that type shall be capable of representing values from 0 to 2%V — 1 using a pure binary representation;
this shall be known as the value representation. The values of any padding bits are unspecified.®

2 For signed integer types, the bits of the object representation shall be divided into three groups:
value bits, padding bits, and the sign bit. There need not be any padding bits; signed char shall
not have any padding bits. There shall be exactly one sign bit. Each bit that is a value bit shall have
the same value as the same bit in the object representation of the corresponding unsigned type (if
there are M value bits in the signed type and NV in the unsigned type, then M < N). If the sign bit is
zero, it shall not affect the resulting value. If the sign bit is one, the value shall be modified in one of
the following ways:

3)Thus, an automatic variable can be initialized to a trap representation without causing undefined behavior, but the value
of the variable cannot be used until a proper value is stored in it.

#9)Thus, for example, structure assignment need not copy any padding bits.

1t is possible for objects x and y with the same effective type T to have the same value when they are accessed as objects
of type T, but to have different values in other contexts. In particular, if == is defined for type T, then x ==y does not imply
that mememp (&x, &y, sizeof (T))== 0. Furthermore, x == y does not necessarily imply that x and y have the same value;
other operations on values of type T might distinguish between them.

9)Some combinations of padding bits might generate trap-non-value representations, for example, if one padding bit is a
parity bit. Regardless, no arithmetic operation on valid values can generate a trap-non-value representation other than as
part of an exceptional condition such as an overflow, and this cannot occur with unsigned types. All other combinations of
padding bits are alternative object representations of the value specified by the value bits.

differences to ISO/IEC 9899:2018, § 6.2.6.2 page 36 Language

44 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

— the corresponding value with sign bit 0 is negated (sign and magnitude);
— the sign bit has the value —(2M) (two’s complement);

— the sign bit has the value —(2M — 1) (ones’ complement).

Which of these applies is implementation-defined, as is whether the value with sign bit 1 and all
value bits zero (for the first two), or with sign bit and all value bits 1 (for ones” complement), is
a trap-non-value representation or a normal value. In the case of sign and magnitude and ones’
complement, if this representation is a normal value it is called a negative zero.

If the implementation supports negative zeros, they shall be generated only by:

— the &, |, %, ~, <<, and >> operators with operands that produce such a value;
— the+,- ,*,/, and % operators where one operand is a negative zero and the result is zero;

— compound assignment operators based on the above cases.

It is unspecified whether these cases actually generate a negative zero or a normal zero, and whether
a negative zero becomes a normal zero when stored in an object.

If the implementation does not support negative zeros, the behavior of the &, |, *, ~, <<, and >>
operators with operands that would produce such a value is undefined.

The values of any padding bits are unspecified.®”” A valid {nen-trap)-object representation of a
signed integer type that represents a value where the sign bit is zero is a valid object representation
of the corresponding unsigned type, and shall represent the same value. For any integer type, the
object representation where all the bits are zero shall be a representation of the value zero in that
type.

The precision of an integer type is the number of bits it uses to represent values, excluding any sign
and padding bits. The width of an integer type is the same but including any sign bit; thus for
unsigned integer types the two values are the same, while for signed integer types the width is one
greater than the precision.

6.2.7 Compatible type and composite type

Two types have compatible type if their types are the same. Additional rules for determining whether
two types are compatible are described in 6.7.2 for type specifiers, in 6.7.3 for type qualifiers, and in
6.7.6 for declarators.®® Moreover, two structure, union, or enumerated types declared in separate
translation units are compatible if their tags and members satisfy the following requirements: If
one is declared with a tag, the other shall be declared with the same tag. If both are completed
anywhere within their respective translation units, then the following additional requirements
apply: there shall be a one-to-one correspondence between their members such that each pair of
corresponding members are declared with compatible types; if one member of the pair is declared
with an alignment specifier, the other is declared with an equivalent alignment specifier; and if
one member of the pair is declared with a name, the other is declared with the same name. For
two structures, corresponding members shall be declared in the same order. For two structures or
unions, corresponding bit-fields shall have the same widths. For two enumerations, corresponding
members shall have the same values.

All declarations that refer to the same object or function shall have compatible type; otherwise, the
behavior is undefined.

A composite type can be constructed from two types that are compatible; it is a type that is compatible
with both of the two types and satisfies the following conditions:

7)Some combinations of padding bits might generate trap representations, for example, if one padding bit is a parity bit.
Regardless, no arithmetic operation on valid values can generate a trap-non-value representation other than as part of an
exceptional condition such as an overflow. All other combinations of padding bits are alternative object representations of the
value specified by the value bits.

)Two types need not be identical to be compatible.

Language differences to ISO/IEC 9899:2018, § 6.2.7 page 37

©ISO/IEC 2023 - All rights reserved

45



ISO/IEC TS 6010:2023(E)

Otherwise, if the type of the operand with signed integer type can represent all of the
values of the type of the operand with unsigned integer type, then the operand with
unsigned integer type is converted to the type of the operand with signed integer type.

Otherwise, both operands are converted to the unsigned integer type corresponding to
the type of the operand with signed integer type.

2 The values of floating operands and of the results of floating expressions may be represented in
greater range and precision than that required by the type; the types are not changed thereby.””

6.3.2 Other operands

6.3.2.1 Lvalues, arrays, and function designators

1 An [value is an expression (with an object type other than void) that potentially designates an
object;’® if an lvalue does not designate an object when it is evaluated, the behavior is undefined.
When an object is said to have a particular type, the type is specified by the Ivalue used to designate
the object. A modifiable lvalue is an Ivalue that does not have array type, does not have an incomplete
type, does not have a const-qualified type, and if it is a structure or union, does not have any
member (including, recursively, any member or element of all contained aggregates or unions) with
a const-qualified type.

2 Except when it is the operand of the sizeof operator, the unary & operator, the ++ operator, the- -
operator, or the left operand of the . operator or an assignment operator, an Ivalue that does not have
array type is converted to the value stored in the designated object (and is no longer an lvalue); this
is called lvalue conversion. If the Ivalue has qualified type, the value has the unqualified version of the
type of the lvalue; additionally, if the lvalue has atomic type, the value has the non-atomic version of
the type of the Ivalue; otherwise, the value has the type of the lvalue. #The behavior is undefined

if the Ivalue has an incomplete typeaﬂd—dee&ﬂe%haveﬂfmﬂrtype—ﬂﬁe%ehaﬂeﬁ&&ﬁdeﬁﬂed—}ﬁ

the object representation is a non-value representation for the t ) or if the Ivalue designates an
object of automatic storage duration that could have been declared w1th the register storage class

(never had its address taken), and that object is uninitialized (not declared with an initializer and no
assignment to it has been performed prior to use);the-,_

3 Additionally, if the type is a pointer type Tx*, a pointer value and an associated provenance, if any,
is determined as follows:

— If the object representation represents a null pointer the result is a null pointer.

— If the last store to the representation array was with a pointer type S* that has the
same representation and alienment requirements as Tx*, the result is the same address and
rovenance as the stored value.

— Otherwise, the object representation of the lvalue shall represent a byte address within (or
one-past) the object representation of an exposed storage instance, such that the exposure

happened before this lvalue conversion, and the result has that address and provenance.??

The behavior is undefined if the pointer object has an indeterminate representation, in particular
if the lvalue conversion does not happen during the lifetime of the provenance that was associated
to the stored pointer value, the represented address is not a valid address (or one-past) for the
associated provenance, or the represented address is not correctly aligned for the type.

4 Except when it is the operand of the sizeof operator, or the unary & operator, or is a string literal
used to initialize an array, an expression that has type “array of type” is converted to an expression

"7)The cast and assignment operators are still required to remove extra range and precision.

78 The name “Ivalue” comes originally from the assignment expression E1 = E2, in which the left operand E1 is required to
be a (modifiable) lvalue. It is perhaps better considered as representing an object “locator value”. What is sometimes called
“rvalue” is in this document described as the “value of an expression”.

An obvious example of an lvalue is an identifier of an object. As a further example, if E is a unary expression that is a
pointer to an object, *E is an lvalue that designates the object to which E points.

79)Character types have no non-value representation, thus reading representation bytes of an addressable live storage
instance is always defined.
80)If the address corresponds to more than one provenance, only one of these shall be used in the sequel, see 6.2.5.

differences to ISO/IEC 9899:2018, § 6.3.2.1 page 42 Language

46 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

with type “pointer to type” that points to the initial element of the array object and is not an Ivalue.
If the array object has register storage class, the behavior is undefined.

A function designator is an expression that has function type. Except when it is the operand of the
sizeof operator,®) or the unary & operator, a function designator with type “function returning
type” is converted to an expression that has type “pointer to function returning type”.

Forward references: address and indirection operators (6.5.3.2), assignment operators (6.5.16),
common definitions <stddef.h> (7.19), initialization (6.7.9), postfix increment and decrement
operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), the sizeof and _Alignof
operators (6.5.3.4), structure and union members (6.5.2.3).

6.3.2.2 void

The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any
way, and implicit or explicit conversions (except to void) shall not be applied to such an expression.
If an expression of any other type is evaluated as a void expression, its value or designator is
discarded. (A void expression is evaluated for its side effects.)

6.3.2.3 Pointers

A pointer to void may be converted to or from a pointer to any object type. A pointer to any object
type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

For any qualifier g, a pointer to a non-g-qualified type may be converted to a pointer to the g-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

An integer constant expression with the value 0, or such an expression cast to type void *, is called
a null pointer constant.8?) If a null pointer constant is converted to a pointer type, the resulting
pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.

Conversion of a null pointer to another pointer type yields a null pointer of that type. Any two null
pointers shall compare equal.

An integer may be converted to any pointer type. If the source type is signed, the operand is

first converted to the corresponding unsigned type. The result is then determined in the followin
order:

— The operand value could have been the result of the conversion of a null pointer value. The
result is a null pointer.

— The operand value is an abstract address within or one past a live and exposed storage
instance, such that the exposure happened before this integer-to-pointer conversion. The
conversion synthesizes a pointer value with that address, provenance and target type.5?

— The pointer value is invalid.

Except as previously specified, the result is implementation-defined, might not be correctly aligned,

might not point to an entity of the referenced type, and-might-be-a-trap-representation-might
be invalid, and might produce an indeterminate representation when stored into an object.The

Any pointer type may be converted to an integer type. Except-as-previouslyspeeifiedFor a null
pointer, the result is chosen from a non-empty set of implementation-defined —-the-result

eannotbe represented-in-the-integertype-values.®” If the pointer value is valid, its provenance
is henceforth exposed. Except as previously specified, the result is the abstract address (which has

81)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4.

82)The macro NULL is defined in <stddef . h> (and other headers) as a null pointer constant; see 7.19.
83)If the address corresponds to more than one provenance, only one of these shall be used in the sequel, see 6.2.5.

$1t is recommended that 0 is a member of that set.

Language differences to ISO/IEC 9899:2018, § 6.3.2.3 page 43

©ISO/IEC 2023 - All rights reserved

47



ISO/IEC TS 6010:2023(E)

type uintptr_t) converted to the target type. If the target type has a width that is less than the
width of uintptr_t , the behavior is undefined. Theresultneednotbeinthe rangeof valuesofany
integertypelf the target type is a signed type and the abstract address is larger than the maximum
value of that type the implementation-defined conversion from uintptr_t to the target type as
specified in 6.3.1.3 is applied.* If the pointer is null or valid, the integer result converted back to
the pointer type shall compare equal to the original pointer.*” For two valid pointer values that
compare equal, conversion to the same integer type yields identical values.

7 A pointer to an object type may be converted to a pointer to a different object type, retaining its
provenance. If the resulting pointer is not correctly aligned® for the referenced type, the behavior
is undefined. Otherwise, when converted back again, the result shall compare equal to the original
pomter When a pomter to an object is converted toa pomter to a character type ggv\@v:l\.gm the result

ef—the—ebjeetc—yie}d—pehﬂefs—te—the—femaiﬂiﬂg—byte&is the b te address of the object.

8 A pointer to a function of one type may be converted to a pointer to a function of another type and
back again; the result shall compare equal to the original pointer. If a converted pointer is used to
call a function whose type is not compatible with the referenced type, the behavior is undefined.

Forward references: cast operators (6.5.4), equality operators (6.5.9), integer types capable of
holding object pointers (7.20.1.4), simple assignment (6.5.16.1).

9 NOTE If the result p of an Ivalue conversion or integer-to-pointer conversion is the end address of an exposed storage
instance A and the start address of another exposed storage instance B that happens to follow immediately in the address
space, a conforming program must only use one of these provenances in any expressions that are derived from p, see 6.2.5.

The following three cases determine if p is used with one of A or B and must hence not be used otherwise:
— Operations that constitute a use of p with either A or B and do not prohibit a use with the other:

e any relational operator or pointer subtraction where the other operand q may have both provenances, that is
where q is also the result of a similar conversion and where p == g;

e q == pand q != pregardless of the provenance of g;

* addition or subtraction of the value 0;
* conversion to integer.
For the latter, A and B must have been exposed before, and so any choice of provenance, that would otherwise have
exposed one of the storage instances, is consistent with any other use.
— Operations that, if otherwise well defined, constitute a use of p with A and prohibit any use with B:

e Any relational operator or pointer subtraction where the other operand g has provenance A and cannot have
rovenance B.

° + nand p[n], where n is an integer strictly less than 0.
. - n, where n is an integer strictly greater than 0.

— Operations that, if otherwise well defined, constitute a use of p with B and prohibit any use with A:

e Any relational operator or pointer subtraction where the other operand g has provenance B and cannot have
rovenance A.

° + nand p[n], where n is an integer strictly greater than 0.
. - n, where n is an integer strictly less than 0.

e operations that access an object in B, that is indirection (xp or p[n] for n == 0) and member access (
p->member).

85)

Thus, the result is an implementation-defined value or an implementation-defined signal is raised.
86) Although such a round-trip conversion may be the identity for the pointer value, the side effect of exposing a storage

instance still takes place.
57)In general, the concept “correctly aligned” is transitive: if a pointer to type A is correctly aligned for a pointer to type B,

which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

differences to ISO/IEC 9899:2018, § 6.3.2.3 page 44 Language

48 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

values.”® If the program attempts to modify such an array, the behavior is undefined.
EXAMPLE 1 This pair of adjacent character string literals

n\x12" "3"

produces a single character string literal containing the two characters whose values are '\x12' and '3’ , because escape
sequences are converted into single members of the execution character set just prior to adjacent string literal concatenation.

EXAMPLE 2 Each of the sequences of adjacent string literal tokens

"a" "b" L"c"
"a" L"b" "c"
L"a" "b" L"c"
L"a" L"b" L"c"

is equivalent to the string literal

L"abc"

Likewise, each of the sequences

ngt o "p" oy"c"
"at oy"p" "c"
u"a" "b" u"c"

u"a" u"b" u"c

is equivalent to

u"abc"

Forward references: common definitions <stddef.h> (7.19), the mbstowcs function (7.22.8.1),
Unicode utilities <uchar.h> (7.28).

6.4.6 Punctuators

Syntax
punctuator: one of
1 ¢)y {4 3. ->
++ -- & *x + - ~ |
/ % << > < > <= >= = I= ~ | & ||
= x= = %= += == <<= >= &= = | =
, #O##
<: 1> <% %> %I %%

Semantics

A punctuator is a symbol that has independent syntactic and semantic significance. Depending on
context, it may specify an operation to be performed (which in turn may yield a value or a function
designator, produce a side effect, or some combination thereof) in which case it is known as an
operator (other forms of operator also exist in some contexts). An operand is an entity on which an
operator acts.

In all aspects of the language, the six tokens®”
<: 1> <% %> % %:i%:

behave, respectively, the same as the six tokens

98)This allows implementations to share storage instances for string literals and constant compound literals (6.5.2.5) with
the same or overlapping representations.
9)These tokens are sometimes called “digraphs”.

differences to ISO/IEC 9899:2018, § 6.4.6 page 56 Language

©ISO/IEC 2023 - All rights reserved

49



ISO/IEC TS 6010:2023(E)

6.5 Expressions

1 Anexpression is a sequence of operators and operands that specifies computation of a value,'® or

that designates an object or a function, or that generates side effects, or that performs a combination
thereof. The value computations of the operands of an operator are sequenced before the value
computation of the result of the operator.

2 If a side effect on a scalar object is unsequenced relative to either a different side effect on the
same scalar object or a value computation using the value of the same scalar object, the behavior
is undefined. If there are multiple allowable orderings of the subexpressions of an expression, the
behavior is undefined if such an unsequenced side effect occurs in any of the orderings.!%)

3 The grouping of operators and operands is indicated by the syntax.!%) Except as specified later,

side effects and value computations of subexpressions are unsequenced.!?”)

4  Some operators (the unary operator ~, and the binary operators <<, >>, & *, and |, collectively
described as bitwise operators) are required to have operands that have integer type. These operators
yield values that depend on the internal representations of integers, and have implementation-
defined and undefined aspects for signed types.

5  If an exceptional condition occurs during the evaluation of an expression (that is, if the result is not
mathematically defined or not in the range of representable values for its type), the behavior is
undefined.

6  The effective type of an object for an access to its stored value is the declared type of the object, if
any.!® If a value is stored into an object having no declared type through an lvalue having a type
that is not a character type, then the type of the Ivalue becomes the effective type of the object for
that access and for subsequent accesses that do not modify the stored value. If a value is copied into
an object having no declared type using memcpy or memmove, or is copied as an array of character
type, then the effective type of the modified object for that access and for subsequent accesses that
do not modify the value is the effective type of the object from which the value is copied, if it has
one. For all other accesses to an object having no declared type, the effective type of the object is
simply the type of the Ivalue used for the access.

7 An object shall have its stored value accessed only by an lvalue expression that has one of the
following types:'®)

— a type compatible with the effective type of the object,

— a qualified version of a type compatible with the effective type of the object,

109 Annex H documents the extent to which the C language supports the ISO/IEC 10967-1 standard for language-
independent arithmetic (LIA-1).
105This paragraph renders undefined statement expressions such as

i=++1+1;
ali++] = 1i;

while allowing

i=1+1;
ali] = i;

106)The syntax specifies the precedence of operators in the evaluation of an expression, which is the same as the order of the
major subclauses of this subclause, highest precedence first. Thus, for example, the expressions allowed as the operands
of the binary + operator (6.5.6) are those expressions defined in 6.5.1 through 6.5.6. The exceptions are cast expressions
(6.5.4) as operands of unary operators (6.5.3), and an operand contained between any of the following pairs of operators:
grouping parentheses () (6.5.1), subscripting brackets [] (6.5.2.1), function-call parentheses () (6.5.2.2), and the conditional
operator 7: (6.5.15).

Within each major subclause, the operators have the same precedence. Left- or right-associativity is indicated in each

subclause by the syntax for the expressions discussed therein.

109n an expression that is evaluated more than once during the execution of a program, unsequenced and indeterminately
sequenced evaluations of its subexpressions need not be performed consistently in different evaluations.

199 AHocated-objects-have-An object with allocated storage duration has no declaration and thus no declared type.

109The intent of this list is to specify those circumstances in which an object can or cannot be aliased.

Language differences to ISO/IEC 9899:2018, § 6.5 page 59

50 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

10

11

12

of the arguments after promotion are not compatible with the types of the parameters, the behavior
is undefined. If the function is defined with a type that does not include a prototype, and the types
of the arguments after promotion are not compatible with those of the parameters after promotion,
the behavior is undefined, except for the following cases:

— one promoted type is a signed integer type, the other promoted type is the corresponding
unsigned integer type, and the value is representable in both types;

— Dboth types are pointers to qualified or unqualified versions of a character type or void.

If the expression that denotes the called function has a type that does include a prototype, the
arguments are implicitly converted, as if by assignment, to the types of the corresponding parameters,
taking the type of each parameter to be the unqualified version of its declared type. The ellipsis
notation in a function prototype declarator causes argument type conversion to stop after the last
declared parameter. The default argument promotions are performed on trailing arguments.

No other conversions are performed implicitly; in particular, the number and types of arguments are
not compared with those of the parameters in a function definition that does not include a function
prototype declarator.

If the function is defined with a type that is not compatible with the type (of the expression) pointed
to by the expression that denotes the called function, the behavior is undefined.

There is a sequence point after the evaluations of the function designator and the actual arguments
but before the actual call. Every evaluation in the calling function (including other function calls)
that is not otherwise specifically sequenced before or after the execution of the body of the called
function is indeterminately sequenced with respect to the execution of the called function.!1®

Recursive function calls shall be permitted, both directly and indirectly through any chain of other
functions.

EXAMPLE In the function call

(xpf[f1()1) (f2(), f3() + f4())

the functions f1, 2, 3, and f4 can be called in any order. All side effects have to be completed before the function pointed
toby pf[f1()] is called.

Forward references: function declarators (including prototypes) (6.7.6.3), function definitions
(6.9.1), the return statement (6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members

Constraints

The first operand of the . operator shall have an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of that type.

The first operand of the-> operator shall have type “pointer to atomic, qualified, or unqualified
structure” or “pointer to atomic, qualified, or unqualified union”, and the second operand shall
name a member of the type pointed to.

Semantics

A postfix expression followed by the . operator and an identifier designates a member of a structure
or union object. The value is that of the named member,'?”) and is an lvalue if the first expression is
an lvalue. If the first expression has qualified type, the result has the so-qualified version of the type
of the designated member.

A posttix expression followed by the-> operator and an identifier designates a member of a structure
or union object. The pointer value shall be valid, not be the end address of its provenance, and be

116)In other words, function executions do not “interleave” with each other.

TI71f the member used to read the contents of a union object is not the same as the member last used to store a value in the
object, the appropriate part of the object representation of the value is reinterpreted as an object representation in the new
type as described in 6.2.6 (a process sometimes called “type punning”). This might be a trap-non-value representation.

Language differences to ISO/IEC 9899:2018, § 6.5.2.3 page 63

©ISO/IEC 2023 - All rights reserved

51



ISO/IEC TS 6010:2023(E)

52

correctly aliened for the structure or union type. The value is that of the named member of the

object to which the first expression points, and is an Ivalue.!'® If the first expression is a pointer to
a qualified type, the result has the so-qualified version of the type of the designated member.

Accessing a member of an atomic structure or union object results in undefined behavior.!”

One special guarantee is made in order to simplify the use of unions: if a union contains several
structures that share a common initial sequence (see below), and if the union object currently contains
one of these structures, it is permitted to inspect the common initial part of any of them anywhere
that a declaration of the completed type of the union is visible. Two structures share a common initial
sequence if corresponding members have compatible types (and, for bit-fields, the same widths) for a
sequence of one or more initial members.

EXAMPLE 1 If f is a function returning a structure or union, and x is a member of that structure or union, f() .x is a valid
postfix expression but is not an lvalue.

EXAMPLE 2 In:

struct s { int i; const int ci; };
struct s s;

const struct s cs;

volatile struct s vs;

the various members have the types:

s.i int

s.ci const int
cs.i const int
cs.ci const int
vs.1i volatile int

vs.ci volatile const int

EXAMPLE 3 The following is a valid fragment:

union {
struct {
int alltypes;
}on;
struct {
int type;
int intnode;
} ni;
struct {
int type;
double doublenode;
} nf;
Pu;
u.nf.type = 1;
u.nf.doublenode = 3.14;
/* ... x/
if (u.n.alltypes == 1)
if (sin(u.nf.doublenode) == 0.0)
/*x ... x/

The following is not a valid fragment (because the union type is not visible within function f):

struct t1 { int m; };

struct t2 { int m; };

int f(struct tl *pl, struct t2 =p2)
{

if (pl->m < 0)

18)Tf &E is a valid pointer expression (where & is the “address-of” operator, which generates a pointer to its operand), the
expression (&E) ->MO0S is the same as E.MOS.

19 Eor example, a data race would occur if access to the entire structure or union in one thread conflicts with access to a
member from another thread, where at least one access is a modification. Members can be safely accessed using a non-atomic
object which is assigned to or from the atomic object.

differences to ISO/IEC 9899:2018, § 6.5.2.3 page 64 Language

©ISO/IEC 2023 - All rights reserved




ISO/IEC TS 6010:2023(E)

list.12)

4 If the type name specifies an array of unknown size, the size is determined by the initializer list as
specified in 6.7.9, and the type of the compound literal is that of the completed array type. Otherwise
(when the type name specifies an object type), the type of the compound literal is that specified by
the type name. In either case, the result is an Ivalue.

5  The value of the compound literal is that of an unnamed object initialized by the initializer list. If
the compound literal occurs outside the body of a function, the object has static storage duration;
otherwise, it has automatic storage duration associated with the enclosing block.

6  All the semantic rules for initializer lists in 6.7.9 also apply to compound literals.!??

jects This-allowsimplementationsto-share storagefo 3

7  String literals, and compound literals with const-qualified types, need not designate distinct ob-

8 EXAMPLE 1 The file scope definition

’ int =p = (int [1){2, 4};

initializes p to point to the first element of an array of two ints, the first having the value two and the second, four. The
expressions in this compound literal are required to be constant. The unnamed object has static storage duration.

9 EXAMPLE 2 In contrast, in

void f(void)
{
int xp;
/X, .. %/
p = (int [2]){*p};
/*.. 0%/
}

p is assigned the address of the first element of an array of two ints, the first having the value previously pointed to by p and
the second, zero. The expressions in this compound literal need not be constant. The unnamed object has automatic storage
duration.

10 EXAMPLE 3 Initializers with designations can be combined with compound literals. Structure objects created using
compound literals can be passed to functions without depending on member order:

drawline((struct point){.x=1, .y=1},
(struct point){.x=3, .y=4});

Or, if drawline instead expected pointers to struct point:

drawline(&(struct point){.x=1, .y=1},
&(struct point){.x=3, .y=4});

11 EXAMPLE 4 A read-only compound literal can be specified through constructions like:

(const float []){1le0, lel, le2, 1le3, le4, le5, le6}

12 EXAMPLE 5 The following three expressions have different meanings:

"/tmp/fileXXXXXX"
(char [1){"/tmp/fileXXXXXX"}
(const char []){"/tmp/fileXXXXXX"}

The first always has static storage duration and has type array of char, but need not be modifiable; the last two have
automatic storage duration when they occur within the body of a function, and the first of these two is modifiable.

12DNote that this differs from a cast expression. For example, a cast specifies a conversion to scalar types or void only, and

the result of a cast expression is not an lvalue.
122)For example, subobjects without explicit initializers are initialized to zero.
'*This allows implementations to share storage instances for string literals and constant compound literals with the same

differences to ISO/IEC 9899:2018, § 6.5.2.5 page 66 Language

©ISO/IEC 2023 - All rights reserved 53



ISO/IEC TS 6010:2023(E)

54

13

14

15

1

16

EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory and can even be
shared. For example,

(const char []){"abc"} == "abc"

might yield 1 if the literals’ storage instance is shared.

EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly linked object. For
example, there is no way to write a self-referential compound literal that could be used as the function argument in place of
the named object endless_zeros below:

struct int_list { int car; struct int_list xcdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s { int i; };

int f (void)

{
struct s *p = 0, xq;
int j = 0;
again:
q=p, p==&((struct s){ j++ });
if (j < 2) goto again;
return p == q && q->i ==
}

The function f () always returns the value 1.

Note that if an iteration statement were used instead of an explicit goto and a labeled statement, the lifetime of the unnamed
object would be the body of the loop only, and on entry next time around p would have an indeterminate vatte,which
wouldresultinundefined-behaviorrepresentation. The behavior of the lvalue conversion of p in the assignment to g would
then be undefined.

Forward references: type names (6.7.7), initialization (6.7.9).

6.5.3 Unary operators

Syntax

unary-expression:
postfix-expression
++ unary-expression
- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof ( type-name )
—Alignof ( type-name )

unary-operator: one of
& x + - 7|

6.5.3.1 Prefix increment and decrement operators
Constraints

The operand of the prefix increment or decrement operator shall have atomic, qualified, or unquali-
fied real or pointer type, and shall be a modifiable lvalue.

Language differences to ISO/IEC 9899:2018, § 6.5.3.1 page 67

©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

Semantics

The value of the operand of the prefix++ operator is incremented. The result is the new value of the
operand after incrementation. The expression++E is equivalent to (E+=1). See the discussions of
additive operators and compound assignment for information on constraints, types, side effects,
and conversions and the effects of operations on pointers.

The prefix- - operator is analogous to the prefix++ operator, except that the value of the operand is
decremented.

Forward references: additive operators (6.5.6), compound assignment (6.5.16.2).

6.5.3.2 Address and indirection operators

Constraints

The operand of the unary & operator shall be either a function designator, the result of a [] or unary
* operator, or an lvalue that designates an object that is not a bit-field and is not declared with the
register storage-class specifier.

The operand of the unary * operator shall have pointer type.

Semantics

The unary & operator yields the address of its operand. If the operand has type “type”, the result has
type “pointer to type”. If the operand is the result of a unary * operator, neither that operator nor
the & operator is evaluated and the result is as if both were omitted, except that the constraints on
the operators still apply and the result is not an Ivalue. Similarly, if the operand is the result of a []
operator, neither the & operator nor the unary * that is implied by the [] is evaluated and the result
is as if the & operator were removed and the [] operator were changed to a+ operator. Otherwise,
the result is a pointer to the object or function designated by its operand.

The unary * operator denotes indirection. If the operand points to a function, the result is a function
de51gnator if it points to an object, the result is an lvalue designating the object. If the operand
has type “pointer to type”, the result has type “type”.

Hf-an-invalid-value-has-been-assigned-to-the
pointer-the behavior-of the-unary+operater-is-undefinedThe omter value shall be valid, not be
the end address of its provenance, and be correctly aligned for “type” 129

Forward references: storage-class specifiers (6.7.1), structure and union specifiers (6.7.2.1).

6.5.3.3 Unary arithmetic operators
Constraints

The operand of the unary + or- operator shall have arithmetic type; of the ~ operator, integer type;
of the ! operator, scalar type.

Semantics

The result of the unary+ operator is the value of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

The result of the unary- operator is the negative of its (promoted) operand. The integer promotions
are performed on the operand, and the result has the promoted type.

The result of the ~ operator is the bitwise complement of its (promoted) operand (that is, each bit in
the result is set if and only if the corresponding bit in the converted operand is not set). The integer
promotions are performed on the operand, and the result has the promoted type. If the promoted
type is an unsigned type, the expression ~E is equivalent to the maximum value representable in
that type minus E.

The result of the logical negation operator ! is 0 if the value of its operand compares unequal to

124)Thus, &+E is equivalent to E (even if E is a null pointer), and &(E1[E2]) to ((E1)+(E2)). It is always true that if E is a
function designator or an lvalue that is a valid operand of the unary & operator, *&E is a function designator or an Ivalue
equal to E. If *P is an Ivalue and T is the name of an object pointer type, * (T)P is an Ivalue that has a type compatible with
that to which T points.

Among the invalid values for dereferencing a pointer by the unary * operator are a null pointer, an address inappropriately
aligned for the type of object pointed to, and-the address of an object after the end of its lifetime, or any other invalid value.

differences to ISO/IEC 9899:2018, § 6.5.3.3 page 68 Language

©ISO/IEC 2023 - All rights reserved

55



ISO/IEC TS 6010:2023(E)

6.5.6 Additive operators

Syntax
1 additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
Constraints

2 For addition, either both operands shall have arithmetic type, or one operand shall be a pointer to a
complete object type and the other shall have integer type. (Incrementing is equivalent to adding 1.)

3 For subtraction, one of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible complete object
types; or

— the left operand is a pointer to a complete object type and the right operand has integer type.

(Decrementing is equivalent to subtracting 1.)

Semantics

4  If both operands have arithmetic type, the usual arithmetic conversions are performed on them.
5  The result of the binary+ operator is the sum of the operands.

6  The result of the binary - operator is the difference resulting from the subtraction of the second
operand from the first.

7  For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

8  When an expression that has integer type is added to or subtracted from a pointer, the result has the
type of the pointer operand. If the pointer operand points to an element of an array object, and the
array is large enough, the result points to an element offset from the original element such that the
difference of the subscripts of the resulting and original array elements equals the integer expression.

expression—<{Q)—I-points-to-the lastelementof the-array-object-If both the pointer operand and the
result point to elements of the same array object, or one past the last element of the array object, the
evaluation shall not produce an overflow; otherwise, the behavior is undefined. If the result points
one past the last element of the array object, it shall not be used as the operand of a unary * operator
that is evaluated. The result pointer has the same provenance as the pointer operand.'**

9  When two pointers are subtracted, both shall be valid and point to elements of the same array object,
or one past the last element of the array object;?” the result is the difference of the subscripts of the
two array elements. The size of the result is implementation-defined, and its type (a signed integer

type) is ptrdiff_t defined in the <stddef.h> header. If the result is not representable in an object
of that type, the behavior is undefined. In-other-words;if the-

128)1f the pointer operand P had been the result of an integer-to-pointer or scanf conversion that could have two possible

rovenances, and the integer value added or subtracted is not 0, the provenance S for the additive operation (and henceforth

other operations with P) must be such that the result lies in S (or one beyond).

129)This implies that they also have the same provenance.

Language differences to ISO/IEC 9899:2018, § 6.5.6 page 71

56 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

10

11

12

13

14

NOTE 1 If the expression P points to the 7:th element of an array object, the expressions (P)+N (equivalently N+(P)) and_
(P)-N (where N has the value 1) point to, respectively, the ¢ + n-thand ¢ ~ n-th elements of the array object, provided they
exist. Moreover, if the expression P points to the last element of an array object, the expression (P)+1 points one past the
last element of the array object, and if the expression Q points one past the last element of an array object, the expression
Q) -1 points to the last element of the array object.

NOTE 2 If the expressions P and Q point to, respectively, the i-th and j-th elements of an array object, the expression
(P)-(Q) has the value i — j provided the value fits in an object of type ptrdiff_t. Moreover, if the expression P points
either to an element of an array object or one past the last element of an array object, and the expression Q points to the last
element of the same array object, the expression ((Q)+1) - (P) has the same value as ((Q) - (P))+1 and as- ((P)-((Q)+1)) ,
and has the value zero if the expression P points one past the last element of the array object, even though the expression
(Q)+1 does not point to an element of the array object. i i te-isfi

requirements:
NOTE 3 Another way to approach pointer arithmetic is first to convert the pointer(s) to character pointer(s): In this scheme
the integer expression added to or subtracted from the converted pointer is first multiplied by the size of the object originall

ointed to, and the resulting pointer is converted back to the original type. For pointer subtraction, the result of the
difference between the character pointers is similarly divided by the size of the object originally pointed to.

When viewed in this way, an implementation need only provide one extra byte (which can overlap another object in the

rogram) just after the end of the object in order to satisfy the “one past the last element” requirements.

EXAMPLE Pointer arithmetic is well defined with pointers to variable length array types.

{
intn =4, m=3;
int a[n][m];
int (xp)[m] = a; // p == &a[0]
p+=1; // p == &a[l]
(xp) [2] = 99; // al[l][2] == 99
n=p-a; // n ==

}

If array a in the above example were declared to be an array of known constant size, and pointer p were declared to be a
pointer to an array of the same known constant size (pointing to a), the results would be the same.

Forward references: array declarators (6.7.6.2), common definitions <stddef.h> (7.19).

6.5.7 Bitwise shift operators

Syntax

shift-expression:
additive-expression
shift-expression « additive-expression
shift-expression » additive-expression

Constraints
Each of the operands shall have integer type.

Semantics

The integer promotions are performed on each of the operands. The type of the result is that of the
promoted left operand. If the value of the right operand is negative or is greater than or equal to the
width of the promoted left operand, the behavior is undefined.

The result of E1 << E2 is E1 left-shifted E2 bit positions; vacated bits are filled with zeros. If E1 has
an unsigned type, the value of the result is E1 x 22, reduced modulo one more than the maximum
value representable in the result type. If E1 has a signed type and nonnegative value, and E1 x 2F? is
representable in the result type, then that is the resulting value; otherwise, the behavior is undefined.

The result of E1 >> E2 is E1 right-shifted E2 bit positions. If E1 has an unsigned type or if E1 has a
signed type and a nonnegative value, the value of the result is the integral part of the quotient of

differences to ISO/IEC 9899:2018, § 6.5.7 page 72 Language

©ISO/IEC 2023 - All rights reserved

57



ISO/IEC TS 6010:2023(E)

E1/2F2. If E1 has a signed type and a negative value, the resulting value is implementation-defined.

6.5.8 Relational operators

Syntax
1 relational-expression:

shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

Constraints

2 One of the following shall hold:

— both operands have real type; or

— both operands are pointers to qualified or unqualified versions of compatible object types.

Semantics

3 If both of the operands have arithmetic type, the usual arithmetic conversions are performed.

4 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

5  When two pointers are compared, the-result-depends-on-the relative locations-inthe-address-space

they shall both be valid and have the sae rovenance. The result depends
on the relative ordering of their abstract addresses.

6  Each of the operators< (less than), > (greater than), <= (less than or equal to), and >= (greater than or
equal to) shall yield 1 if the specified relation is true and 0 if it is false.!®” The result has type int.

6.5.9 Equality operators

Syntax
1 equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression = relational-expression
Constraints

2 One of the following shall hold:

— both operands have arithmetic type;

— both operands are pointers to qualified or unqualified versions of compatible types;

130)The expression a<b<c is not interpreted as in ordinary mathematics. As the syntax indicates, it means (a<b)<c; in other
words, “if a is less than b, compare 1 to c; otherwise, compare 0 to c”.

Language differences to ISO/IEC 9899:2018, § 6.5.9 page 73

58 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

— one operand is a pointer to an object type and the other is a pointer to a qualified or unqualified
version of void; or

— one operand is a pointer and the other is a null pointer constant.

Semantics

3 The == (equal to) and != (not equal to) operators are analogous to the relational operators except
for their lower precedence.’®” None of the operands shall be an invalid pointer value, Each of the
operators yields 1 if the specified relation is true and 0 if it is false. The result has type int. For any
pair of operands, exactly one of the relations is true.

4 If both of the operands have arithmetic type, the usual arithmetic conversions are performed. Values
of complex types are equal if and only if both their real parts are equal and also their imaginary parts
are equal. Any two values of arithmetic types from different type domains are equal if and only
if the results of their conversions to the (complex) result type determined by the usual arithmetic
conversions are equal.

5  Otherwise, at least one operand is a pointer. If one operand is a pointer and the other is a null
pointer constant, the null pointer constant is converted to the type of the pointer. If one operand is a
pointer to an object type and the other is a pointer to a qualified or unqualified version of void, the
former is converted to the type of the latter.

6  Two-pointersIf one operand is null they compare equal if and only if beth-are nullpointers; both
MMW&QMMMW%% are pomters to the same-object {includinga

j : function type they compare
ﬂmm pomters to eﬂe?asﬁhehs%

if the have the same abstract address.

7 For the purposes of these operators, a pointer to an object that is not an element of an array behaves
the same as a pointer to the first element of an array of length one with the type of the object as its
element type.

6.5.10 Bitwise AND operator
Syntax
1 AND-expression:
equality-expression
AND-expression & equality-expression

Constraints
2 Each of the operands shall have integer type.

Semantics
3 The usual arithmetic conversions are performed on the operands.

4 The result of the binary & operator is the bitwise AND of the operands (that is, each bit in the result
is set if and only if each of the corresponding bits in the converted operands is set).

13D Because of the precedences, a<b == c<dis 1 whenever a<b and c<d have the same truth-value.

differences to ISO/IEC 9899:2018, § 6.5.10 page 74 Language

©ISO/IEC 2023 - All rights reserved 59



ISO/IEC TS 6010:2023(E)

const void *c_vp;
void *vp;

const int xc_ip;
volatile int *v_ip;
int xip;

const char *c_cp;

the third column in the following table is the common type that is the result of a conditional expression in which the first two
columns are the second and third operands (in either order):

c_vp c_ip const void *

v_ip 0 volatile int *

c_ip v_ip const volatile int x
vp c_cp const void *

ip c_ip const int =

vp ip void *

6.5.16 Assignment operators

Syntax
1 assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of
= %= [= %= 4= == <<= >>= &= "= |=

Constraints
2 An assignment operator shall have a modifiable lvalue as its left operand.

Semantics
3 An assignment operator stores a value in the object designated by the left operand. If a non-null

pointer is stored by an assignment operator, either directly or within a structure or union object,
the stored pointer object has the same provenance as the original. An assignment expression has
the value of the left operand after the assignment,'*® but is not an lvalue. The type of an assignment
expression is the type the left operand would have after lvalue conversion. The side effect of
updating the stored value of the left operand is sequenced after the value computations of the left
and right operands. The evaluations of the operands are unsequenced.

6.5.16.1 Simple assignment
Constraints

1 One of the following shall hold:!3%

— the left operand has atomic, qualified, or unqualified arithmetic type, and the right has
arithmetic type;

— the left operand has an atomic, qualified, or unqualified version of a structure or union type
compatible with the type of the right;

— the left operand has atomic, qualified, or unqualified pointer type, and (considering the type
the left operand would have after lvalue conversion) both operands are pointers to qualified
or unqualified versions of compatible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right;

133)The implementation is permitted to read the object to determine the value but is not required to, even when the object
has volatile-qualified type.

13)The asymmetric appearance of these constraints with respect to type qualifiers is due to the conversion (specified in
6.3.2.1) that changes lvalues to “the value of the expression” and thus removes any type qualifiers that were applied to the
type category of the expression (for example, it removes const but not volatile from the type int volatile * const).

Language differences to ISO/IEC 9899:2018, § 6.5.16.1 page 77

60 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

6.7 Declarations

Syntax

1 declaration:
declaration-specifiers init-declarator-list o ;
static_assert-declaration
declaration-specifiers:
storage-class-specifier declaration-specifiersopy
type-specifier declaration-specifiersqpt
type-qualifier declaration-specifiersopt
function-specifier declaration-specifiersqpt
alignment-specifier declaration-specifiersopt
init-declarator-list:
init-declarator
init-declarator-list , init-declarator
init-declarator:
declarator
declarator = initializer

Constraints

2 A declaration other than a static_assert declaration shall declare at least a declarator (other than
the parameters of a function or the members of a structure or union), a tag, or the members of an
enumeration.

3 If an identifier has no linkage, there shall be no more than one declaration of the identifier (in a
declarator or type specifier) with the same scope and in the same name space, except that:

— a typedef name may be redefined to denote the same type as it currently does, provided that
type is not a variably modified type;

— tags may be redeclared as specified in 6.7.2.3.

4 All declarations in the same scope that refer to the same object or function shall specify compatible
types.

Semantics

5 A declaration specifies the interpretation and attributes of a set of identifiers. A definition of an
identifier is a declaration for that identifier that:

— for an object, causes storage-a unique storage instance to be reserved for that object;

— for a function, includes the function body;*”

— for an enumeration constant, is the (only) declaration of the identifier;

— for a typedef name, is the first (or only) declaration of the identifier.

6  The declaration specifiers consist of a sequence of specifiers that indicate the linkage, storage
duration, and part of the type of the entities that the declarators denote. The init-declarator-list is a
comma-separated sequence of declarators, each of which may have additional type information, or
an initializer, or both. The declarators contain the identifiers (if any) being declared.

7 If an identifier for an object is declared with no linkage, the type for the object shall be complete
by the end of its declarator, or by the end of its init-declarator if it has an initializer; in the case of
function parameters (including in prototypes), it is the adjusted type (see 6.7.6.3) that is required to
be complete.

Forward references: declarators (6.7.6), enumeration specifiers (6.7.2.2), initialization (6.7.9), type
names (6.7.7), type qualifiers (6.7.3).

140 Function definitions have a different syntax, described in 6.9.1.

Language differences to ISO/IEC 9899:2018, § 6.7 page 83

©ISO/IEC 2023 - All rights reserved 61



ISO/IEC TS 6010:2023(E)

6.7.1 Storage-class specifiers
Syntax

1 storage-class-specifier:
typedef
extern
static
—Thread_local
auto
register

Constraints

2 Atmost, one storage-class specifier may be given in the declaration specifiers in a declaration, except
that _Thread_local may appear with static or extern.!)

3 Inthe declaration of an object with block scope, if the declaration specifiers include _Thread_local,
they shall also include either static or extern. If _Thread_local appears in any declaration of an
object, it shall be present in every declaration of that object.

4 _Thread_local shall not appear in the declaration specifiers of a function declaration.

Semantics

5  The typedef specifier is called a “storage-class specifier” for syntactic convenience only; it is
discussed in 6.7.8. The meanings of the various linkages and storage durations were discussed in
6.22and 6.24.

6 A declaration of an identifier for an object with storage-class specifier register suggests that
access to the object be as fast as possible. The extent to which such suggestions are effective is
implementation-defined.'*?)

7 The declaration of an identifier for a function that has block scope shall have no explicit storage-class
specifier other than extern.

8 If an aggregate or union object is declared with a storage-class specifier other than typedef, the
properties resulting from the storage-class specifier, except with respect to linkage, also apply to the
members of the object, and so on recursively for any aggregate or union member objects.

Forward references: type definitions (6.7.8).

6.7.2 Type specifiers
Syntax
1 type-specifier:

void
char
short
int
long
float
double
signed
unsigned
—Bool
—Complex
atomic-type-specifier

141
142

)See “future language directions” (6.11.5).

)The implementation can treat any register declaration simply as an auto declaration. However, whether or not
addressable-a storage instance that would otherwise be addressable is actually used, the address of any part of an object
declared with storage-class specifier register cannot be computed, either explicitly (by use of the unary & operator as
discussed in 6.5.3.2) or implicitly (by converting an array name to a pointer as discussed in 6.3.2.1). Thus, the only operator
that can be applied to an array declared with storage-class specifier register is sizeof.

differences to ISO/IEC 9899:2018, § 6.7.2 page 84 Language

62 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

10

11

12

13

14

15

16

17

18

incomplete until immediately after the } that terminates the list, and complete thereafter.

A member of a structure or union may have any complete object type other than a variably modified
type.!*¥ In addition, a member may be declared to consist of a specified number of bits (including
a sign bit, if any). Such a member is called a bit-field;'*) its width is preceded by a colon.

A bit-field is interpreted as having a signed or unsigned integer type consisting of the specified
number of bits.1® If the value 0 or 1 is stored into a nonzero-width bit-field of type —_Bool, the
value of the bit-field shall compare equal to the value stored; a_Bool bit-field has the semantics of a
—Bool.

An implementation may allocate any addressable storage unit large enough to hold a bit-field. If
enough space remains, a bit-field that immediately follows another bit-field in a structure shall be
packed into adjacent bits of the same unit. If insufficient space remains, whether a bit-field that
does not fit is put into the next unit or overlaps adjacent units is implementation-defined. The
order of allocation of bit-fields within a unit (high-order to low-order or low-order to high-order) is
implementation-defined. The alignment of the addressable storage unit is unspecified.

A bit-field declaration with no declarator, but only a colon and a width, indicates an unnamed
bit-field."*) Asa special case, a bit-field structure member with a width of 0 indicates that no
further bit-field is to be packed into the unit in which the previous bit-field, if any, was placed.

An unnamed member whose type specifier is a structure specifier with no tag is called an anonymous
structure; an unnamed member whose type specifier is a union specifier with no tag is called an
anonymous union. The members of an anonymous structure or union are considered to be members
of the containing structure or union. This applies recursively if the containing structure or union is
also anonymous.

Each non-bit-field member of a structure or union object is aligned in an implementation-defined
manner appropriate to its type.

Within a structure object, the non-bit-field members and the units in which bit-fields reside have
addresses that increase in the order in which they are declared. A pointer to a structure object,
suitably converted, points to its initial member (or if that member is a bit-field, then to the unit in
which it resides), and vice versa. There may be unnamed padding within a structure object, but not
at its beginning.

The size of a union is sufficient to contain the largest of its members. The value of at most one of the
members can be stored in a union object at any time. A pointer to a union object, suitably converted,
points to each of its members (or if a member is a bit-field, then to the unit in which it resides), and
vice versa.

There may be unnamed padding at the end of a structure or union.

As a special case, the last member of a structure with more than one named member may have an
incomplete array type; this is called a flexible array member. In most situations, the flexible array
member is ignored. In particular, the size of the structure is as if the flexible array member were
omitted except that it may have more trailing padding than the omission would imply. However,
when a . (or->) operator has a left operand that is (a pointer to) a structure with a flexible array
member and the right operand names that member, it behaves as if that member were replaced with
the longest array (with the same element type) that would not make the structure larger than the
objeet-storage instance being accessed; the offset of the array shall remain that of the flexible array
member, even if this would differ from that of the replacement array. If this array would have no
elements, it behaves as if it had one element but the behavior is undefined if any attempt is made to
access that element or to generate a pointer one past it.

1449 A structure or union cannot contain a member with a variably modified type because member names are not ordinary
identifiers as defined in 6.2.3.

145)The unary & (address-of) operator cannot be applied to a bit-field object; thus, there are no pointers to or arrays of bit-field
objects.

146) A5 specified in 6.7.2 above, if the actual type specifier used is int or a typedef-name defined as int, then it is implemen-
tation-defined whether the bit-field is signed or unsigned.

147) An unnamed bit-field structure member is useful for padding to conform to externally imposed layouts.

Language differences to ISO/IEC 9899:2018, § 6.7.2.1 page 87

©ISO/IEC 2023 - All rights reserved

63



ISO/IEC TS 6010:2023(E)

struct { int n; double d[8]; } *s1;
struct { int n; double d[5]; } *s2;

24  Following the further successful assignments:

sl
s2

malloc(sizeof (struct s) + 10);
malloc(sizeof (struct s) + 6);

they then behave as if the declarations were:

struct { int n; double d[1]; } *sl1, *s2;

and:
double *dp;
&(sl->d[0]); // valid
*dp 42; // valid
&(s2->d[0]); // valid
*dp 42 // undefined behavior

25 The assignment:

*S1 = *52;

only cop1es the member n; if any of the array elements are within the first sizeof (struct s) bytes of the structure, they
v eterminate-valuesare set to an indeterminate representation, that may or
ma not coincide with a copy of the representation of the elements of the source arra

26 EXAMPLE 3 Because members of anonymous structures and unions are considered to be members of the containing structure
or union, struct s in the following example has more than one named member and thus the use of a flexible array member

is valid:
struct s {
struct { int i; };
int a[l;
+

Forward references: declarators (6.7.6), tags (6.7.2.3).

6.7.2.2 Enumeration specifiers
Syntax
1 enum-specifier:
enum identifiero,y { enumerator-list }
enum identifiero,, { enumerator-list , }
enum identifier
enumerator-list:

enumerator

enumerator-list , enumerator
enumerator:

enumeration-constant

enumeration-constant = constant-expression
Constraints

2 The expression that defines the value of an enumeration constant shall be an integer constant
expression that has a value representable as an int.

Language differences to ISO/IEC 9899:2018, § 6.7.2.2 page 89

64 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

specify a pair of structures that contain pointers to each other. Note, however, that if s2 were already declared as a tag in an
enclosing scope, the declaration D1 would refer to it, not to the tag s2 declared in D2. To eliminate this context sensitivity, the
declaration

struct s2;

can be inserted ahead of D1. This declares a new tag s2 in the inner scope; the declaration D2 then completes the specification
of the new type.

Forward references: declarators (6.7.6), type definitions (6.7.8).

6.7.2.4 Atomic type specifiers
Syntax
1 atomic-type-specifier:
—Atomic ( type-name )

Constraints
2 Atomic type specifiers shall not be used if the implementation does not support atomic types (see
6.10.8.3).

3 The type name in an atomic type specifier shall not refer to an array type, a function type, an atomic
type, or a qualified type.

Semantics

4  The properties associated with atomic types are meaningful only for expressions that are lvalues.
If the _Atomic keyword is immediately followed by a left parenthesis, it is interpreted as a type
specifier (with a type name), not as a type qualifier.

6.7.3 Type qualifiers

Syntax
1 type-qualifier:
const
restrict
volatile
—Atomic

Constraints
2 Types other than pointer types whose referenced type is an object type shall not be restrict-qualified.

3 The _Atomic qualifier shall not be used if the implementation does not support atomic types
(see 6.10.8.3).

4 The type modified by the _Atomic qualifier shall not be an array type or a function type.

Semantics

5 The properties associated with qualified types are meaningful only for expressions that are Ival-
153)
ues.

6  If the same qualifier appears more than once in the same specifier-qualifier list or as declaration
specifiers, either directly or via one or more typedefs, the behavior is the same as if it appeared only
once. If other qualifiers appear along with the_Atomic qualifier the resulting type is the so-qualified
atomic type.

7 If an attempt is made to modify an object defined with a const-qualified type through use of an
lvalue with non-const-qualified type, the behavior is undefined. If an attempt is made to refer to an

159The implementation can place a const object that is not volatile in a read-only regior-efstorage instance. Moreover,

the-implementationneednot-altecate-a storage instance for such an object need not be addressable if its address is never

used.

differences to ISO/IEC 9899:2018, § 6.7.3 page 92 Language

©ISO/IEC 2023 - All rights reserved 65



ISO/IEC TS 6010:2023(E)

66

10

operator and changing the value of the size expression would not affect the result of the operator, it
is unspecified whether or not the size expression is evaluated.

For two array types to be compatible, both shall have compatible element types, and if both size
specifiers are present, and are integer constant expressions, then both size specifiers shall have
the same constant value. If the two array types are used in a context which requires them to be
compatible, it is undefined behavior if the two size specifiers evaluate to unequal values.

EXAMPLE 1

float fa[ll], xafp[l7];

declares an array of float numbers and an array of pointers to float numbers.

EXAMPLE 2 Note the distinction between the declarations

extern int xx;
extern int y[1];

The first declares x to be a pointer to int; the second declares y to be an array of int of unspecified size (an incomplete type),
the storage instance for which is defined elsewhere.

EXAMPLE 3 The following declarations demonstrate the compatibility rules for variably modified types.

extern int n;
extern int m;
void fcompat(void)
{
int a[n][6][m];
int (xp)[4]1[n+1];
int c[n]l[n]l[6][m];
int (xr)[n]l[n][n+1];
p = a; // invalid: not compatible because 4 !'= 6
r=c; // compatible, but defined behavior only if
// n==6 and m == n+l
}

EXAMPLE 4 All declarations of variably modified (VM) types have to be at either block scope or function prototype scope.
Array objects declared with the _Thread_local, static, or extern storage-class specifier cannot have a variable length
array (VLA) type. However, an object declared with the static storage-class specifier can have a VM type (that is, a pointer
to a VLA type). Finally, all identifiers declared with a VM type have to be ordinary identifiers and cannot, therefore, be
members of structures or unions.

extern int n;

int A[n]; // invalid: file scope VLA
extern int (xp2)[n]; // invalid: file scope VM
int B[100]; // valid: file scope but not VM
void fvla(int m, int C[m][m]); // valid: VLA with prototype scope
void fvla(int m, int C[m][m]) // valid: adjusted to auto pointer to VLA
{
typedef int VLA[m][m]; // valid: block scope typedef VLA

struct tag {

int (xy)I[n]; // invalid: 'y not ordinary identifier
int z[n]; // invalid: z not ordinary identifier
b
int D[m]; // valid: auto VLA
static int E[m]; // invalid: static block scope VLA
extern int F[m]; // invalid: F has linkage and is VLA
int (xs)[m]; // valid: auto pointer to VLA
extern int (xr)[m]; // invalid: r has linkage and points to VLA
static int (xq)[m] = &B; // valid: q is a static block pointer to VLA
differences to ISO/IEC 9899:2018, § 6.7.6.2 page 100 Language

©ISO/IEC 2023 - All rights reserved




ISO/IEC TS 6010:2023(E)

10

11

12
13

14

15

16

The type of the entity to be initialized shall be an array of unknown size or a complete object type
that is not a variable length array type.

All the expressions in an initializer for an object that has static or thread storage duration shall be
constant expressions or string literals.

If the declaration of an identifier has block scope, and the identifier has external or internal linkage,
the declaration shall have no initializer for the identifier.

If a designator has the form
[ constant-expression 1]

then the current object (defined below) shall have array type and the expression shall be an integer
constant expression. If the array is of unknown size, any nonnegative value is valid.

If a designator has the form
. identifier

then the current object (defined below) shall have structure or union type and the identifier shall be
the name of a member of that type.

Semantics

An initializer specifies the initial value stored in an object.

Except where explicitly stated otherwise, for the purposes of this subclause unnamed members
of objects of structure and union type do not participate in initialization. Unnamed members of
structure objects have indeterminate valuerepresentation even after initialization.

If an object that has automatic storage duration is not initialized explicitly, its v¥alue representation is
indeterminate. If an object that has static or thread storage duration is not initialized explicitly, then:

— if it has pointer type, it is initialized to a null pointer;
— if it has arithmetic type, it is initialized to (positive or unsigned) zero;

— if itis an aggregate, every member is initialized (recursively) according to these rules, and any
padding is initialized to zero bits;

— ifitis a union, the first named member is initialized (recursively) according to these rules, and
any padding is initialized to zero bits;

The initializer for a scalar shall be a single expression, optionally enclosed in braces. The initial value
of the object is that of the expression (after conversion); the same type constraints and conversions
as for simple assignment apply, taking the type of the scalar to be the unqualified version of its
declared type.

The rest of this subclause deals with initializers for objects that have aggregate or union type.

The initializer for a structure or union object that has automatic storage duration shall be either
an initializer list as described below, or a single expression that has compatible structure or union
type. In the latter case, the initial value of the object, including unnamed members, is that of the
expression.

An array of character type may be initialized by a character string literal or UTF-8 string literal,
optionally enclosed in braces. Successive bytes of the string literal (including the terminating null
character if there is room or if the array is of unknown size) initialize the elements of the array.

An array with element type compatible with a qualified or unqualified version of wchar_t, charl6_t,
or char32_t may be initialized by a wide string literal with the corresponding encoding prefix (L,
u, or U, respectively), optionally enclosed in braces. Successive wide characters of the wide string
literal (including the terminating null wide character if there is room or if the array is of unknown
size) initialize the elements of the array.

Otherwise, the initializer for an object that has aggregate or union type shall be a brace-enclosed list
of initializers for the elements or named members.

differences to ISO/IEC 9899:2018, § 6.7.9 page 106 Language

©ISO/IEC 2023 - All rights reserved

67



ISO/IEC TS 6010:2023(E)

68

1

6.8 Statements and blocks

Syntax
statement:

labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Semantics

A statement specifies an action to be performed. Except as indicated, statements are executed in
sequence.

A block allows a set of declarations and statements to be grouped into one syntactic unit. The
initializers of objects that have automatic storage duration, and the variable length array declarators
of ordinary identifiers with block scope, are evaluated and the values are stored in the objects

(including-storing-an-indeterminate-value-in-the representation of objects without an initializer

becomes indeterminate) each time the declaration is reached in the order of execution, as if it were a
statement, and within each declaration in the order that declarators appear.

A full expression is an expression that is not part of another expression, nor part of a declarator
or abstract declarator. There is also an implicit full expression in which the non-constant size
expressions for a variably modified type are evaluated; within that full expression, the evaluation of
different size expressions are unsequenced with respect to one another. There is a sequence point
between the evaluation of a full expression and the evaluation of the next full expression to be
evaluated.

NOTE Each of the following is a full expression:

— afull declarator for a variably modified type,

— an initializer that is not part of a compound literal,

— the expression in an expression statement,

— the controlling expression of a selection statement (if or switch),
— the controlling expression of a while or do statement,

— each of the (optional) expressions of a for statement,

— the (optional) expression in a return statement.

While a constant expression satisfies the definition of a full expression, evaluating it does not depend on nor produce any
side effects, so the sequencing implications of being a full expression are not relevant to a constant expression.

Forward references: expression and null statements (6.8.3), selection statements (6.8.4), iteration
statements (6.8.5), the return statement (6.8.6.4).

6.8.1 Labeled statements
Syntax

labeled-statement:
identifier : statement
case constant-expression : statement
default : statement

Constraints

A case or default label shall appear only in a switch statement. Further constraints on such labels
are discussed under the switch statement.

Label names shall be unique within a function.

Language differences to ISO/IEC 9899:2018, § 6.8.1 page 111

©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

7 EXAMPLE In the artificial program fragment

switch (expr)
{
int i = 4;
f(i);
case 0:
i=17;
/* falls through into default code */
default:
printf("sd\n", i);

the object whose identifier is i exists with automatic storage duration (within the block) but is never initialized, and thus if
the controlling expression has a nonzero value, the call to the printf function will access an indeterminate-valueobject with
an indeterminate representation. Similarly, the call to the function f cannot be reached.

6.8.5 Iteration statements

Syntax
1 iteration-statement:
while ( expression ) statement
do statement while ( expression ) ;
for (expressionop: ; expressionop: ; expressione: ) statement
for (declaration expressiongp: ; expressionept ) statement
Constraints

2 The controlling expression of an iteration statement shall have scalar type.
3 The declaration part of a for statement shall only declare identifiers for objects having storage class
auto or register.

Semantics

4  Aniteration statement causes a statement called the loop body to be executed repeatedly until the
controlling expression compares equal to 0. The repetition occurs regardless of whether the loop
body is entered from the iteration statement or by a jump.17®

5  Aniteration statement is a block whose scope is a strict subset of the scope of its enclosing block.
The loop body is also a block whose scope is a strict subset of the scope of the iteration statement.

6  An iteration statement may be assumed by the implementation to terminate if its controlling
expression is not a constant expression,'”” and none of the following operations are performed in its
body, controlling expression or (in the case of a for statement) its expression-3:178)

— input/output operations
— accessing a volatile object

— synchronization or atomic operations.
6.8.5.1 The while statement
1 The evaluation of the controlling expression takes place before each execution of the loop body.

6.8.5.2 The do statement
1 The evaluation of the controlling expression takes place after each execution of the loop body.

176)Code jumped over is not executed. In particular, the controlling expression of a for or while statement is not evaluated
before entering the loop body, nor is clause-1 of a for statement.

177) An omitted controlling expression is replaced by a nonzero constant, which is a constant expression.

178)This is intended to allow compiler transformations such as removal of empty loops even when termination cannot be
proven.

differences to ISO/IEC 9899:2018, § 6.8.5.2 page 114 Language

©ISO/IEC 2023 - All rights reserved 69



ISO/IEC TS 6010:2023(E)

6.9 External definitions

Syntax
1 translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints

2 The storage-class specifiers auto and register shall not appear in the declaration specifiers in an
external declaration.

3 There shall be no more than one external definition for each identifier declared with internal linkage
in a translation unit. Moreover, if an identifier declared with internal linkage is used in an expression
(other than as a part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), there shall be exactly one external definition for the identifier in the translation unit.

Semantics

4 Asdiscussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit, which
consists of a sequence of external declarations. These are described as “external” because they
appear outside any function (and hence have file scope). As discussed in 6.7, a declaration that

also causes storage-a storage instance to be reserved for an object or provides the body of a function
named by the identifier is a definition.

5  Anexternal definition is an external declaration that is also a definition of a function (other than an
inline definition) or an object. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), somewhere in the entire program there shall be exactly one external definition for the
identifier; otherwise, there shall be no more than one.'8?

6.9.1 Function definitions
Syntax
1 function-definition:
declaration-specifiers declarator declaration-list,, compound-statement

declaration-list:
declaration
declaration-list declaration

Constraints

2 The identifier declared in a function definition (which is the name of the function) shall have a
function type, as specified by the declarator portion of the function definition.'8

3 The return type of a function shall be void or a complete object type other than array type.
4 The storage-class specifier, if any, in the declaration specifiers shall be either extern or static.

5  If the declarator includes a parameter type list, the declaration of each parameter shall include an
identifier, except for the special case of a parameter list consisting of a single parameter of type void,
in which case there shall not be an identifier. No declaration list shall follow.

182
it.

)Thus, if an identifier declared with external linkage is not used in an expression, there need be no external definition for

differences to ISO/IEC 9899:2018, § 6.9.1 page 118 Language

70 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

10

11

12

13

If the declarator includes an identifier list, each declaration in the declaration list shall have at least
one declarator, those declarators shall declare only identifiers from the identifier list, and every
identifier in the identifier list shall be declared. An identifier declared as a typedef name shall not
be redeclared as a parameter. The declarations in the declaration list shall contain no storage-class
specifier other than register and no initializations.

Semantics

The declarator in a function definition specifies the name of the function being defined and the
identifiers of its parameters. If the declarator includes a parameter type list, the list also specifies the
types of all the parameters; such a declarator also serves as a function prototype for later calls to the
same function in the same translation unit. If the declarator includes an identifier list,'3% the types
of the parameters shall be declared in a following declaration list. In either case, the type of each
parameter is adjusted as described in 6.7.6.3 for a parameter type list; the resulting type shall be a
complete object type.

If a function that accepts a variable number of arguments is defined without a parameter type list

that ends with the ellipsis notation, the behavior is undefined.

Each parameter has automatic storage duration; its identifier is an lvalue. A-parameter-identifier
nnotberede ed-in—thefunet dy-exceptin-an-enclosed-block— The layout-of the storage

On entry to the function, the size expressions of each variably modified parameter are evaluated
and the value of each argument expression is converted to the type of the corresponding parameter
as if by assignment. (Array expressions and function designators as arguments were converted to
pointers before the call.)

After all parameters have been assigned, the compound statement that constitutes the body of the
function definition is executed.

Unless otherwise specified, if the } that terminates a function is reached, and the value of the
function call is used by the caller, the behavior is undefined.

EXAMPLE 1 In the following:

extern int max(int a, int b)

{

return a > b ? a: b;

}

extern is the storage-class specifier and int is the type specifier; max(int a, int b) is the function declarator; and

{ returna > b ?a: b; }

183)The intent is that the type category in a function definition cannot be inherited from a typedef:

typedef int F(void); // type F is “function with no parameters
// returning int”

F f, g // f and g both have type compatible with F

Ff{/x ... %/} // WRONG: syntax/constraint error

Fag() {/x ... x/ } // WRONG: declares that g returns a function

int f(void) { /x ... %/ } // RIGHT: f has type compatible with F

int g() { /x ... %/ } // RIGHT: g has type compatible with F

F xe(void) { /x ... %/ } // e returns a pointer to a function

F x((e))(void) { /x ... %/ } // same: parentheses irrelevant

int (xfp)(void); // fp points to a function that has type F

F *Fp; // Fp points to a function that has type F

189)See “future language directions” (6.11.7).

185 A parameter identifier cannot be redeclared in the function body except in an enclosed block. As any object with
automatic storage duration, each parameter gives rise to a unique storage instance representing it. Thus the relative layout
of parameters in the address space is unspecified.

Language differences to ISO/IEC 9899:2018, § 6.9.1 page 119

©ISO/IEC 2023 - All rights reserved

71



ISO/IEC TS 6010:2023(E)

— If an argument to a function has an invalid value (such as a value outside the domain of the
function, or a pointer outside the address space of the program, or a null pointer, or a pointer to
a non-modifiable storage instance when the corresponding parameter is not const-qualified) or
a type (after default argument promotion) not expected by a function with a variable number
of arguments, the behavior is undefined.

— If a function argument is described as being an array, the pointer actually passed to the function
shall have a value such that all address computations and accesses to objects (that would be
valid if the pointer did point to the first element of such an array) are in fact valid.

— Any function declared in a header may be additionally implemented as a function-like macro
defined in the header, so if a library function is declared explicitly when its header is included,
one of the techniques shown below can be used to ensure the declaration is not affected by
such a macro. Any macro definition of a function can be suppressed locally by enclosing
the name of the function in parentheses, because the name is then not followed by the left
parenthesis that indicates expansion of a macro function name. For the same syntactic reason,
it is permitted to take the address of a library function even if it is also defined as a macro.?%)
The use of #undef to remove any macro definition will also ensure that an actual function is
referred to.

— Any invocation of a library function that is implemented as a macro shall expand to code that
evaluates each of its arguments exactly once, fully protected by parentheses where necessary,
so it is generally safe to use arbitrary expressions as arguments.?’?)

— Likewise, those function-like macros described in the following subclauses may be invoked in
an expression anywhere a function with a compatible return type could be called.?'?)

— All object-like macros listed as expanding to integer constant expressions shall additionally be
suitable for use in #if preprocessing directives.

2 Provided that a library function can be declared without reference to any type defined in a header, it
is also permissible to declare the function and use it without including its associated header.

3  There is a sequence point immediately before a library function returns.

4 The functions in the standard library are not guaranteed to be reentrant and may modify objects
with static or thread storage duration.?!!)

5  Unless explicitly stated otherwise in the detailed descriptions that follow, library functions shall
prevent data races as follows: A library function shall not directly or indirectly access objects
accessible by threads other than the current thread unless the objects are accessed directly or
indirectly via the function’s arguments. A library function shall not directly or indirectly modify
objects accessible by threads other than the current thread unless the objects are accessed directly
or indirectly via the function’s non-const arguments.?’? Implementations may share their own

208)This means that an implementation is required to provide an actual function for each library function, even if it also
provides a macro for that function.

209Such macros might not contain the sequence points that the corresponding function calls do.

210)Because external identifiers and some macro names beginning with an underscore are reserved, implementations can
provide special semantics for such names. For example, the identifier _-BUILTIN_abs could be used to indicate generation of
in-line code for the abs function. Thus, the appropriate header could specify

’ #define abs(x) _BUILTIN_abs(x) ‘

for a compiler whose code generator will accept it.
In this manner, a user desiring to guarantee that a given library function such as abs will be a genuine function can write

’ #undef abs ‘

whether the implementation’s header provides a macro implementation of abs or a built-in implementation. The prototype
for the function, which precedes and is hidden by any macro definition, is thereby revealed also.

2MThys, a signal handler cannot, in general, call standard library functions.

212)This means, for example, that an implementation is not permitted to use a static object for internal purposes without
synchronization because it could cause a data race even in programs that do not explicitly share objects between threads.

Library differences to ISO/IEC 9899:2018, § 7.1.4 page 139

72 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

internal objects between threads if the objects are not visible to users and are protected against data
races.

Unless otherwise specified, library functions shall perform all operations solely within the current
thread if those operations have effects that are visible to users.?'

Unless otherwise specified, library functions by themselves do not expose storage instances,
but library functions that execute application specific callbacks*'¥ may expose storage instances
through calls into these callbacks.

EXAMPLE The function atoi can be used in any of several ways:

— by use of its associated header (possibly generating a macro expansion)

#include <stdlib.h>
const char xstr;

/* ... %/

i = atoi(str);

— by use of its associated header (assuredly generating a true function reference)

#include <stdlib.h>
#undef atoi

const char xstr;

/* ... %/

i = atoi(str);

#include <stdlib.h>
const char xstr;

/* ... %/

i = (atoi)(str);

— by explicit declaration

extern int atoi(const char x*);
const char x*str;

/* ... %/

i = atoi(str);

Similarly, an implementation of memcpy is not permitted to copy bytes beyond the specified length of the destination object
and then restore the original values because it could cause a data race if the program shared those bytes between threads.
213)This allows implementations to parallelize operations if there are no visible side effects.

#"The following library functions call application specific functions that they or related functions receive as arguments:
bsearch, call_once, exit (for atexit handlers) asort, quick_exit (for at_quick_exit handlers) and thrd_exit (for
thread specific storage).

differences to ISO/IEC 9899:2018, § 7.1.4 page 140 Library

©ISO/IEC 2023 - All rights reserved

73



ISO/IEC TS 6010:2023(E)

74

7.5 Errors <errno.h>
The header <errno. h> defines several macros, all relating to the reporting of error conditions.

The macros are

EDOM
EILSEQ
ERANGE

which expand to integer constant expressions with type int, distinct positive values, and which are
suitable for use in #if preprocessing directives; and

errno

which expands to a modifiable lvalue?® that has type int and thread local storage duration, the
value of which is set to a positive error number by several library functions. If a macro definition is
suppressed in order to access an actual object, or a program defines an identifier with the name
errno, the behavior is undefined.

The value of errno in the initial thread is zero at program startup (the-initial-value-of-errno-in
other threads-is-an-indeterminatevalueinitially representation of the object corresponding to errno
in any other thread is indeterminate), but is never set to zero by any library function.”?® The value
of errno may be set to nonzero by a library function call whether or not there is an error, provided
the use of errno is not documented in the description of the function in this document.

227

Additional macro definitions, beginning with E and a digit or E and an uppercase letter,”””) may also

be specified by the implementation.

225)The macro errno need not be the identifier of an object. It might expand to a modifiable Ivalue resulting from a function
call (for example, *errno() ).

226)Thus, a program that uses errno for error checking would set it to zero before a library function call, then inspect it
before a subsequent library function call. Of course, a library function can save the value of errno on entry and then set it to
zero, as long as the original value is restored if errno’s value is still zero just before the return.

227)See “future library directions” (7.31.3).

Library differences to ISO/IEC 9899:2018, § 7.5 page 155

©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

Description

2 The longjmp function restores the environment saved by the most recent invocation of the setjmp
macro in the same invocation of the program with the corresponding jmp_buf argument. If there
has been no such invocation, or if the invocation was from another thread of execution, or if the
function containing the invocation of the setjmp macro has terminated execution?’? in the interim,
or if the invocation of the setjmp macro was within the scope of an identifier with variably modified
type and execution has left that scope in the interim, the behavior is undefined.

3 All accessible objects have values, and all other components of the abstract machine?”® have

state, as of the time the longjmp function was called, except that the values-representation of
objects of automatic storage duration that are local to the function containing the invocation of
the corresponding setjmp macro that do not have volatile-qualified type and have been changed
between the setjmp invocation and longjmp call are-is indeterminate.

Returns

4 After longjmp is completed, thread execution continues as if the corresponding invocation of the
setjmp macro had just returned the value specified by val. The longjmp function cannot cause the
setjmp macro to return the value 0; if val is 0, the setjmp macro returns the value 1.

5 EXAMPLE The longjmp function that returns control back to the point of the setjmp invocation might cause memeory-the
storage instance associated with a variable length array object to be squandered.

#include <setjmp.h>
jmp_buf buf;

void g(int n);

void h(int n);

int n = 6;

void f(void)

{
int x[n]; // valid: f is not terminated
setjmp(buf);
g(n);
}
void g(int n)
{
int alnl]; // a may remain allocated
h(n);
}
void h(int n)
{
int b[n]; // b may remain allocated
longjmp(buf, 2); // might cause memory loss
}

272 For example, by executing a return statement or because another longjmp call has caused a transfer to a setjmp

invocation in a function earlier in the set of nested calls.
273)This includes, but is not limited to, the floating-point status flags and the state of open files.

differences to ISO/IEC 9899:2018, § 7.13.2.1 page 198 Library

©ISO/IEC 2023 - All rights reserved 75



ISO/IEC TS 6010:2023(E)

3 When a signal occurs and func points to a function, it is implementation-defined whether the
equivalent of signal(sig, SIG_DFL); is executed or the implementation prevents some imple-
mentation-defined set of signals (at least including sig) from occurring until the current signal
handling has completed; in the case of SIGILL, the implementation may alternatively define that
no action is taken. Then the equivalent of (¥func) (sig); is executed. If and when the function
returns, if the value of sig is SIGFPE, SIGILL, SIGSEGV, or any other implementation-defined value
corresponding to a computational exception, the behavior is undefined; otherwise the program will
resume execution at the point it was interrupted.

4 If the signal occurs as the result of calling the abort or raise function, the signal handler shall not
call the raise function.

5 If the signal occurs other than as the result of calling the abort or raise function, the behavior is
undefined if the signal handler refers to any object with static or thread storage duration that is
not a lock-free atomic object other than by assigning a value to an object declared as volatile
sig_atomic_t, or the signal handler calls any function in the standard library other than

— the abort function,
— the _Exit function,
— the quick_exit function,

— the functions in <stdatomic.h> (except where explicitly stated otherwise) when the atomic
arguments are lock-free,

— the atomic_is_lock_free function with any atomic argument, or

— the signal function with the first argument equal to the signal number corresponding to the
signal that caused the invocation of the handler. Furthermore, if such a call to the signal
function results in a SIG_ERR return, the value-ef-object designated by errno isindeterminate

has an indeterminate representation.?’¢)

6 At program startup, the equivalent of

’ signal(sig, SIG_IGN); ‘

may be executed for some signals selected in an implementation-defined manner; the equivalent of

’ signal(sig, SIG_DFL); ‘

is executed for all other signals defined by the implementation.
7 Use of this function in a multi-threaded program results in undefined behavior. The implementation
shall behave as if no library function calls the signal function.

Returns

8  If the request can be honored, the signal function returns the value of func for the most recent
successful call to signal for the specified signal sig. Otherwise, a value of SIG_ERR is returned and
a positive value is stored in errno.

Forward references: the abort function (7.22.4.1), the exit function (7.22.4.4), the _Exit function
(7.22.4.5), the quick_exit function (7.22.4.7).
7.14.2 Send signal

7.14.2.1 The raise function
Synopsis

1 #include <signal.h>
int raise(int sig);

279)1f any signal is generated by an asynchronous signal handler, the behavior is undefined.

differences to ISO/IEC 9899:2018, § 7.14.2.1 page 200 Library

76 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

7.16 Variable arguments <stdarg.h>

The header <stdarg. h> declares a type and defines four macros, for advancing through a list of
arguments whose number and types are not known to the called function when it is translated.

A function may be called with a variable number of arguments of varying types. As described in
6.9.1, its parameter list contains one or more parameters. The rightmost parameter plays a special
role in the access mechanism, and will be designated parmN in this description.

The type declared is

va_list

which is a complete object type suitable for holding information needed by the macros va_start,
va_arg, va_end, and va_copy. If access to the varying arguments is desired, the called function
shall declare an object (generally referred to as ap in this subclause) having type va_list. The object
ap may be passed as an argument to another function; if that function invokes the va_arg macro
with parameter ap, the value-representation of ap in the calling function is indeterminate and shall
be passed to the va_end macro prior to any further reference to ap.?’”

7.16.1 Variable argument list access macros

The va_start and va_arg macros described in this subclause shall be implemented as macros,
not functions. It is unspecified whether va_copy and va_end are macros or identifiers declared
with external linkage. If a macro definition is suppressed in order to access an actual function,
or a program defines an external identifier with the same name, the behavior is undefined. Each
invocation of the va_start and va_copy macros shall be matched by a corresponding invocation of
the va_end macro in the same function.

7.16.1.1 The va_arg macro
Synopsis

#include <stdarg.h>
type va_arg(va_list ap, type);

Description

The va_arg macro expands to an expression that has the specified type and the value of the next
argument in the call. The parameter ap shall have been initialized by the va_start or va_copy
macro (without an intervening invocation of the va_end macro for the same ap). Each invocation of
the va_arg macro modifies ap so that the values of successive arguments are returned in turn. The
parameter type shall be a type name specified such that the type of a pointer to an object that has the
specified type can be obtained simply by postfixing a * to type. If there is no actual next argument,
or if type is not compatible with the type of the actual next argument (as promoted according to the
default argument promotions), the behavior is undefined, except for the following cases:

— one type is a signed integer type, the other type is the corresponding unsigned integer type,
and the value is representable in both types;

— one type is pointer to void and the other is a pointer to a character type.

Returns

The first invocation of the va_arg macro after that of the va_start macro returns the value of the
argument after that specified by parmN. Successive invocations return the values of the remaining
arguments in succession.

27Nlt is permitted to create a pointer to a va_list and pass that pointer to another function, in which case the original
function can make further use of the original list after the other function returns.

Library differences to ISO/IEC 9899:2018, § 7.16.1.1 page 203

©ISO/IEC 2023 - All rights reserved

77



ISO/IEC TS 6010:2023(E)

7.17.2 Initialization
7.17.2.1 The ATOMIC_VAR_INIT macro
Synopsis

1 #include <stdatomic.h>
#define ATOMIC_VAR_INIT(C value)

Description

2 The ATOMIC_VAR_INIT macro expands to a token sequence suitable for initializing an atomic object of
a type that is initialization-compatible with value. An atomic object with automatic storage duration

that is not explicitly initialized is-initially-in-an-indeterminatestatehas initially an indeterminate
representation; however, the default (zero) initialization for objects with static or thread-local storage

duration is guaranteed to produce a valid state.?””

3 Concurrent access to the variable being initialized, even via an atomic operation, constitutes a data
race.

4 EXAMPLE

atomic_int guide = ATOMIC_VAR_INIT(42);

7.17.2.2 The atomic_init generic function
Synopsis

1 #include <stdatomic.h>
void atomic_init(volatile A *obj, C value);

Description

2 The atomic_init generic function initializes the atomic object pointed to by obj to the value value,
while also initializing any additional state that the implementation might need to carry for the
atomic object.

3 Although this function initializes an atomic object, it does not avoid data races; concurrent access to
the variable being initialized, even via an atomic operation, constitutes a data race.

4  If a signal occurs other than as the result of calling the abort or raise functions, the behavior is
undefined if the signal handler calls the atomic_init generic function.
Returns

5 The atomic_init generic function returns no value.

6  EXAMPLE

atomic_int guide;
atomic_init(&guide, 42);

7.17.3 Order and consistency

1 The enumerated type memory_order specifies the detailed regular (non-atomic) memory synchro-
nization operations as defined in 5.1.2.4 and may provide for operation ordering. Its enumeration
constants are as follows:?%")

memory_order_relaxed
memory_order_consume
memory_order_acquire
memory_order_release
memory_order_acqg_rel
memory_order_seq_cst

279)See “future library directions” (7.31.8).
280)See “future library directions” (7.31.8).

Library differences to ISO/IEC 9899:2018, § 7.17.3 page 207

78 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

7 EXAMPLE A consequence of spurious failure is that nearly all uses of weak compare-and-exchange will be in a loop.

exp = atomic_load(&cur);
do {
des = function(exp);
} while (!atomic_compare_exchange_weak(&cur, &exp, des));

When a compare-and-exchange is in a loop, the weak version will yield better performance on some platforms. When a weak
compare-and-exchange would require a loop and a strong one would not, the strong one is preferable.
Returns

8  The result of the comparison.

7.17.7.5 The atomic_fetch and modify generic functions

1 The following operations perform arithmetic and bitwise computations. All of these operations
are applicable to an object of any atomic integer type. None of these operations is applicable to
atomic_bool. The key, operator, and computation correspondence is:

key op computation
add +  addition

sub - subtraction
or | bitwise inclusive or
xor bitwise exclusive or

and & bitwise and

Synopsis

2 #include <stdatomic.h>
C atomic_fetch_key(volatile A *xobject, M operand);
C atomic_fetch_key_explicit(volatile A *object,

M operand, memory_order order);

Description

3 Atomically replaces the value pointed to by object with the result of the computation applied to
the value pointed to by object and the given operand. Memory is affected according to the value of
order. These operations are atomic read-modify-write operations (5.1.2.4). For signed integer types,
arithmetic is defined to use two’s complement representation with silent wrap-around on overflow;
there are no undefined results. For address types, the result may be an undefined address, but the
operations otherwise have no undefined behavior.

Returns
4 Atomically, the value pointed to by object immediately before the effects.

5 NOTE The operation of the atomic_fetch and modify generic functions are nearly equivalent to the operation of the
corresponding op= compound assignment operators. The only differences are that the compound assignment operators are
not guaranteed to operate atomically, and the value yielded by a compound assignment operator is the updated value of the
object, whereas the value returned by the atomic_fetch and modify generic functions is the previous value of the atomic
object.

7.17.8 Atomic flag type and operations

1 The atomic_flag type provides the classic test-and-set functionality. It has two states, set and clear.

2 Operations on an object of type atomic_flag shall be lock free.

3 NOTE Hence, as per 7.17.5, the operations should also be address-free. No other type requires lock-free operations, so the
atomic_flag type is the minimum hardware-implemented type needed to conform to this document. The remaining types
can be emulated with atomic_flag, though with less than ideal properties.

4  The macro ATOMIC_FLAG_INIT may be used to initialize an atomic_flag to the clear state.
An atomic_flag that is not explicitly initialized with ATOMIC_FLAG_INIT is—initially—in—an
indeterminatestatehas initially an indeterminate representation.

differences to ISO/IEC 9899:2018, § 7.17.8 page 214 Library

©ISO/IEC 2023 - All rights reserved

79



ISO/IEC TS 6010:2023(E)

7.20 Integer types <stdint.h>

1 The header <stdint.h> declares sets of integer types having specified widths, and defines corre-
sponding sets of macros.”® It also defines macros that specify limits of integer types corresponding
to types defined in other standard headers.

2 Types are defined in the following categories:

— integer types having certain exact widths;

— integer types having at least certain specified widths;

— fastest integer types having at least certain specified widths;
— integer types wide enough to hold pointers to objects;

— integer types having greatest width.

(Some of these types may denote the same type.)
3 Corresponding macros specify limits of the declared types and construct suitable constants.

4 For each type described herein that the implementation provides,?®® <stdint.h> shall declare that
typedef name and define the associated macros. Conversely, for each type described herein that
the implementation does not provide, <stdint.h> shall not declare that typedef name nor shall it
define the associated macros. An implementation shall provide those types described as “required”,
but need not provide any of the others (described as “optional”).

7.20.1 Integer types
1 When typedef names differing only in the absence or presence of the initial u are defined, they shall

denote corresponding signed and unsigned types as described in 6.2.5; an implementation providing
one of these corresponding types shall also provide the other.

2 In the following descriptions, the symbol N represents an unsigned decimal integer with no leading
zeros (e.g., 8 or 24, but not 04 or 048).

7.20.1.1 Exact-width integer types

1 The typedef name intN_t designates a signed integer type with width N, no padding bits, and a
two’s complement representation. Thus, int8_t denotes such a signed integer type with a width of
exactly 8 bits.

2 The typedef name uintN_t designates an unsigned integer type with width N and no padding bits.
Thus, uint24_t denotes such an unsigned integer type with a width of exactly 24 bits.

3 Thesetypesare-optional-Howeverif1f an implementation provides standard or extended integer
types with widths-of8;16;32-0r-64-bitsa particular width, no padding bits, and (for the signed

types) that have a two’s complement representation, it shall define the corresponding typedef names.

7.20.1.2 Minimum-width integer types

1 The typedef name int_leastN_t designates a signed integer type with a width of at least N, such
that no signed integer type with lesser size has at least the specified width. Thus, int_least32_t
denotes a signed integer type with a width of at least 32 bits.

2 The typedef name uint_leastN_t designates an unsigned integer type with a width of at least
N, such that no unsigned integer type with lesser size has at least the specified width. Thus,
uint_least1l6_t denotes an unsigned integer type with a width of at least 16 bits.

3 The following types are required:

285)Gee “future library directions” (7.31.10).
286)Some of these types might denote implementation-defined extended integer types.

differences to ISO/IEC 9899:2018, § 7.20.1.2 page 218 Library

80 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

int_least8_t uint_least8_t

int_leastl6_t uint_leastl6_t
int_least32_t uint_least32_t
int_least64_t uint_least64_t

All other types of this form are optional.

7.20.1.3 Fastest minimum-width integer types

Each of the following types designates an integer type that is usually fastest’”) to operate with
among all integer types that have at least the specified width.

The typedef name int_fastN_t designates the fastest signed integer type with a width of at least
N. The typedef name uint_fastN_t designates the fastest unsigned integer type with a width of at
least N.

The following types are required:

int_fast8_t uint_fast8_t

int_fastl6_t uint_fastl6_t
int_fast32_t uint_fast32_t
int_fast64_t uint_fast64_t

All other types of this form are optional.

7.20.1.4 Integer types capable of holding object pointers

The following type designates a signed integer type with the property that any valid pointer to void
can be converted to this type, then converted back to pointer to void, and the result will compare
equal to the original pointer:

intptr_t

The following type designates an-the corresponding unsigned integer type with the property that
any valid pointer to void can be converted to this type, then converted back to pointer to void, and
the result will compare equal to the original pointer:

uintptr_t

These types are eptional—required.
NOTE 1 The types intptr_t and uintptr_t are possibl es intmax_t and uintmax_t (7.20.1.5).

This exception is intended to accommodate implementations that otherwise would not be able to specify intptr_t and
uintptr_t consistent with the rules for these types.

NOTE2 Although these integer types allow roundtrip conversions of values of type pointer to void and therefore guarantee
that such conversions do not lose information, arithmetic on these types is not necessarily consistent with arithmetic on
pointer to character types, nor can properties of pointer values such as alignment be portably deduced from the bit pattern

On the other hand, the rules for abstract addresses in 6:2.6.1, 6.5.8 and 6.5.9 impose that two values of type uintptr_t that
originate from conversions of two pointers to the same storage instance compare the same for the relational and equality
operators as the original pointer values. Also, the reconstruction of all the bits of a valid abstract address that has previously
been exposed gives rise to an integer value that converts back to the corresponding byte address.

7.20.1.5 Greatest-width integer types
The following type designates a signed integer type capable of representing any value of any signed

integer type with the possible exception of signed extended integer types that are wider than lon
long and that are referred by the type definition for an exact width integer type or for intptr_t :

intmax_t

27)The designated type is not guaranteed to be fastest for all purposes; if the implementation has no clear grounds for
choosing one type over another, it will simply pick some integer type satisfying the signedness and width requirements.

Library differences to ISO/IEC 9899:2018, § 7.20.1.5 page 219

©ISO/IEC 2023 - All rights reserved

81



ISO/IEC TS 6010:2023(E)

The following type designates a ig i
the unsigned integer type : Mm%mg&—f“)

uintmax_t

These types are required.

7.20.2 Limits of specified-width integer types

1 The following object-like macros specify the minimum and maximum limits of the types declared in
<stdint.h>. Each macro name corresponds to a similar type name in 7.20.1.

2 Each instance of any defined macro shall be replaced by a constant expression suitable for use in
#if preprocessing directives, and this expression shall have the same type as would an expression
that is an object of the corresponding type converted according to the integer promotions. Its
implementation-defined value shall be equal to or greater in magnitude (absolute value) than the
corresponding value given below, with the same sign, except where stated to be exactly the given
value.

7.20.2.1 Limits of exact-width integer types

1 — minimum values of exact-width signed integer types

’ INTN_MIN exactly —(2V71) ‘

— maximum values of exact-width signed integer types

’ INTN_MAX exactly 2V7! — 1 ‘

— maximum values of exact-width unsigned integer types

’ UINTN_MAX exactly 2V —1 ‘

7.20.2.2 Limits of minimum-width integer types

1 — minimum values of minimum-width signed integer types

’ INT_LEASTA_MIN @V -1 ‘

— maximum values of minimum-width signed integer types

’ INT_LEASTN_MAX P | ‘

— maximum values of minimum-width unsigned integer types

’ UINT_LEASTN_MAX 2N 1 ‘

7.20.2.3 Limits of fastest minimum-width integer types

1 — minimum values of fastest minimum-width signed integer types

’ INT_FASTN_MIN —(2N1 —1) ‘

— maximum values of fastest minimum-width signed integer types

’ INT_FASTN_MAX V-1 _q ‘

288)Thus this type is capable of representing any value of any unsigned integer type with the possible exception of particular
extended integer types that are wider than unsigned long long.

differences to ISO/IEC 9899:2018, § 7.20.2.3 page 220 Library

82 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

SIZE_MAX 65535

— limits of wchar_t

WCHAR_MIN see below
WCHAR_MAX see below

— limits of wint_t

WINT_MIN see below
WINT_MAX see below

3 If sig_atomic_t (see 7.14) is defined as a signed integer type, the value of SIG_ATOMIC_MIN shall
be no greater than —127 and the value of SIG_ATOMIC_MAX shall be no less than 127; otherwise,
sig_atomic_t is defined as an unsigned integer type, and the value of SIG_LATOMIC_MIN shall be 0
and the value of SIG_ATOMIC_MAX shall be no less than 255.

4 Ifwchar_t (see 7.19) is defined as a signed integer type, the value of WCHAR_MIN shall be no greater
than —127 and the value of WCHAR_MAX shall be no less than 127; otherwise, wchar_t is defined as
an unsigned integer type, and the value of WCHAR_MIN shall be 0 and the value of WCHAR_MAX shall
be no less than 255.2%0

5 Ifwint_t (see 7.29) is defined as a signed integer type, the value of WINT_MIN shall be no greater
than —32767 and the value of WINT_MAX shall be no less than 32767; otherwise, wint_t is defined as
an unsigned integer type, and the value of WINT_MIN shall be 0 and the value of WINT_MAX shall be
no less than 65535.

7.20.4 Macros for integer constants
1 The following function-like macros expand to integer constants suitable for initializing objects that

have integer types corresponding to types defined in <stdint.h>. Each macro name corresponds to
a similar type name in 7.20.1.2 or 7.20.1.5.

2 The argument in any instance of these macros shall be an unsuffixed integer constant (as defined in
6.4.4.1) with a value that does not exceed the limits for the corresponding type.

3 Each invocation of one of these macros shall expand to an integer constant expressionsuitablefor

use-in#if preprocessing-directives. The type of the expression shall have the same type as would

an expression of the corresponding type converted according to the integer promotions. The value

of the expression shall be that of the argument. If the value and promoted type is in the range of the
type intmax_t (for a signed type) or uintmax_t (for an unsigned type), see 7.20.1.5, the expression
is suitable for use in #if preprocessing directives

7.20.4.1 Macros for minimum-width integer constants

1 The macro INTN_C(value) expands to an integer constant expression corresponding to the type
int_leastN_t. The macro UINTN_C(value) expands to an integer constant expression corre-
sponding to the type uint_leastN_t. For example, if uint_least64_t is a name for the type
unsigned long long int, then UINT64_C(0x123) might expand to the integer constant 0x123ULL.

7.20.4.2 Macros for greatest-width integer constants

1 The following macro expands to an integer constant expression having the value specified by its
argument and the type intmax_t:

INTMAX_C(value)

The following macro expands to an integer constant expression having the value specified by its
argument and the type uintmax_t:

20)The values WCHAR_MIN and WCHAR_MAX do not necessarily correspond to members of the extended character set.

differences to ISO/IEC 9899:2018, § 7.20.4.2 page 222 Library

©ISO/IEC 2023 - All rights reserved 83



ISO/IEC TS 6010:2023(E)

stream and those in the external representation. Data read in from a text stream will necessarily
compare equal to the data that were earlier written out to that stream only if: the data consist only
of printing characters and the control characters horizontal tab and new-line; no new-line character
is immediately preceded by space characters; and the last character is a new-line character. Whether
space characters that are written out immediately before a new-line character appear when read in
is implementation-defined.

3 A binary stream is an ordered sequence of characters that can transparently record internal data.
Data read in from a binary stream shall compare equal to the data that were earlier written out to
that stream, under the same implementation. Such a stream may, however, have an implementation-
defined number of null characters appended to the end of the stream.

4 Each stream has an orientation. After a stream is associated with an external file, but before any
operations are performed on it, the stream is without orientation. Once a wide character input/out-
put function has been applied to a stream without orientation, the stream becomes a wide-oriented
stream. Similarly, once a byte input/output function has been applied to a stream without orien-
tation, the stream becomes a byte-oriented stream. Only a call to the freopen function or the fwide
function can otherwise alter the orientation of a stream. (A successful call to freopen removes any
orientation.)?*®

5  Byte input/output functions shall not be applied to a wide-oriented stream and wide character
input/output functions shall not be applied to a byte-oriented stream. The remaining stream
operations do not affect, and are not affected by, a stream’s orientation, except for the following
additional restrictions:

— Binary wide-oriented streams have the file-positioning restrictions ascribed to both text and
binary streams.

— For wide-oriented streams, after a successful call to a file-positioning function that leaves the
file position indicator prior to the end-of-file, a wide character output function can overwrite
a partial multibyte character; any file contents beyond the byte(s) written are-henceforth

indeterminatemay henceforth not consist of valid multibyte characters.

6  Each wide-oriented stream has an associated mbstate_t object that stores the current parse state
of the stream. A successful call to fgetpos stores a representation of the value of this mbstate_t
object as part of the value of the fpos_t object. A later successful call to fsetpos using the same
stored fpos_t value restores the value of the associated mbstate_t object as well as the position
within the controlled stream.

7 Each stream has an associated lock that is used to prevent data races when multiple threads of
execution access a stream, and to restrict the interleaving of stream operations performed by multiple
threads. Only one thread may hold this lock at a time. The lock is reentrant: a single thread may
hold the lock multiple times at a given time.

8  All functions that read, write, position, or query the position of a stream lock the stream before
accessing it. They release the lock associated with the stream when the access is complete.

Environmental limits

9  Animplementation shall support text files with lines containing at least 254 characters, including
the terminating new-line character. The value of the macro BUFSIZ shall be at least 256.

Forward references: the freopen function (7.21.5.4), the fwide function (7.29.3.5), mbstate_t
(7.29.1), the fgetpos function (7.21.9.1), the fsetpos function (7.21.9.3).

7.21.3 Files

1 A stream is associated with an external file (which may be a physical device) by opening a file, which
may involve creating a new file. Creating an existing file causes its former contents to be discarded,
if necessary. If a file can support positioning requests (such as a disk file, as opposed to a terminal),
then a file position indicator associated with the stream is positioned at the start (character number

23)The three predefined streams stdin, stdout, and stderr are unoriented at program startup.

differences to ISO/IEC 9899:2018, § 7.21.3 page 226 Library

84 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

10

11

zero) of the file, unless the file is opened with append mode in which case it is implementation-
defined whether the file position indicator is initially positioned at the beginning or the end of the
file. The file position indicator is maintained by subsequent reads, writes, and positioning requests,
to facilitate an orderly progression through the file.

Binary files are not truncated, except as defined in 7.21.5.3. Whether a write on a text stream causes
the associated file to be truncated beyond that point is implementation-defined.

When a stream is unbuffered, characters are intended to appear from the source or at the destination
as soon as possible. Otherwise characters may be accumulated and transmitted to or from the host
environment as a block. When a stream is fully buffered, characters are intended to be transmitted
to or from the host environment as a block when a buffer is filled. When a stream is line buffered,
characters are intended to be transmitted to or from the host environment as a block when a new-line
character is encountered. Furthermore, characters are intended to be transmitted as a block to the
host environment when a buffer is filled, when input is requested on an unbuffered stream, or when
input is requested on a line buffered stream that requires the transmission of characters from the
host environment. Support for these characteristics is implementation-defined, and may be affected
via the setbuf and setvbuf functions.

A file may be disassociated from a controlling stream by closing the file. Output streams are
flushed (any unwritten buffer contents are transmitted to the host environment) before the stream
is disassociated from the file. The value-of-apointerto-alifetime of a FILE object is-indeterminate
after-ends when the associated file is closed (including the standard text streams). Whether a file
of zero length (on which no characters have been written by an output stream) actually exists is
implementation-defined.

The file may be subsequently reopened, by the same or another program execution, and its contents
reclaimed or modified (if it can be repositioned at its start). If the main function returns to its original
caller, or if the exit function is called, all open files are closed (hence all output streams are flushed)
before program termination. Other paths to program termination, such as calling the abort function,
need not close all files properly.

The address of the FILE object used to control a stream may be significant; a copy of a FILE object
need not serve in place of the original.

At program startup, three text streams are predefined and need not be opened explicitly — standard
input (for reading conventional input), standard output (for writing conventional output), and standard
error (for writing diagnostic output). As initially opened, the standard error stream is not fully
buffered; the standard input and standard output streams are fully buffered if and only if the stream
can be determined not to refer to an interactive device.

Functions that open additional (nontemporary) files require a file name, which is a string. The
rules for composing valid file names are implementation-defined. Whether the same file can be
simultaneously open multiple times is also implementation-defined.

Although both text and binary wide-oriented streams are conceptually sequences of wide characters,
the external file associated with a wide-oriented stream is a sequence of multibyte characters,
generalized as follows:

— Multibyte encodings within files may contain embedded null bytes (unlike multibyte encod-
ings valid for use internal to the program).

— A file need not begin nor end in the initial shift state.?*¥

Moreover, the encodings used for multibyte characters may differ among files. Both the nature and
choice of such encodings are implementation-defined.

The wide character input functions read multibyte characters from the stream and convert them
to wide characters as if they were read by successive calls to the fgetwc function. Each conversion

294)Setting the file position indicator to end-of-file, as with fseek(file, 0, SEEK_END), has undefined behavior for a
binary stream (because of possible trailing null characters) or for any stream with state-dependent encoding that does not
assuredly end in the initial shift state.

Library differences to ISO/IEC 9899:2018, § 7.21.3 page 227

©ISO/IEC 2023 - All rights reserved

85



ISO/IEC TS 6010:2023(E)

Returns
5  The freopen function returns a null pointer if the open operation fails. Otherwise, freopen returns
the value of stream.
7.21.5.5 The setbuf function
Synopsis

1 #include <stdio.h>
void setbuf(FILE x restrict stream,
char x restrict buf);

Description

2 Except that it returns no value, the setbuf function is equivalent to the setvbuf function invoked
with the values _IOFBF for mode and BUFSIZ for size, or (if buf is a null pointer), with the value
—IONBF for mode.

Returns
3 The setbuf function returns no value.
Forward references: the setvbuf function (7.21.5.6).

7.21.5.6 The setvbuf function
Synopsis

1 #include <stdio.h>

int setvbuf(FILE * restrict stream,
char x restrict buf,
int mode, size_t size);

Description

2 The setvbuf function may be used only after the stream pointed to by stream has been associated
with an open file and before any other operation (other than an unsuccessful call to setvbuf) is
performed on the stream. The argument mode determines how stream will be buffered, as follows:

_IOFBF causes input/output to be fully buffered;
_IOLBF causes input/output to be line buffered;

—IONBF causes input/output to be unbuffered.

If buf is not a null pointer, the array it points to may be used instead of a buffer allocated by the
setvbuf function” and the argument size specifies the size of the array; otherwise, size may
determine the size of a buffer allocated by the setvbuf function. The eenterits-members of the array
at any time are-indeterminatehave unspecified values.

Returns

3 The setvbuf function returns zero on success, or nonzero if an invalid value is given for mode or if
the request cannot be honored.

7.21.6 Formatted input/output functions

1 The formatted input/output functions shall behave as if there is a sequence point after the actions
associated with each specifier.3?")

29)The buffer has to have a lifetime at least as great as the open stream, so not closing the stream before a buffer that has
automatic storage duration is deallocated upon block exit results in undefined behavior.
30)The fprintf functions perform writes to memory for the %n specifier.

Library differences to ISO/IEC 9899:2018, § 7.21.6 page 233

86 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

of 2, then the precision is sufficient to distinguish®® values of type double, except that
trailing zeros may be omitted; if the precision is zero and the # flag is not specified, no
decimal-point character appears. The letters abcdef are used for a conversion and the
letters ABCDEF for A conversion. The A conversion specifier produces a number with X and
P instead of x and p. The exponent always contains at least one digit, and only as many
more digits as necessary to represent the decimal exponent of 2. If the value is zero, the
exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

c If no 1 length modifier is present, the int argument is converted to an unsigned char,and
the resulting character is written.

If an 1 length modifier is present, the wint_t argument is converted as if by an 1s
conversion specification with no precision and an argument that points to the initial
element of a two-element array of wchar_t, the first element containing the wint_t
argument to the lc conversion specification and the second a null wide character.

s If no 1 length modifier is present, the argument shall be a pointer to the initial element
of an array of character type.3’® Characters from the array arewritten up to (but not
including) the terminating null character. If the precision is specified, no more than that
many bytes are written. If the precision is not specified or is greater than the size of the
array, the array shall contain a null character.

If an 1 length modifier is present, the argument shall be a pointer to the initial element
of an array of wchar_t type. Wide characters from the array are converted to multibyte
characters (each as if by a call to the wertomb function, with the conversion state described
by an mbstate_t object initialized to zero before the first wide character is converted) up
to and including a terminating null wide character. The resulting multibyte characters are
written up to (but not including) the terminating null character (byte). If no precision is
specified, the array shall contain a null wide character. If a precision is specified, no more
than that many bytes are written (including shift sequences, if any), and the array shall
contain a null wide character if, to equal the multibyte character sequence length given by
the precision, the function would need to access a wide character one past the end of the
array. In no case is a partial multibyte character written.3%”)

p The argument shall be a pointer to void. The value of the pointer shall be valid or null. It
is converted to a sequence of printing characters, in an implementation-defined manner. If

the value of the pointer is valid its provenance is henceforth exposed.

n The argument shall be a pointer to signed integer into which is written the number of
characters written to the output stream so far by this call to fprintf. No argument is
converted, but one is consumed. If the conversion specification includes any flags, a field
width, or a precision, the behavior is undefined.

% % character is written. No argument is converted. The complete conversion specification
shall be %%.

9  If a conversion specification is invalid, the behavior is undefined.®® If any argument is not the
correct type for the corresponding conversion specification, the behavior is undefined.

10 In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

11 For aand A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a hexadecimal
floating number with the given precision.

305)The precision p is sufficient to distinguish values of the source type if 16P~! > b™ where b is FLT_RADIX and n is the
number of base-b digits in the significand of the source type. A smaller p might suffice depending on the implementation’s
scheme for determining the digit to the left of the decimal-point character.

306)No special provisions are made for multibyte characters.

307 Redundant shift sequences can result if multibyte characters have a state-dependent encoding.

309)See “future library directions” (7.31.11).

Library differences to ISO/IEC 9899:2018, § 7.21.6.1 page 237

©ISO/IEC 2023 - All rights reserved

87



ISO/IEC TS 6010:2023(E)

c Matches a sequence of characters of exactly the number specified by the field width (1 if
no field width is present in the directive).>!?)

If no 1 length modifier is present, thecorresponding argument shall be a pointer to the
initial element of a character array large enough to accept the sequence. No null character
is added.

If an 1 length modifier is present, the input shall be a sequence of multibyte characters that
begins in the initial shift state. Each multibyte character in the sequence is converted to a
wide character as if by a call to the mbrtowc function, with the conversion state described
by an mbstate_t object initialized to zero before the first multibyte character is converted.
Thecorresponding argument shall be a pointer to the initial element of an array of wchar_t
large enough to accept the resulting sequence of wide characters.No null wide character is
added.

s Matches a sequence of non-white-space characters.*?)

If no 1 length modifier is present, thecorresponding argument shall be a pointer to the
initial element of a character array large enough to accept the sequence and a terminating
null character, which will be added automatically.

If an 1 length modifier is present, the input shall be a sequence of multibyte characters
that begins in the initial shift state. Each multibyte character is converted to a wide
character as if by a call to the mbrtowc function, with the conversion state described by
an mbstate_t object initialized to zero before the first multibyte character is converted.
Thecorresponding argument shall be a pointer to the initial element of an array of wchar_t
large enough to accept the sequence and the terminating null wide character, which will
be added automatically.

[ Matches a nonempty sequence of characters from a set of expected characters (the
scanset).>1?

If no 1 length modifier is present, thecorresponding argument shall be a pointer to the
initial element of a character array large enough to accept the sequence and a terminating
null character, which will be added automatically.

If an 1 length modifier is present, the input shall be a sequence of multibyte characters
that begins in the initial shift state. Each multibyte character is converted to a wide
character as if by a call to the mbrtowc function, with the conversion state described by
an mbstate_t object initialized to zero before the first multibyte character is converted.
Thecorresponding argument shall be a pointer to the initial element of an array of wchar_t
large enough to accept the sequence and the terminating null wide character, which will
be added automatically.

The conversion specifier includes all subsequent characters in the format string, up to
and including the matching right bracket (]1). The characters between the brackets (the
scanlist) compose the scanset, unless the character after the left bracket is a circumflex (%),
in which case the scanset contains all characters that do not appear in the scanlist between
the circumflex and the right bracket. If the conversion specifier begins with [] or [*], the
right bracket character is in the scanlist and the next following right bracket character is
the matching right bracket that ends the specification; otherwise the first following right
bracket character is the one that ends the specification. If a - character is in the scanlist
and is not the first, nor the second where the first character is a ~, nor the last character,
the behavior is implementation-defined.

p Matches an-the same implementation-defined set of sequences ;which-should-be-the same

as-theset-of sequences-of characters that may be produced by the %p conversion of the
fp r1ntf functlon The correspondmg argument p/twrmshall bea pomter toa pointer to void.

312)No special provisions are made for multibyte characters in the matching rules used by the c, s, and [ conversion specifiers
— the extent of the input field is determined on a byte-by-byte basis. The resulting field is nevertheless a sequence of multibyte
characters that begins in the initial shift state.

differences to ISO/IEC 9899:2018, § 7.21.6.2 page 242 Library

88 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

13
14

15

16

17

18

the-eonversion-is-undefined:sequence could have been printed from a null pointer
value, a null pointer value is stored in *ptr.

= Otherwise, if the input sequence could have been printed from a valid pointer z
and if the address « currently refers to an exposed storage instance, a representation
of a valid pointer with address x and the provenance of that storage instance is
synthesized in+ptr.*"

— Otherwise the representation of xptr becomes indeterminate.

n No input is consumed. The corresponding argument shall be a pointer to signed integer
into which is to be written the number of characters read from the input stream so far
by this call to the fscanf function. Execution of a %n directive does not increment the
assignment count returned at the completion of execution of the fscanf function. No
argument is converted, but one is consumed. If the conversion specification includes an
assignment-suppressing character or a field width, the behavior is undefined.

o°

Matches a single % character; no conversion or assignment occurs. The complete conversion
specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.>'¥

The conversion specifiers A, E, F, G, and X are also valid and behave the same as, respectively, a, e, f,
g, and x.

Trailing white space (including new-line characters) is left unread unless matched by a directive.
The success of literal matches and suppressed assignments is not directly determinable other than
via the %n directive.

Returns

The fscanf function returns the value of the macro EOF if an input failure occurs before the first
conversion (if any) has completed. Otherwise, the function returns the number of input items
assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

EXAMPLE 1 The call:

#include <stdio.h>

/* ... %/

int n, i; float x; char name[50];

n = fscanf(stdin, "%d%f%s", &i, &x, name);

with the input line:

25 54.32E-1 thompson

will assign to n the value 3, to i the value 25, to x the value 5.432, and to name the sequence thompson\0.

EXAMPLE 2 The call:

#include <stdio.h>

/* ... %/

int i; float x; char name[50];

fscanf(stdin, "%2d%f%+d_%[0123456789]", &i, &x, name);

with input:

313)

Thus, the constructed pointer value has a valid provenance. Nevertheless, because the original storage instance might
be dead and a new storage instance might live at the same address, this provenance can be different from the provenance
that gave rise to the print operation.If x can be an address with more than one provenance, only one of these shall be used

in the sequel, see 6.2.5.
319Gee “future library directions” (7.31.11).

Library differences to ISO/IEC 9899:2018, § 7.21.6.2 page 243

©ISO/IEC 2023 - All rights reserved

89



ISO/IEC TS 6010:2023(E)

Returns

3 The sscanf function returns the value of the macro EOF if an input failure occurs before the first
conversion (if any) has completed. Otherwise, the sscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.21.6.8 The vfprintf function
Synopsis

1 #include <stdarg.h>

#include <stdio.h>

int vfprintf(FILE * restrict stream,
const char * restrict format,
va_list arg);

Description

2 The vfprintf function is equivalent to fprintf, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfprintf function does not invoke the va_end macro.’'®

Returns
3 The vfprintf function returns the number of characters transmitted, or a negative value if an
output or encoding error occurred.

4 EXAMPLE The following shows the use of the vfprintf function in a general error-reporting routine.

#include <stdarg.h>

#include <stdio.h>

void error(char *xfunction_name, char *format, ...)

{
va_list args;
va_start(args, format);
// print out name of function causing error
fprintf(stderr, "ERROR_in_%s:_", function_name);
// print out remainder of message
vfprintf(stderr, format, args);
va_end(args);

}

7.21.6.9 The vfscanf function
Synopsis

1 #include <stdarg.h>

#include <stdio.h>

int vfscanf(FILE x restrict stream,
const char * restrict format,
va_list arg);

Description

2 The vfscanf function is equivalent to fscanf, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfscanf function does not invoke the va_end macro.*'®

315 As the functions vfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, and vsscanf invoke the va_arg macro,
the-value-of-arg after the return is-has an indeterminate representation.

differences to ISO/IEC 9899:2018, § 7.21.6.9 page 248 Library

90 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

Returns

3 If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the end-of-file
indicator for the stream is set and the fgetc function returns EOF. Otherwise, the fgetc function
returns the next character from the input stream pointed to by stream. If a read error occurs, the
error indicator for the stream is set and the fgetc function returns EOF.319

7.21.7.2 The fgets function
Synopsis

1 #include <stdio.h>
char xfgets(char * restrict s, int n,
FILE * restrict stream);

Description

2 The fgets function reads at most one less than the number of characters specified by n from the
stream pointed to by stream into the array pointed to by s. No additional characters are read after a
new-line character (which is retained) or after end-of-file. A null character is written immediately
after the last character read into the array.

Returns

3 The fgets function returns s if successful. If end-of-file is encountered and no characters have been
read into the array, the contents of the array remain unchanged and a null pointer is returned. If a

read error occurs during the operation, the arraycontents-are-indeterminate-members of the arra
have unspecified values and a null pointer is returned.

7.21.7.3 The fputc function
Synopsis

1 #include <stdio.h>
int fputc(int c, FILE xstream);

Description

2 The fputc function writes the character specified by c (converted to an unsigned char) to the
output stream pointed to by stream, at the position indicated by the associated file position indicator
for the stream (if defined), and advances the indicator appropriately. If the file cannot support
positioning requests, or if the stream was opened with append mode, the character is appended to
the output stream.

Returns

3 The fputc function returns the character written. If a write error occurs, the error indicator for the
stream is set and fputc returns EOF.

7.21.7.4 The fputs function
Synopsis

1 #include <stdio.h>
int fputs(const char * restrict s,
FILE * restrict stream);

Description

2 The fputs function writes the string pointed to by s to the stream pointed to by stream. The
terminating null character is not written.

Returns
3 The fputs function returns EOF if a write error occurs; otherwise it returns a nonnegative value.

310) An end-of-file and a read error can be distinguished by use of the feof and ferror functions.

Library differences to ISO/IEC 9899:2018, § 7.21.7.4 page 251

©ISO/IEC 2023 - All rights reserved 91



ISO/IEC TS 6010:2023(E)

7.21.7.9 The puts function
Synopsis

1 #include <stdio.h>
int puts(const char xs);

Description

2 The puts function writes the string pointed to by s to the stream pointed to by stdout, and appends
a new-line character to the output. The terminating null character is not written.
Returns

3 The puts function returns EOF if a write error occurs; otherwise it returns a nonnegative value.

7.21.7.10 The ungetc function
Synopsis

1 #include <stdio.h>
int ungetc(int c, FILE x*stream);

Description

2 The ungetc function pushes the character specified by c (converted to an unsigned char) back
onto the input stream pointed to by stream. Pushed-back characters will be returned by subsequent
reads on that stream in the reverse order of their pushing. A successful intervening call (with the
stream pointed to by stream) to a file positioning function (fseek, fsetpos, or rewind) discards
any pushed-back characters for the stream. The external storage corresponding to the stream is
unchanged.

3 One character of pushback is guaranteed. If the ungetc function is called too many times on the
same stream without an intervening read or file positioning operation on that stream, the operation
may fail.

4 If the value of c equals that of the macro EOF, the operation fails and the input stream is unchanged.

5 A successful call to the ungetc function clears the end-of-file indicator for the stream. The value
of the file position indicator for the stream after reading or discarding all pushed-back characters
shall be the same as it was before the characters were pushed back.3!”) For a text stream, the value
of its file position indicator after a successful call to the ungetc function is unspecified until all
pushed-back characters are read or discarded. For a binary stream, its file position indicator is
decremented by each successful call to the ungetc function; if its value was zero before a call, it is
indeterminate-has an indeterminate representation after the call.*'®)

Returns

6  The ungetc function returns the character pushed back after conversion, or EOF if the operation
fails.

Forward references: file positioning functions (7.21.9).

7.21.8 Direct input/output functions
7.21.8.1 The fread function
Synopsis

1 #include <stdio.h>

size_t fread(void * restrict ptr,
size_t size, size_t nmemb,
FILE * restrict stream);

317)Note that a file positioning function could further modify the file position indicator after discarding any pushed-back
characters.
318)See “future library directions” (7.31.11).

Library differences to ISO/IEC 9899:2018, § 7.21.8.1 page 253

92 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

Description

The fread function reads, into the array pointed to by ptr, up to nmemb elements whose size is
specified by size, from the stream pointed to by stream. For each object, size calls are made to
the fgetc function and the results stored, in the order read, in an array of unsigned char exactly
overlaying the object. The file position indicator for the stream (if defined) is advanced by the
number of characters successfully read. If an error occurs, the resulting value-representation of
the file position indicator for the stream is indeterminate. If a partial element is read, its value
representation is indeterminate.

Returns

The fread function returns the number of elements successfully read, which may be less than nmemb
if a read error or end-of-file is encountered. If size or nmemb is zero, fread returns zero and the
contents of the array and the state of the stream remain unchanged.

7.21.8.2 The fwrite function

Synopsis

#include <stdio.h>

size_t fwrite(const void * restrict ptr,
size_t size, size_t nmemb,
FILE * restrict stream);

Description

The fwrite function writes, from the array pointed to by ptr, up to nmemb elements whose size is
specified by size, to the stream pointed to by stream. For each object, size calls are made to the
fputc function, taking the values (in order) from an array of unsigned char exactly overlaying
the object. The file position indicator for the stream (if defined) is advanced by the number of
characters successfully written. If an error occurs, the resulting valte-representation of the file
position indicator for the stream is indeterminate,

If the object (or part thereof) corresponding to the first sizexnmemb bytes referred by ptr contains
a valid pointer value with provenance x, the fwrite function exposes x .
Returns

The fwrite function returns the number of elements successfully written, which will be less than
nmemb only if a write error is encountered. If size or nmemb is zero, fwrite returns zero and the
state of the stream remains unchanged.

7.21.9 File positioning functions
7.21.9.1 The fgetpos function
Synopsis

#include <stdio.h>
int fgetpos(FILE * restrict stream,
fpos_t * restrict pos);

Description

The fgetpos function stores the current values of the parse state (if any) and file position indicator
for the stream pointed to by stream in the object pointed to by pos. The values stored contain
unspecified information usable by the fsetpos function for repositioning the stream to its position
at the time of the call to the fgetpos function.

Returns

If successful, the fgetpos function returns zero; on failure, the fgetpos function returns nonzero
and stores an implementation-defined positive value in errno.

Forward references: the fsetpos function (7.21.9.3).

differences to ISO/IEC 9899:2018, § 7.21.9.1 page 254 Library

©ISO/IEC 2023 - All rights reserved

93



ISO/IEC TS 6010:2023(E)

94

static unsigned long int next = 1;

int rand(void) // RAND_MAX assumed to be 32767

{
next = next x 1103515245 + 12345;
return (unsigned int) (next/65536) % 32768;
}
void srand(unsigned int seed)
{
next = seed;
}

7.22.3 Storage management functions

The-order-and-contiguityof storage-allocated-If the allocation succeeds, the pointer to a storage
instance returned by a call to by-suceessive-calls-to-the-aligned_alloc, calloc, malloc, and-or
realloc functions-is-unspecified—The pointer returned-if the-allocation-sueeceeds-is suitably ahgned
so that it may be assigned to a pointer to any type of object with a fundamental alignment require-
ment and thenrsize less than or equal to the size requested. It may then be used to access such an
object or an array of such objects in the spaee-storage instance allocated (until the space-storage
instance is explicitly deallocated). The lifetime of an allocated ebjeetstorage instance extends from
the allocation until the deallocation. Each such allocation shall yield a pointer to arrebjeet-a storage
instance that is disjoint from any other ebjeetstorage instance. The pointer returned points to the
start fowest-byte-address)-address of the allocated spacestorage instance. If the space-storage
instance cannot be allocated, a null pointer is returned. If the size of the spacestorage instance re-
quested is zero, the behavior is implementation-defined: either a null pointer is returned to indicate
an error, or the behavior-is-as-if the size-were some nonzero-valte,except-thataddress of a storage
instance of size zero is returned. For the latter, the returned pointer shall not be used to access an
object.

For purposes of determining the existence of a data race, memory allocation functions behave as
though they accessed only memorylocations-storage instances accessible through their arguments
and not other static duration storage —instances. These functions may, however, visibly modify the
storage instance that they allocate or deallocate. Calls to these functions that allocate or deallocate
storage instances in a particular region of memery-the address space shall occur in a single total
order, and each such deallocation call shall synchronize with the next allocation (if any) in this
order.?

7.22.3.1 The aligned_alloc function
Synopsis

#include <stdlib.h>
void =xaligned_alloc(size_t alignment, size_t size);

Description

The aligned_alloc function allocates space-for-an-objeet-a storage instance whose alignment
is specified by alignment, whose size is specified by size, and whose value-representation is

indeterminate. If the value of alignment is not a valid alignment supported by the implementation
the function shall fail by returning a null pointer.

Returns

The aligned_alloc function returns either a null pointer or a pointer to the allocated space-storage
instance.

7.22.3.2 The calloc function

323)

This means that an implementation may only reuse a valid address that is computed from an allocated storage instance
for a different allocated storage instance if the calls to allocate and deallocate the storage instances synchronize.

Library differences to ISO/IEC 9899:2018, § 7.22.3.2 page 263

©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

Synopsis

#include <stdlib.h>
void *calloc(size_t nmemb, size_t size);

Description
The calloc function allocates space-a storage instance for an array of nmemb objects, each of whose
size is size. The spaeestorage instance is initialized to all bits zero.>*

Returns
The calloc function returns either a null pointer or a pointer to the allocated space—storage instance.

7.22.3.3 The free function
Synopsis

#include <stdlib.h>
void free(void xptr);

Description

The free function causes the space-storage instance pointed to by ptr to be deallocated, that is,
made available for further alloeation-use.?® If ptr is a null pointer, no action occurs. Otherwise, if
the argument does not match a pointer earlier returned by a memery-storage management function,
or if the space-storage instance has been deallocated by a call to free or realloc, the behavior is
undefined.

Returns
The free function returns no value.

7.22.3.4 The malloc function
Synopsis

#include <stdlib.h>
void *malloc(size_t size);

Description

The malloc function allocates space-for-an-objecta storage instance whose size is specified by size
and whose valte representation is indeterminate.

Returns
The malloc function returns either a null pointer or a pointer to the allocated space—storage instance.

7.22.3.5 The realloc function
Synopsis

#include <stdlib.h>
void xrealloc(void *ptr, size_t size);

Description

The realloc function deallocates the old ebjeetstorage instance pointed to by ptr and returns a
pointer to a new ebjeet-storage instance that has the size specified by size. The eontents-of-the

new-object-shall-be-the-same-as-that-bytes of the old ebject-prior-to-deallocation;—storage instance

324)Note that this need not be the same as the representation of floating-point zero or a null pointer constant.

325 That means that the implementation may reuse the address range of the storage instance (determined by ptr and its
size) for any storage instance whose instantiation synchronizes with the call.

differences to ISO/IEC 9899:2018, § 7.22.3.5 page 264 Library

©ISO/IEC 2023 - All rights reserved

95



ISO/IEC TS 6010:2023(E)

96

up to the lesser of the new and old sizes —are copied as if by memcpy to the initial bytes of the new
storage instance. Any bytes in the new ebjeetstorage instance beyond the size of the old object have

indeterminate-unspecified values.

If ptr is a null pointer, the realloc function behaves like the malloc function for the specified
size. Otherwise, if ptr does not match a pointer earlier returned by a memery-storage management
function, or if the space-storage instance has been deallocated by a call to the free or realloc
function, the behavior is undefined. If size is nonzero and memory-for-the-new-objeetisnotno

storage instance is allocated, the old ebjeet-storage instance is not deallocated. If size is zero and

memory-for-the-new-objeet-isnet-no storage instance is allocated, it is implementation-defined

whether the old ebjeet-storage instance is deallocated. If the old ebjeet-storage instance is not
deallocated, its-value-it shall be unchanged.

Returns

The realloc function returns a pointer to the new ebjeet-storage instance (which may have the

same value as a pointer to the old ebjeet);storage instance), or a null pointer if the-new-objecthas
notno new storage instance has been allocated.

NOTE If a call to realloc is successful, the initial part of the new storage instance represents objects with same value
and effective e as the initial part of the old storage instance, if any. Nevertheless, the new storage instance has to be

considered to be different from the old one:

— Even if both storage instances have the same address, all pointers to the old storage instance (stored within or outside
the storage instance) are invalid because that storage instance ceases to exist.

— Copies of objects in the new storage instance that have hidden state and need explicit initialization (such as variable

argument lists, atomic objects, mutexes, or condition variables) may have an indeterminate representation.

— Resources reserved for the original objects in the old storage instance that have hidden state and need destruction
such as variable argument lists, mutexes or condition variables) may be squandered.

7.22.4 Communication with the environment

7.22.4.1 The abort function
Synopsis

#include <stdlib.h>
_Noreturn void abort(void);

Description

The abort function causes abnormal program termination to occur, unless the signal SIGABRT
is being caught and the signal handler does not return. Whether open streams with unwritten
buffered data are flushed, open streams are closed, or temporary files are removed is implementa-
tion-defined. An implementation-defined form of the status unsuccessful termination is returned to
the host environment by means of the function call raise (SIGABRT).

Returns
The abort function does not return to its caller.

7.22.4.2 The atexit function
Synopsis

#include <stdlib.h>
int atexit(void (xfunc)(void));

Description

The atexit function registers the function pointed to by func, to be called without arguments at
normal program termination.??® It is unspecified whether a call to the atexit function that does
not happen before the exit function is called will succeed.

326)The atexit function registrations are distinct from the at_quick_exit registrations, so applications might need to call
both registration functions with the same argument.

Library differences to ISO/IEC 9899:2018, § 7.22.4.2 page 265

©ISO/IEC 2023 - All rights reserved




ISO/IEC TS 6010:2023(E)

7.22.7 Multibyte/wide character conversion functions

1 The behavior of the multibyte character functions is affected by the LC_CTYPE category of the current
locale. For a state-dependent encoding, each function is placed into its initial conversion state at
program startup and can be returned to that state by a call for which its character pointer argument,
s, is a null pointer. Subsequent calls with s as other than a null pointer cause the internal conversion
state of the function to be altered as necessary. A call with s as a null pointer causes these functions
to return a nonzero value if encodings have state dependency, and zero otherwise.*® Changing the
LC_CTYPE category causes the internal object describing the conversion state of these functions to
be-indeterminate-have an indeterminate representation.

7.22.7.1 The mblen function
Synopsis

1 #include <stdlib.h>
int mblen(const char s, size_t n);

Description

2 If s is not a null pointer, the mblen function determines the number of bytes contained in the
multibyte character pointed to by s. Except that the conversion state of the mbtowc function is not
affected, it is equivalent to

mbtowc ( (wchar_t *)0, (const char x)0, 0);
mbtowc ( (wchar_t *)0, s, n);

3  The implementation shall behave as if no library function calls the mblen function.

Returns

4  If s is a null pointer, the mblen function returns a nonzero or zero value, if multibyte character
encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer, the
mblen function either returns 0 (if s points to the null character), or returns the number of bytes
that are contained in the multibyte character (if the next n or fewer bytes form a valid multibyte
character), or returns-1 (if they do not form a valid multibyte character).

Forward references: the mbtowc function (7.22.7.2).

7.22.7.2 The mbtowc function
Synopsis

1 #include <stdlib.h>

int mbtowc(wchar_t *x restrict pwc,
const char * restrict s,
size_t n);

Description

2 If s is not a null pointer, the mbtowc function inspects at most n bytes beginning with the byte
pointed to by s to determine the number of bytes needed to complete the next multibyte character
(including any shift sequences). If the function determines that the next multibyte character is
complete and valid, it determines the value of the corresponding wide character and then, if pwc
is not a null pointer, stores that value in the object pointed to by pwc. If the corresponding wide
character is the null wide character, the function is left in the initial conversion state.

3  The implementation shall behave as if no library function calls the mbtowc function.

Returns

4 If s is a null pointer, the mbtowc function returns a nonzero or zero value, if multibyte character
encodings, respectively, do or do not have state-dependent encodings. If s is not a null pointer, the

3391f the locale employs special bytes to change the shift state, these bytes do not produce separate wide character codes, but
are grouped with an adjacent multibyte character.

Library differences to ISO/IEC 9899:2018, § 7.22.7.2 page 271

©ISO/IEC 2023 - All rights reserved 97



ISO/IEC TS 6010:2023(E)

7.24 String handling <string.h>

7.24.1 String function conventions

1 The header <string.h> declares one type and several functions, and defines one macro useful
for manipulating arrays of character type and other objects treated as arrays of character type.>*
The type is size_t and the macro is NULL (both described in 7.19). Various methods are used for
determining the lengths of the arrays, but in all cases a char * or void * argument points to the
initial (lowest addressed) character of the array. If an array is accessed beyond the end of an object,
the behavior is undefined.

2 Where an argument declared as size_t n specifies the length of the array for a function, n can have
the value zero on a call to that function. Unless explicitly stated otherwise in the description of a
particular function in this subclause, pointer arguments on such a call shall still have valid values, as
described in 7.1.4. On such a call, a function that locates a character finds no occurrence, a function
that compares two character sequences returns zero, and a function that copies characters copies
zero characters.

3 For all functions in this subclause, each character shall be interpreted as if it had the type
unsigned char (and therefore every possible object representation is valid and has a different
value).

7.24.2 Copying functions

1 If the representation of a pointer object is copied by a copying function, either directly or within an
ageregate or union object, the pointer copy has the same provenance as the original.

7.24.2.1 The memcpy function
Synopsis

1 #include <string.h>

void xmemcpy(void * restrict sl1,
const void * restrict s2,
size_t n);

Description

2 The memcpy function copies n characters from the object pointed to by s2 into the object pointed to
by s1. If copying takes place between objects that overlap, the behavior is undefined.

Returns
3 The memcpy function returns the value of s1.

7.24.2.2 The memmove function
Synopsis

1 #include <string.h>
void xmemmove(void *sl, const void *s2, size_t n);

Description

2 The memmove function copies n characters from the object pointed to by s2 into the object pointed to
by s1. Copying takes place as if the n characters from the object pointed to by s2 are first copied
into a temporary array of n characters that does not overlap the objects pointed to by s1 and s2, and
then the n characters from the temporary array are copied into the object pointed to by s1.

Returns
3 The memmove function returns the value of s1.

7.24.2.3 The strcpy function
Synopsis
T

330)See “future library directions” (7.31.13).

Library differences to ISO/IEC 9899:2018, § 7.24.2.3 page 275

98 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

Description

2 The strncat function appends not more than n characters (a null character and characters that
follow it are not appended) from the array pointed to by s2 to the end of the string pointed to by
s1. The initial character of s2 overwrites the null character at the end of s1. A terminating null
character is always appended to the result.**® If copying takes place between objects that overlap,
the behavior is undefined.

Returns
3  The strncat function returns the value of s1.

Forward references: the strlen function (7.24.6.3).

7.244 Comparison functions

1 The sign of a nonzero value returned by the comparison functions memcmp, strcmp, and strncmp
is determined by the sign of the difference between the values of the first pair of characters (both
interpreted as unsigned char) that differ in the objects being compared.

7.24.4.1 The memcmp function
Synopsis

1 #include <string.h>
int memcmp(const void *sl, const void xs2, size_t n);

Description

2 The memcmp function compares the first n characters of the object pointed to by s1 to the first n
characters of the object pointed to by $2.3%)

Returns

3 The memcmp function returns an integer greater than, equal to, or less than zero, accordingly as the
object pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.

7.24.4.2 The strcmp function
Synopsis

1 #include <string.h>
int strcmp(const char *sl, const char xs2);

Description
2 The stremp function compares the string pointed to by s1 to the string pointed to by s2.

Returns
3 The strcmp function returns an integer greater than, equal to, or less than zero, accordingly as the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2.
7.24.4.3 The strcoll function
Synopsis

1 #include <string.h>
int strcoll(const char *sl, const char xs2);

Description

2 The strcoll function compares the string pointed to by s1 to the string pointed to by s2, both
interpreted as appropriate to the LC_COLLATE category of the current locale.

338)Thus, the maximum number of characters that can end up in the array pointed to by s1is strlen(sl)+n+1.
39)The eentents-values of “heles”bytes that are used as padding for purposes of alignment within structure objects are

indeterminatetake on unspecified values when a value is stored in the object (cf, 6.2.6.1). Strings shorter than their allocated

space and unions can also cause problems in comparison.

Library differences to ISO/IEC 9899:2018, § 7.24.4.3 page 277

©ISO/IEC 2023 - All rights reserved 99



ISO/IEC TS 6010:2023(E)

100

Returns

The strcoll function returns an integer greater than, equal to, or less than zero, accordingly as the
string pointed to by s1 is greater than, equal to, or less than the string pointed to by s2 when both
are interpreted as appropriate to the current locale.

7.24.4.4 The strncmp function
Synopsis

#include <string.h>
int strncmp(const char *sl, const char xs2, size_t n);

Description

The strncmp function compares not more than n characters (characters that follow a null character
are not compared) from the array pointed to by s1 to the array pointed to by s2.

Returns

The strncmp function returns an integer greater than, equal to, or less than zero, accordingly as the
possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the possibly
null-terminated array pointed to by s2.

7.24.4.5 The strxfrm function

Synopsis

#include <string.h>

size_t strxfrm(char * restrict sl1,
const char x restrict s2,
size_t n);

Description

The strxfrm function transforms the string pointed to by s2 and places the resulting string into
the array pointed to by s1. The transformation is such that if the stremp function is applied to two
transformed strings, it returns a value greater than, equal to, or less than zero, corresponding to the
result of the strcoll function applied to the same two original strings. No more than n characters
are placed into the resulting array pointed to by s1, including the terminating null character. If n is
zero, sl is permitted to be a null pointer. If copying takes place between objects that overlap, the
behavior is undefined.

Returns

The strxfrm function returns the length of the transformed string (not including the terminating
null character). If the value returned is n or more, the contents of the members of the array pointed
to by s1 are-indeterminate-have an indeterminate representation.

EXAMPLE The value of the following expression is the size of the array needed to hold the transformation of the string
pointed to by s.

1 + strxfrm(NULL, s, 0)

7.24.5 Search functions
7.24.5.1 The memchr function
Synopsis

#include <string.h>
void xmemchr(const void xs, int c, size_t n);

Description

The memchr function locates the first occurrence of ¢ (converted to an unsigned char) in the initial
n characters (each interpreted as unsigned char) of the object pointed to by s. The implementation

differences to ISO/IEC 9899:2018, § 7.24.5.1 page 278 Library

©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

3 Anull pointer value is associated with the newly created key in all existing threads. Upon subsequent
thread creation, the value associated with all keys is initialized to a null pointer value in the new
thread.

4 Destructors associated with thread-specific storage are not invoked at program termination.

5  The tss_create function shall not be called from within a destructor.

Returns

6 If the tss_create function is successful, it sets the thread-specific storage pointed to by key to a
value that uniquely identifies the newly created pointer and returns thrd_success; otherwise,
thrd_error is returned and the thread-specific storage pointed to by key is set to an indeterminate

valuerepresentation.

7.26.6.2 The tss_delete function
Synopsis

1 #include <threads.h>
void tss_delete(tss_t key);

Description

2 The tss_delete function releases any resources used by the thread-specific storage identified by
key. The tss_delete function shall only be called with a value for key that was returned by a call
to tss_create before the thread commenced executing destructors.

3 If tss_delete is called while another thread is executing destructors, whether this will affect the
number of invocations of the destructor associated with key on that thread is unspecified.

4  Calling tss_delete will not result in the invocation of any destructors.

Returns
5  The tss_delete function returns no value.

7.26.6.3 The tss_get function
Synopsis

1 #include <threads.h>
void *tss_get(tss_t key);

Description

2 The tss_get function returns the value for the current thread held in the thread-specific storage
identified by key. The tss_get function shall only be called with a value for key that was returned
by a call to tss_create before the thread commenced executing destructors.
Returns

3  The tss_get function returns the value for the current thread if successful, or zero if unsuccessful.

7.26.6.4 The tss_set function
Synopsis

1 #include <threads.h>
int tss_set(tss_t key, void xval);

Description

2 The tss_set function sets the value for the current thread held in the thread-specific storage
identified by key to val. The tss_set function shall only be called with a value for key that was
returned by a call to tss_create before the thread commenced executing destructors.

3 This action will not invoke the destructor associated with the key on the value being replaced.

4 Ifval is a valid pointer, its provenance is is henceforth exposed.

Library differences to ISO/IEC 9899:2018, § 7.26.6.4 page 293

©ISO/IEC 2023 - All rights reserved 101



ISO/IEC TS 6010:2023(E)

102

d® ° o ° ® ® ° o° o° o°

Returns

the first three characters of %A.

”ou

one of “Sunday”, “Monday”, ..., “Saturday”.

the first three characters of %B.

T

one of “January”, “February”, ..., “December”.
equivalent to “%a %b %e %T %Y.

one of “AM” or “PM”.

equivalent to “%I:%M:%S %p”.

equivalent to “%m/%d/%y”.

equivalent to %T.

implementation-defined.

If the total number of resulting characters including the terminating null character is not more than
maxsize, the strftime function returns the number of characters placed into the array pointed
to by s not including the terminating null character. Otherwise, zero is returned and the eentents
members of the array are-indeterminate-have an indeterminate representation.

differences to ISO/IEC 9899:2018, § 7.27.3.5 page 302

Library

©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

for an exact representation of the value; if the precision is missing and FLT_RADIX is not a
power of 2, then the precision is sufficient to distinguish®*® values of type double, except
that trailing zeros may be omitted; if the precision is zero and the # flag is not specified, no
decimal-point wide character appears. The letters abcdef are used for a conversion and
the letters ABCDEF for A conversion. The A conversion specifier produces a number with
X and P instead of x and p. The exponent always contains at least one digit, and only as
many more digits as necessary to represent the decimal exponent of 2. If the value is zero,
the exponent is zero.

A double argument representing an infinity or NaN is converted in the style of an f or F
conversion specifier.

c If no 1 length modifier is present, the int argument is converted to a wide character as if
by calling btowc and the resulting wide character is written.

If an 1 length modifier is present, the wint_t argument is converted to wchar_t and
written.

S If no 1 length modifier is present, the argument shall be a pointer to the initial element
of a character array containing a multibyte character sequence beginning in the initial
shift state. Characters from the array are converted as if by repeated calls to the mbrtowc
function, with the conversion state described by an mbstate_t object initialized to zero
before the first multibyte character is converted, andwritten up to (but not including) the
terminating null wide character. If the precision is specified, no more than that many wide
characters are written. If the precision is not specified or is greater than the size of the
converted array, the converted array shall contain a null wide character.

If an 1 length modifier is present, the argument shall be a pointer to the initial element
of an array of wchar_t type. Wide characters from the array are written up to (but not
including) a terminating null wide character. If the precision is specified, no more than
that many wide characters are written. If the precision is not specified or is greater than
the size of the array, the array shall contain a null wide character.

p The argument shall be a pointer to void. The value of the pointer shall be valid or null.
It is converted to a sequence of printing wide characters, in an implementation-defined
manner. If the value of the pointer is valid its provenance is henceforth exposed.

n The argument shall be a pointer to signed integer into which is written the number of wide
characters written to the output stream so far by this call to fwprintf. No argument is
converted, but one is consumed. If the conversion specification includes any flags, a field
width, or a precision, the behavior is undefined.

o°

A % wide character is written. No argument is converted. The complete conversion
specification shall be %%.

9 If a conversion specification is invalid, the behavior is undefined.*® If any argument is not the
correct type for the corresponding conversion specification, the behavior is undefined.

10 In no case does a nonexistent or small field width cause truncation of a field; if the result of a
conversion is wider than the field width, the field is expanded to contain the conversion result.

11 For aand A conversions, if FLT_RADIX is a power of 2, the value is correctly rounded to a hexadecimal
floating number with the given precision.

Recommended practice

12 For a and A conversions, if FLT_RADIX is not a power of 2 and the result is not exactly representable
in the given precision, the result should be one of the two adjacent numbers in hexadecimal floating
style with the given precision, with the extra stipulation that the error should have a correct sign for
the current rounding direction.

363)The precision p is sufficient to distinguish values of the source type if 16°~! > b"™ where b is FLT_RADIX and n is the

number of base-b digits in the significand of the source type. A smaller p might suffice depending on the implementation’s
scheme for determining the digit to the left of the decimal-point wide character.
364)Gee “future library directions” (7.31.16).

differences to ISO/IEC 9899:2018, § 7.29.2.1 page 310 Library

©ISO/IEC 2023 - All rights reserved 103



ISO/IEC TS 6010:2023(E)

13
14

15

104

If no 1 length modifier is present, characters from the input field are converted as if by re-
peated calls to the wertomb function, with the conversion state described by an mbstate_t
object initialized to zero before the first wide character is converted. Thecorresponding
argument shall be a pointer to the initial element of a character array large enough to
accept the sequence and a terminating null character, which will be added automatically.

If an 1 length modifier is present, thecorresponding argument shall be a pointer to
the initial element of an array of wchar_t large enough to accept the sequence and the
terminating null wide character, which will be added automatically.

The conversion specifier includes all subsequent wide characters in the format string,
up to and including the matching right bracket (1). The wide characters between the
brackets (the scanlist) compose the scanset, unless the wide character after the left bracket
is a circumflex (*), in which case the scanset contains all wide characters that do not
appear in the scanlist between the circumflex and the right bracket. If the conversion
specifier begins with [] or ["*], the right bracket wide character is in the scanlist and
the next following right bracket wide character is the matching right bracket that ends
the specification; otherwise the first following right bracket wide character is the one
that ends the specification. If a - wide character is in the scanlist and is not the first, nor
the second where the first wide character is a *, nor the last character, the behavior is
implementation-defined.

p Matches an-the same implementation-defined set of sequences ;which-should-be-the same

as-theset-of sequences-of wide characters that may be produced by the %p conversion of
the fwprintf funct1on The correspondmg argument gicArNshall be a pointer toa pomter

ﬂ%&eeﬂvefs&eﬂﬂfruﬂéeﬁﬂed—se uence could have been rinted from a null omter
value, a null pointer value is stored in *ptr.
— Otherwise, if the input sequence could have been printed from a valid pointer =

and if the address z currently refers to an exposed storage instance, a representation
of a valid pointer with address z and the provenance of that storage instance is

synthesized in *ptr .39

— Otherwise the representation of *ptr becomes indeterminate.

n No input is consumed. The corresponding argument shall be a pointer to signed integer
into which is to be written the number of wide characters read from the input stream so
far by this call to the fwscanf function. Execution of a %n directive does not increment the
assignment count returned at the completion of execution of the fwscanf function. No
argument is converted, but one is consumed. If the conversion specification includes an
assignment-suppressing wide character or a field width, the behavior is undefined.

o°

Matches a single % wide character; no conversion or assignment occurs. The complete
conversion specification shall be %%.

If a conversion specification is invalid, the behavior is undefined.>*”)

The conversion specifiers A, E, F, G, and X are also valid and behave the same as, respectively, a, e, f,
g, and x.

Trailing white space (including new-line wide characters) is left unread unless matched by a directive.
The success of literal matches and suppressed assignments is not directly determinable other than
via the %n directive.

368)

Thus, the constructed pointer value has a valid provenance, Nevertheless, because the original storage instance might
be dead and a new storage instance might live at the same address, this provenance can be different from the provenance
that gave rise to the print operation If z can be an address with more than one provenance, only one of these shall be used
309)Gee “future library directions” (7.31.16).

differences to ISO/IEC 9899:2018, § 7.29.2.2 page 314 Library

©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

Returns

The swscanf function returns the value of the macro EOF if an input failure occurs before the first
conversion (if any) has completed. Otherwise, the swscanf function returns the number of input
items assigned, which can be fewer than provided for, or even zero, in the event of an early matching
failure.

7.29.2.5 The vfwprintf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

#include <wchar.h>

int vfwprintf(FILE * restrict stream,
const wchar_t x restrict format,
va_list arg);

Description

The vfwprintf function is equivalent to fwprintf, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfwprintf function does not invoke the va_end macro.’”?

Returns

The vfwprintf function returns the number of wide characters transmitted, or a negative value if
an output or encoding error occurred.

EXAMPLE The following shows the use of the vfwprintf function in a general error-reporting routine.

#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>

void error(char xfunction_name, wchar_t xformat, ...)

{

va_list args;

va_start(args, format);

// print out name of function causing error
fwprintf(stderr, L"ERROR_in_%s:_", function_name);
// print out remainder of message
vfwprintf(stderr, format, args);

va_end(args);

7.29.2.6 The vfwscanf function
Synopsis

#include <stdarg.h>

#include <stdio.h>

#include <wchar.h>

int vfwscanf(FILE * restrict stream,
const wchar_t x restrict format,
va_list arg);

Description

The vfwscanf function is equivalent to fwscanf, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfwscanf function does not invoke the va_end macro.>”?

370 As the functions vfwprintf, vswprintf, vfwscanf, vwprintf, vwscanf, and vswscanf invoke the va_arg macro, the
valterepresentation of arg after the return is indeterminate.

Library differences to ISO/IEC 9899:2018, § 7.29.2.6 page 317

©ISO/IEC 2023 - All rights reserved 105



ISO/IEC TS 6010:2023(E)

#include <stdio.h>
#include <wchar.h>
wint_t fgetwc (FILE *stream);

Description

2 If the end-of-file indicator for the input stream pointed to by stream is not set and a next wide
character is present, the fgetwc function obtains that wide character as a wchar_t converted to a
wint_t and advances the associated file position indicator for the stream (if defined).

Returns

3 If the end-of-file indicator for the stream is set, or if the stream is at end-of-file, the end-of-file
indicator for the stream is set and the fgetwc function returns WEOF. Otherwise, the fgetwc function
returns the next wide character from the input stream pointed to by stream. If a read error occurs,
the error indicator for the stream is set and the fgetwc function returns WEOF. If an encoding error
occurs (including too few bytes), the value of the macro EILSEQ is stored in errno and the fgetwc
function returns WEOF .37)

7.29.3.2 The fgetws function
Synopsis

1 #include <stdio.h>

#include <wchar.h>

wchar_t xfgetws(wchar_t * restrict s,
int n, FILE * restrict stream);

Description

2 The fgetws function reads at most one less than the number of wide characters specified by n from
the stream pointed to by stream into the array pointed to by s. No additional wide characters are
read after a new-line wide character (which is retained) or after end-of-file. A null wide character is
written immediately after the last wide character read into the array.

Returns

3 The fgetws function returns s if successful. If end-of-file is encountered and no characters have been
read into the array, the contents of the array remain unchanged and a null pointer is returned. If a
read or encoding error occurs during the operation, the array eentents-are-indeterminate-members

have an indeterminate representation and a null pointer is returned.

7.29.3.3 The fputwc function
Synopsis

1 #include <stdio.h>
#include <wchar.h>
wint_t fputwc(wchar_t c, FILE xstream);

Description

2 The fputwc function writes the wide character specified by c to the output stream pointed to by
streanm, at the position indicated by the associated file position indicator for the stream (if defined),
and advances the indicator appropriately. If the file cannot support positioning requests, or if the
stream was opened with append mode, the character is appended to the output stream.

Returns

3 The fputwc function returns the wide character written. If a write error occurs, the error indicator
for the stream is set and fputwc returns WEOF. If an encoding error occurs, the value of the macro
EILSEQ is stored in errno and fputwc returns WEOF.

371) An end-of-file and a read error can be distinguished by use of the feof and ferror functions. Also, errno will be set to
EILSEQ by input/output functions only if an encoding error occurs.

differences to ISO/IEC 9899:2018, § 7.29.3.3 page 320 Library

106 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

Description
2 Thewcscmp function compares the wide string pointed to by s1 to the wide string pointed to by s2.

Returns

3 Thewcscmp function returns an integer greater than, equal to, or less than zero, accordingly as the
wide string pointed to by s1 is greater than, equal to, or less than the wide string pointed to by s2.
7.29.44.2 The wcscoll function
Synopsis

1 #include <wchar.h>
int wcscoll(const wchar_t xsl, const wchar_t xs2);

Description

2 Thewcscoll function compares the wide string pointed to by s1 to the wide string pointed to by
s2, both interpreted as appropriate to the LC_COLLATE category of the current locale.

Returns

3 Thewcscoll function returns an integer greater than, equal to, or less than zero, accordingly as the
wide string pointed to by s1 is greater than, equal to, or less than the wide string pointed to by s2
when both are interpreted as appropriate to the current locale.

7.29.4.4.3 The wcsncmp function
Synopsis

1 #include <wchar.h>
int wcsncmp(const wchar—_t *sl, const wchar_t xs2,
size_t n);

Description

2 The wesnemp function compares not more than n wide characters (those that follow a null wide
character are not compared) from the array pointed to by s1 to the array pointed to by s2.

Returns

3 The wcsncmp function returns an integer greater than, equal to, or less than zero, accordingly as the
possibly null-terminated array pointed to by s1 is greater than, equal to, or less than the possibly
null-terminated array pointed to by s2.
7.29.44.4 The wesxfrm function
Synopsis

1 #include <wchar.h>

size_t wcsxfrm(wchar—_t * restrict si,
const wchar_t * restrict s2,
size_t n);

Description

2 The wesxfrm function transforms the wide string pointed to by s2 and places the resulting wide
string into the array pointed to by s1. The transformation is such that if the wcsemp function is
applied to two transformed wide strings, it returns a value greater than, equal to, or less than zero,
corresponding to the result of the wescoll function applied to the same two original wide strings.
No more than n wide characters are placed into the resulting array pointed to by s1, including the
terminating null wide character. If n is zero, s1 is permitted to be a null pointer.

Returns

3 Thewcsxfrm function returns the length of the transformed wide string (not including the termi-
nating null wide character). If the value returned is n or greater, the econtents-of-the-array-array

differences to ISO/IEC 9899:2018, § 7.29.4.4.4 page 328 Library

©ISO/IEC 2023 - All rights reserved

107



ISO/IEC TS 6010:2023(E)

elements pointed to by s1 are-indeterminate-have an indeterminate representation.

4 EXAMPLE The value of the following expression is the length of the array needed to hold the transformation of the wide
string pointed to by s:

1 + wesxfrm(NULL, s, 0)

7.29.4.4.5 The wmemcmp function
Synopsis

1 #include <wchar.h>
int wmemcmp(const wchar_t xsl, const wchar_t xs2,
size_t n);

Description

2 The wmemcmp function compares the first n wide characters of the object pointed to by s1 to the first
n wide characters of the object pointed to by s2.

Returns

3  The wmemcmp function returns an integer greater than, equal to, or less than zero, accordingly as the
object pointed to by s1 is greater than, equal to, or less than the object pointed to by s2.
7.29.4.5 Wide string search functions

7.29.4.5.1 The wcschr function
Synopsis

1 #include <wchar.h>
wchar_t xwcschr(const wchar_t xs, wchar_t c);

Description

2 The weschr function locates the first occurrence of c in the wide string pointed to by s. The
terminating null wide character is considered to be part of the wide string.

Returns

3 Thewcschr function returns a pointer to the located wide character, or a null pointer if the wide
character does not occur in the wide string.

7.29.4.5.2 The wcscspn function
Synopsis

1 #include <wchar.h>
size_t wcscspn(const wchar_t xsl, const wchar_t *s2);

Description

2 The wescspn function computes the length of the maximum initial segment of the wide string
pointed to by s1 which consists entirely of wide characters not from the wide string pointed to by
s2.

Returns
3 Thewcscspn function returns the length of the segment.

Library differences to ISO/IEC 9899:2018, § 7.29.4.5.2 page 329

108 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

Returns

3 If the total number of resulting wide characters including the terminating null wide character is not
more than maxsize, the wesftime function returns the number of wide characters placed into the
array pointed to by s not including the terminating null wide character. Otherwise, zero is returned
and the eontents-members of the array are-indeterminate-have an indeterminate representation.

7.29.6 Extended multibyte/wide character conversion utilities

1 The header <wchar. h> declares an extended set of functions useful for conversion between multibyte
characters and wide characters.

2 Most of the following functions — those that are listed as “restartable”, 7.29.6.3 and 7.29.6.4 — take
as a last argument a pointer to an object of type mbstate_t that is used to describe the current
conversion state from a particular multibyte character sequence to a wide character sequence (or the
reverse) under the rules of a particular setting for the LC_CTYPE category of the current locale.

3  The initial conversion state corresponds, for a conversion in either direction, to the beginning of a
new multibyte character in the initial shift state. A zero-valued mbstate_t object is (at least) one
way to describe an initial conversion state. A zero-valued mbstate_t object can be used to initiate
conversion involving any multibyte character sequence, in any LC_CTYPE category setting. If an
mbstate_t object has been altered by any of the functions described in this subclause, and is then
used with a different multibyte character sequence, or in the other conversion direction, or with a
different LC_CTYPE category setting than on earlier function calls, the behavior is undefined.?””

4 On entry, each function takes the described conversion state (either internal or pointed to by an
argument) as current. The conversion state described by the referenced object is altered as needed
to track the shift state, and the position within a multibyte character, for the associated multibyte
character sequence.

7.29.6.1 Single-byte/wide character conversion functions
7.29.6.1.1 The btowc function
Synopsis

1 #include <wchar.h>
wint_t btowc(int c);

Description

2 The btowc function determines whether ¢ constitutes a valid single-byte character in the initial shift
state.

Returns

3 The btowc function returns WEOF if ¢ has the value EOF or if (unsigned char)c does not constitute
a valid single-byte character in the initial shift state. Otherwise, it returns the wide character
representation of that character.
7.29.6.1.2 The wctob function
Synopsis

1 #include <wchar.h>
int wctob(wint_t c);

Description

2 Thewctob function determines whether c corresponds to a member of the extended character set
whose multibyte character representation is a single byte when in the initial shift state.
Returns

3 Thewctob function returns EOF if c does not correspond to a multibyte character with length one
in the initial shift state. Otherwise, it returns the single-byte representation of that character as an
unsigned char converted to an int.

379)Thus, a particular mbstate_t object can be used, for example, with both the mbrtowc and mbsrtowcs functions as long
as they are used to step sequentially through the same multibyte character string.

Library differences to ISO/IEC 9899:2018, § 7.29.6.1.2 page 333

©ISO/IEC 2023 - All rights reserved 109



ISO/IEC TS 6010:2023(E)

Annex |
(informative)
Portability issues

1 This annex collects some information about portability that appears in this document.

J.1 Unspecified behavior
1 The following are unspecified:
— The manner and timing of static initialization (5.1.2).

— The termination status returned to the hosted environment if the return type of main is not
compatible with int (5.1.2.2.3).

— The values of objects that are neither lock-free atomic objects nor of type
volatile sig_atomic_t and the state of the floating-point environment, when the
processing of the abstract machine is interrupted by receipt of a signal (5.1.2.3).

— The behavior of the display device if a printing character is written when the active position is
at the final position of a line (5.2.2).

— The behavior of the display device if a backspace character is written when the active position
is at the initial position of a line (5.2.2).

— The behavior of the display device if a horizontal tab character is written when the active
position is at or past the last defined horizontal tabulation position (5.2.2).

— The behavior of the display device if a vertical tab character is written when the active position
is at or past the last defined vertical tabulation position (5.2.2).

— How an extended source character that does not correspond to a universal character name
counts toward the significant initial characters in an external identifier (5.2.4.1).

— Many aspects of the representations of types (6.2.6).
— The relative order of any two storage instances in the address space (6.2.6.1).
— The value of padding bytes when storing values in structures or unions (6.2.6.1).

— The values of bytes that correspond to union members other than the one last stored into
(6.2.6.1).

— The representation used when storing a value in an object that has more than one object
representation for that value (6.2.6.1).

— The values of any padding bits in integer representations (6.2.6.2).

— Whether certain operators can generate negative zeros and whether a negative zero becomes a
normal zero when stored in an object (6.2.6.2).

— Whether two string literals result in distinct arrays (6.4.5).

— The order in which subexpressions are evaluated and the order in which side effects take place,
except as specified for the function-call (), &, | |, ?:, and comma operators (6.5).

— The order in which the function designator, arguments, and subexpressions within the argu-
ments are evaluated in a function call (6.5.2.2).

— The order of side effects among compound literal initialization list expressions (6.5.2.5).
— The order in which the operands of an assignment operator are evaluated (6.5.16).

— The alignment of the addressable storage unit allocated to hold a bit-field (6.7.2.1).

Portability issues differences to ISO/IEC 9899:2018, § J.1 page 415

110 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

— Whether a call to an inline function uses the inline definition or the external definition of the
function (6.7.4).

— Whether or not a size expression is evaluated when it is part of the operand of a sizeof
operator and changing the value of the size expression would not affect the result of the
operator (6.7.6.2).

— The order in which any side effects occur among the initialization list expressions in an
initializer (6.7.9).

— Thelayout-of storage forfunction-parameters{6:9-1)~When a fully expanded macro replace-

ment list contains a function-like macro name as its last preprocessing token and the next
preprocessing token from the source file is a (, and the fully expanded replacement of that
macro ends with the name of the first macro and the next preprocessing token from the source
file is again a (, whether that is considered a nested replacement (6.10.3).

— The order in which # and ## operations are evaluated during macro substitution (6.10.3.2,
6.10.3.3).

— The line number following a directive of the form #line __LINE__ new-line (6.10.4).

— The state of the floating-point status flags when execution passes from a part of the program
translated with FENV_ACCESS “off” to a part translated with FENV_ACCESS “on” (7.6.1).

— The order in which feraiseexcept raises floating-point exceptions, except as stated in F.8.6
(7.6.2.3).

— Whether math_errhandling is a macro or an identifier with external linkage (7.12).

— The results of the frexp functions when the specified value is not a floating-point number
(7.12.6.4).

— The numeric result of the ilogb functions when the correct value is outside the range of the
return type (7.12.6.5, F.10.3.5).

— The result of rounding when the value is out of range (7.12.9.5, 7.12.9.7, £10.6.5).

— The value stored by the remquo functions in the object pointed to by quo when vy is zero
(7.12.10.3).

— Whether a comparison macro argument that is represented in a format wider than its semantic
type is converted to the semantic type (7.12.14).

— Whether setjmp is a macro or an identifier with external linkage (7.13).
— Whether va_copy and va_end are macros or identifiers with external linkage (7.16.1).

— The hexadecimal digit before the decimal point when a non-normalized floating-point number
is printed with an a or A conversion specifier (7.21.6.1,7.29.2.1).

— The value of the file position indicator after a successful call to the ungetc function for a text
stream, or the ungetwc function for any stream, until all pushed-back characters are read or
discarded (7.21.7.10, 7.29.3.10).

— The details of the value stored by the fgetpos function (7.21.9.1).
— The details of the value returned by the ftell function for a text stream (7.21.9.4).

— Whether the strtod, strtof, strtold, wcstod, wecstof, and westold functions convert a
minus-signed sequence to a negative number directly or by negating the value resulting from
converting the corresponding unsigned sequence (7.22.1.3,7.29.4.1.1).

differences to ISO/IEC 9899:2018, § J.1 page 416 Portability issues

©ISO/IEC 2023 - All rights reserved 111



ISO/IEC TS 6010:2023(E)

If a call to the calloc, malloc, realloc, or aligned_alloc function whenrequesting 0 bytes
was-requested(2?fails or returns a storage instance of size zero (7.22.3).

— Whether a call to the atexit function that does not happen before the exit function is called
will succeed (7.22.4.2).

— Whether a call to the at_quick_exit function that does not happen before the quick_exit
function is called will succeed (7.22.4.3).

— Which of two elements that compare as equal is matched by the bsearch function (7.22.5.1).

— The order of two elements that compare as equal in an array sorted by the gsort function
(7.22.5.2).

— The order in which destructors are invoked by thrd_exit (7.26.5.5).

— Whether calling tss_delete on a key while another thread is executing destructors affects the
number of invocations of the destructors associated with the key on that thread (7.26.6.2).

— The encoding of the calendar time returned by the time function (7.27.2.4).

— The characters stored by the strftime or wesftime function if any of the time values being
converted is outside the normal range (7.27.3.5, 7.29.5.1).

— Whether an encoding error occurs if a wchar_t value that does not correspond to a member of
the extended character set appears in the format string for a function in 7.29.2 or 7.29.5 and the
specified semantics do not require that value to be processed by wecrtomb (7.29.1).

— The conversion state after an encoding error occurs (7.29.6.3.2,7.29.6.3.3,7.29.6.4.1,7.29.6.4.2,

— The resulting value when the “invalid” floating-point exception is raised during IEC 60559
floating to integer conversion (F.4).

— Whether conversion of non-integer IEC 60559 floating values to integer raises the “inexact”
floating-point exception (F.4).

— Whether or when library functions in <math. h> raise the “inexact” floating-point exception in
an IEC 60559 conformant implementation (F.10).

— Whether or when library functions in <math. h> raise an undeserved “underflow” floating-
point exception in an IEC 60559 conformant implementation (F.10).

— The exponent value stored by frexp for a NaN or infinity (F.10.3.4).

— The numeric result returned by the lrint, 1lrint, lround, and 1lround functions if the
rounded value is outside the range of the return type (F.10.6.5, F.10.6.7).

— The sign of one part of the complex result of several math functions for certain special cases
in IEC 60559 compatible implementations (G.6.1.1, G.6.2.2, G.6.2.3, G.6.2.4, G.6.2.5, G.6.2.6,
G.6.3.1,G.6.4.2).

J.2 Undefined behavior
1 The behavior is undefined in the following circumstances:
— A “shall” or “shall not” requirement that appears outside of a constraint is violated (Clause 4).

— A nonempty source file does not end in a new-line character which is not immediately preceded
by a backslash character or ends in a partial preprocessing token or comment (5.1.1.2).

— Token concatenation produces a character sequence matching the syntax of a universal charac-
ter name (5.1.1.2).

Portability issues differences to ISO/IEC 9899:2018, § J.2 page 417

112 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

— A program in a hosted environment does not define a function named main using one of the
specified forms (5.1.2.2.1).

— The execution of a program contains a data race (5.1.2.4).

— A character not in the basic source character set is encountered in a source file, except in an
identifier, a character constant, a string literal, a header name, a comment, or a preprocessing
token that is never converted to a token (5.2.1).

— An identifier, comment, string literal, character constant, or header name contains an invalid
multibyte character or does not begin and end in the initial shift state (5.2.1.2).

— The same identifier has both internal and external linkage in the same translation unit (6.2.2).
— An object is referred to outside of its lifetime (6.2.4 ).
— The value of a pointer to an object whose lifetime has ended is used (6.2.4 ).

— The value of an object with automatic storage duration is used while itis-indeterminate{(22the
object has an indeterminate representation (6.2.4, 6.7.9, 6.8).

— A trap-non-value representation is read by an Ivalue expression that does not have character
type (6.2.6.1).

— A trap-non-value representation is produced by a side effect that modifies any part of the
object using an lvalue expression that does not have character type (6.2.6.1).

— The operands to certain operators are such that they could produce a negative zero result, but
the implementation does not support negative zeros (6.2.6.2).

— Two declarations of the same object or function specify types that are not compatible (6.2.7).

— A program requires the formation of a composite type from a variable length array type whose
size is specified by an expression that is not evaluated (6.2.7).

— Conversion to or from an integer type produces a value outside the range that can be repre-
sented (6.3.1.4).

— Demotion of one real floating type to another produces a value outside the range that can be
represented (6.3.1.5).

— An Ivalue does not designate an object when evaluated (6.3.2.1).

— A non-array Ivalue with an incomplete type is used in a context that requires the value of the
designated object (6.3.2.1).

— An lvalue designating an object of automatic storage duration that could have been declared
with the register storage class is used in a context that requires the value of the designated
object, but the object is uninitialized. (6.3.2.1).

— An lvalue having array type is converted to a pointer to the initial element of the array, and
the array object has register storage class (6.3.2.1).

— An attempt is made to use the value of a void expression, or an implicit or explicit conversion
(except to void) is applied to a void expression (6.3.2.2).

— Conversion of a pointer to an integer type produces a value outside the range that can be
represented (6.3.2.3).

— Conversion between two pointer types produces a result that is incorrectly aligned (6.3.2.3).

— A pointer is used to call a function whose type is not compatible with the referenced type
(6.3.2.3).

differences to ISO/IEC 9899:2018, § J.2 page 418 Portability issues

©ISO/IEC 2023 - All rights reserved 113



ISO/IEC TS 6010:2023(E)

— A ¢, s, or [ conversion specifier is encountered by one of the formatted input functions, and
the array pointed to by the corresponding argument is not large enough to accept the input
sequence (and a null terminator if the conversion specifier is s or [) (7.21.6.2, 7.29.2.2).

— A ¢, s, or [ conversion specifier with an 1 qualifier is encountered by one of the formatted
input functions, but the input is not a valid multibyte character sequence that begins in the
initial shift state (7.21.6.2, 7.29.2.2).

— The input item for a %p conversion by one of the formatted input functions is not a value
converted earlier during the same program execution (7.21.6.2,7.29.2.2).

— The vfprintf, vfscanf, vprintf, vscanf, vsnprintf, vsprintf, vsscanf, vfwprintf,
vfwscanf, vswprintf, vswscanf, vwprintf, or vwscanf function is called with an improperly
initialized va_list argument, or the argument is used (other than in an invocation of va_end)
after the function returns (7.21.6.8,7.21.6.9, 7.21.6.10, 7.21.6.11, 7.21.6.12, 7.21.6.13, 7.21.6.14,
7.29.2.5,7.29.2.6,7.29.2.7,7.29.2.8,7.29.2.9,7.29.2.10).

— The contents of the array supplied in a call to the fgets or fgetws function are used after a
read error occurred (7.21.7.2,7.29.3.2).

— The file position indicator for a binary stream is used after a call to the ungetc function where
its value was zero before the call (7.21.7.10).

— The file position indicator for a stream is used after an error occurred during a call to the
fread or fwrite function (7.21.8.1,7.21.8.2).

— A partial element read by a call to the fread function is used (7.21.8.1).

— The fseek function is called for a text stream with a nonzero offset and either the offset was
not returned by a previous successful call to the ftell function on a stream associated with
the same file or whence is not SEEK_SET (7.21.9.2).

— The fsetpos function is called to set a position that was not returned by a previous successful
call to the fgetpos function on a stream associated with the same file (7.21.9.3).

— A non-null pointer returned by a call to the calloc, malloc, realloc, or aligned_alloc
function with a zero requested size is used to access an object (7.22.3 ).

— The value of a pointer that refers to space-a storage instance deallocated by a call to the free
or realloc function is used (7.22.3 ).

— The pointer argument to the free or realloc function does not match a pointer earlier

returned by a memery-storage management function, or the spacestorage instance has been
deallocated by a call to free or realloc (7.22.3.3, 7.22.3.5).

— The value of the object allocated by the malloc function is used (7.22.3.4).

— The values of any bytes in a new object allocated by the realloc function beyond the size of
the old object are used (7.22.3.5).

— The program calls the exit or quick_exit function more than once, or calls both functions
(7.22.4.4,7.22.4.7).

— During the call to a function registered with the atexit or at_quick_exit function, a call is
made to the Longjmp function that would terminate the call to the registered function (7.22.4.4,
7.224.7).

— The string set up by the getenv or strerror function is modified by the program (7.22.4.6,
7.24.6.2).

— A signal is raised while the quick_exit function is executing (7.22.4.7).

— A command is executed through the system function in a way that is documented as causing
termination or some other form of undefined behavior (7.22.4.8).

differences to ISO/IEC 9899:2018, § J.2 page 426 Portability issues

114 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

— The mapping of members of the source character set (in character constants and string literals)
to members of the execution character set (6.4.4.4, 5.1.1.2).

— The value of an integer character constant containing more than one character or containing a
character or escape sequence that does not map to a single-byte execution character (6.4.4.4).

— The value of a wide character constant containing more than one multibyte character or a
single multibyte character that maps to multiple members of the extended execution character
set, or containing a multibyte character or escape sequence not represented in the extended
execution character set (6.4.4.4).

— The current locale used to convert a wide character constant consisting of a single multibyte
character that maps to a member of the extended execution character set into a corresponding
wide character code (6.4.4.4).

— Whether differently-prefixed wide string literal tokens can be concatenated and, if so, the
treatment of the resulting multibyte character sequence (6.4.5).

— The current locale used to convert a wide string literal into corresponding wide character
codes (6.4.5).

— The value of a string literal containing a multibyte character or escape sequence not represented
in the execution character set (6.4.5).

— The encoding of any of wchar_t, charl6_t, and char32_t where the corresponding stan-
dard encoding macro (_STDC_IS0_10646__, __STDC_UTF_16__, or __STDC_UTF_32__) is not
defined (6.10.8.2).

J.3.5 Integers
1 — Any extended integer types that exist in the implementation (6.2.5).

— Whether signed integer types are represented using sign and magnitude, two’s complement,
or ones’ complement, and whether the extraordinary value is a trap-non-value representation
or an ordinary value (6.2.6.2).

— The rank of any extended integer type relative to another extended integer type with the same
precision (6.3.1.1).

— The result of, or the signal raised by, converting an integer to a signed integer type when the
value cannot be represented in an object of that type (6.3.1.3).

— The results of some bitwise operations on signed integers (6.5).

J.3.6 Floating point

1 — The accuracy of the floating-point operations and of the library functions in <math.h>and
<complex.h> that return floating-point results (5.2.4.2.2).

— The accuracy of the conversions between floating-point internal representations and string
representations performed by the library functions in <stdio.h>, <stdlib.h>, and <wchar.h>
(5.24.2.2).

— The rounding behaviors characterized by non-standard values of FLT_ROUNDS (5.2.4.2.2).

— The evaluation methods characterized by non-standard negative values of FLT_EVAL_METHOD
(5.24.22).

— The direction of rounding when an integer is converted to a floating-point number that cannot
exactly represent the original value (6.3.1.4).

— The direction of rounding when a floating-point number is converted to a narrower floating-
point number (6.3.1.5).

Portability issues differences to ISO/IEC 9899:2018, § J.3.6 page 429

©ISO/IEC 2023 - All rights reserved 115



ISO/IEC TS 6010:2023(E)

— Whether the last line of a text stream requires a terminating new-line character (7.21.2).

— Whether space characters that are written out to a text stream immediately before a new-line
character appear when read in (7.21.2).

— The number of null characters that may be appended to data written to a binary stream (7.21.2).

— Whether the file position indicator of an append-mode stream is initially positioned at the
beginning or end of the file (7.21.3).

— Whether a write on a text stream causes the associated file to be truncated beyond that point
(7.21.3).

— The characteristics of file buffering (7.21.3).

— Whether a zero-length file actually exists (7.21.3).

— The rules for composing valid file names (7.21.3).

— Whether the same file can be simultaneously open multiple times (7.21.3).

— The nature and choice of encodings used for multibyte characters in files (7.21.3).

— The effect of the remove function on an open file (7.21.4.1).

— The effect if a file with the new name exists prior to a call to the rename function (7.21.4.2).
— Whether an open temporary file is removed upon abnormal program termination (7.21.4.3).
— Which changes of mode are permitted (if any), and under what circumstances (7.21.5.4).

— The style used to print an infinity or NaN, and the meaning of any n-char or n-wchar sequence
printed for a NaN (7.21.6.1, 7.29.2.1).

— The output for %p conversion in the fprintf or fwprintf function (7.21.6.1, 7.29.2.1).

— The interpretation of a- character that is neither the first nor the last character, nor the second
where a ~ character is the first, in the scanlist for %[ conversion in the fscanf or fwscanf
function (7.21.6.2,7.29.2.1).

— The set of sequences matched by a %p conversion and the interpretation of the corresponding
input item in the fscanf or fwscanf function (7.21.6.2, 7.29.2.2).

— The value to which the macro errno is set by the fgetpos, fsetpos, or ftell functions on
failure (7.21.9.1,7.21.9.3, 7.21.9.4).

— The meaning of any n-char or n-wchar sequence in a string representing a NaN that is
converted by the strtod, strtof, strtold, wcstod, westof, or westold function (7.22.1.3,
7.29.4.1.1).

— Whether or not the strtod, strtof, strtold, wcstod, wcstof, orwcstold function sets errno
to ERANGE when underflow occurs (7.22.1.3,7.29.4.1.1).

— Whether the calloc, malloc, realloc, and aligned_alloc functions return a null pointer or
a pointer to an-allocated-objeeta storage instance when the size requested is zero (7.22.3 ).

— Whether open streams with unwritten buffered data are flushed, open streams are closed, or
temporary files are removed when the abort or _Exit function is called (7.22.4.1,7.22.4.5).

— The termination status returned to the host environment by the abort, exit, _Exit, or
quick_exit function (7.22.4.1,7.22.4.4,7.22.4.5,7.22.4.7).

— The value returned by the system function when its argument is not a null pointer (7.22.4.8).

— The range and precision of times representable in clock_t and time_t (7.27).

differences to ISO/IEC 9899:2018, § J.3.12 page 432 Portability issues

116 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

K.3.5.3.9 The vfscanf_s function
Synopsis

1 #define _STDC_WANT_LIB_EXT1 _ 1

#include <stdarg.h>

#include <stdio.h>

int vfscanf_s(FILE * restrict stream,
const char x restrict format,
va_list arg);

Runtime-constraints
2 Neither stream nor format shall be a null pointer. Any argument indirected though in order to
store converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vfscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vfscanf_s performed input before discovering
the runtime-constraint violation.

Description

4 The vfscanf_s function is equivalent to fscanf_s, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vfscanf_s function does not invoke the va_end macro.*?”

Returns

5 The vfscanf_s function returns the value of the macro EOF if an input failure occurs before any
conversion or if there is a runtime-constraint violation. Otherwise, the vfscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.5.3.10 The vprintf_s function
Synopsis

1 #define _STDC_WANT_LIB_EXT1 _ 1

#include <stdarg.h>

#include <stdio.h>

int vprintf_s(const char * restrict format,
va_list arg);

Runtime-constraints

2 format shall not be a null pointer. The %n specifier®® (modified or not by flags, field width,
or precision) shall not appear in the string pointed to by format. Any argument to vprintf_s
corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the vprintf_s function does not attempt to produce
further output, and it is unspecified to what extent vprintf_s produced output before discovering
the runtime-constraint violation.

Description

4 The vprintf_s function is equivalent to the vprintf function except for the explicit runtime-
constraints listed above.

Returns

5 The vprintf_s function returns the number of characters transmitted, or a negative value if an
output error, encoding error, or runtime-constraint violation occurred.

429) As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s, vsprintf_s, and vsscanf_s invoke
the va_arg macro, the valuerepresentation of arg after the return is indeterminate.

4301t is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format
when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

Bounds-checking interfaces differences to ISO/IEC 9899:2018, § K.3.5.3.10 page 447

©ISO/IEC 2023 - All rights reserved 117



ISO/IEC TS 6010:2023(E)

K.3.5.3.11 The vscanf_s function
Synopsis

1 #define _STDC_WANT_LIB_EXT1 _ 1

#include <stdarg.h>

#include <stdio.h>

int vscanf_s(const char * restrict format,
va_list arg);

Runtime-constraints
2 format shall not be a null pointer. Any argument indirected though in order to store converted
input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vscanf_s function does not attempt to perform further
input, and it is unspecified to what extent vscanf_s performed input before discovering the runtime-
constraint violation.

Description

4  The vscanf_s function is equivalent to scanf_s, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vscanf_s function does not invoke the va_end macro.*3

Returns

5 The vscanf_s function returns the value of the macro EOF if an input failure occurs before any
conversion or if there is a runtime-constraint violation. Otherwise, the vscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.5.3.12 The vsnprintf_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1 _ 1

#include <stdarg.h>

#include <stdio.h>

int vsnprintf_s(char * restrict s, rsize_t n,
const char * restrict format,
va_list arg);

Runtime-constraints

2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than RSIZE_MAX.
The %n specifier*®? (modified or not by flags, field width, or precision) shall not appear in the string
pointed to by format. Any argument to vsnprintf_s corresponding to a %s specifier shall not be a
null pointer. No encoding error shall occur.

3 If there is a runtime-constraint violation, then if s is not a null pointer and n is greater than zero and
not greater than RSIZE_MAX, then the vsnprintf_s function sets s[0] to the null character.

Description
4 The vsnprintf_s function is equivalent to the vsnprintf function except for the explicit runtime-
constraints listed above.

5 Thevsnprintf_s function, unlike vsprintf_s, will truncate the result to fit within the array pointed
to by s.

431 As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s, vsprintf_s, and vsscanf_s invoke

the va_arg macro, the valuerepresentation of arg after the return is indeterminate.
432)1t is not a runtime-constraint violation for the characters %n to appear in sequence in the string pointed at by format

when those characters are not a interpreted as a %n specifier. For example, if the entire format string was %%n.

differences to ISO/IEC 9899:2018, § K.3.5.3.12 page 448 Bounds-checking interfaces

118 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

Description

4  The vsscanf_s function is equivalent to sscanf_s, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vsscanf_s function does not invoke the va_end macro.*3¥

Returns

5  The vsscanf_s function returns the value of the macro EOF if an input failure occurs before any
conversion or if there is a runtime-constraint violation. Otherwise, the vscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.5.4 Character input/output functions
K.3.5.4.1 The gets_s function
Synopsis

1 #define __STDC_WANT_LIB_EXT1 _ 1
#include <stdio.h>
char xgets_s(char s, rsize_t n);

Runtime-constraints

2 s shall not be a null pointer. n shall neither be equal to zero nor be greater than RSIZE_MAX. A new-
line character, end-of-file, or read error shall occur within reading n-1 characters from stdin.*3

3 If there is a runtime-constraint violation, characters are read and discarded from stdin until a
new-line character is read, or end-of-file or a read error occurs, and if s is not a null pointer, s[0] is
set to the null character.

Description

4 The gets_s function reads at most one less than the number of characters specified by n from the
stream pointed to by stdin, into the array pointed to by s. No additional characters are read after a
new-line character (which is discarded) or after end-of-file. The discarded new-line character does
not count towards number of characters read. A null character is written immediately after the last
character read into the array:.

5 If end-of-file is encountered and no characters have been read into the array, or if a read error
occurs during the operation, then s[0] is set to the null character, and the other elements of s take
unspecified values.

Recommended practice

6  The fgets function allows properly-written programs to safely process input lines too long to store
in the result array. In general this requires that callers of fgets pay attention to the presence or
absence of a new-line character in the result array. Consider using fgets (along with any needed
processing based on new-line characters) instead of gets_s.

Returns

7  The gets_s function returns s if successful. If there was a runtime-constraint violation, or if end-of-
file is encountered and no characters have been read into the array, or if a read error occurs during
the operation, then a null pointer is returned.

434 As the functions vfprintf_s, vfscanf_s, vprintf_s, vscanf_s, vsnprintf_s, vsprintf_s, and vsscanf_s invoke

the va_arg macro, the value representation of arg after the return is indeterminate.

435 The gets_s function, unlike the historical gets function, makes it a runtime-constraint violation for a line of input to
overflow the buffer to store it. Unlike the fgets function, gets_s maintains a one-to-one relationship between input lines
and successful calls to gets_s. Programs that use gets expect such a relationship.

differences to ISO/IEC 9899:2018, § K.3.5.4.1 page 450 Bounds-checking interfaces

©ISO/IEC 2023 - All rights reserved 119



ISO/IEC TS 6010:2023(E)

Returns

7 The qsort_s function returns zero if there was no runtime-constraint violation. Otherwise, a
nonzero value is returned.

K.3.6.4 Multibyte/wide character conversion functions

1 The behavior of the multibyte character functions is affected by the LC_CTYPE category of the current
locale. For a state-dependent encoding, each function is placed into its initial conversion state by a
call for which its character pointer argument, s, is a null pointer. Subsequent calls with s as other
than a null pointer cause the internal conversion state of the function to be altered as necessary. A
call with s as a null pointer causes these functions to set the int pointed to by their status argument
to a nonzero value if encodings have state dependency, and zero otherwise.**¥ Changing the
LC_CTYPE category causes the internal object describing the conversion state of these functions to
be-indeterminate-have an indeterminate representation.

K.3.6.4.1 The wctomb_s function
Synopsis

1 #define _STDC_WANT_LIB_EXT1__ 1
#include <stdlib.h>
errno_t wctomb_s(int * restrict status,
char * restrict s,
rsize_t smax,
wchar_t wc);

Runtime-constraints
2 Let n denote the number of bytes needed to represent the multibyte character corresponding to the
wide character given by wc (including any shift sequences).

3 If s is not a null pointer, then smax shall not be less than n, and smax shall not be greater than
RSIZE_MAX. If s is a null pointer, then smax shall equal zero.

4 If there is a runtime-constraint violation, wctomb_s does not modify the int pointed to by status,
and if s is not a null pointer, no more than smax elements in the array pointed to by s will be
accessed.

Description

5 Thewctomb_s function determines n and stores the multibyte character representation of wc in the
array whose first element is pointed to by s (if s is not a null pointer). The number of characters
stored never exceeds MB_CUR_MAX or smax. If wc is a null wide character, a null byte is stored,
preceded by any shift sequence needed to restore the initial shift state, and the function is left in the
initial conversion state.

6  The implementation shall behave as if no library function calls the wctomb_s function.

7 If s is a null pointer, the wctomb_s function stores into the int pointed to by status a nonzero or zero
value, if multibyte character encodings, respectively, do or do not have state-dependent encodings.

8  If s is not a null pointer, the wctomb_s function stores into the int pointed to by status either n or
-1 if we, respectively, does or does not correspond to a valid multibyte character.

9  Inno case will the int pointed to by status be set to a value greater than the MB_CUR_MAX macro.

Returns

10 The wctomb_s function returns zero if successful, and a nonzero value if there was a runtime-
constraint violation or wc did not correspond to a valid multibyte character.

4491f the locale employs special bytes to change the shift state, these bytes do not produce separate wide character codes, but
are grouped with an adjacent multibyte character.

Bounds-checking interfaces differences to ISO/IEC 9899:2018, § K.3.6.4.1 page 455

120 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

3 If there is a runtime-constraint violation, the vfwprintf_s function does not attempt to produce
further output, and it is unspecified to what extent vfwprintf_s produced output before discovering
the runtime-constraint violation.

Description

4 The vfwprintf_s function is equivalent to the vfwprintf function except for the explicit runtime-
constraints listed above.
Returns

5  The vfwprintf_s function returns the number of wide characters transmitted, or a negative value if
an output error, encoding error, or runtime-constraint violation occurred.

K.3.9.1.7 The vfwscanf_s function
Synopsis

1 #define _STDC_WANT_LIB_EXT1__ 1
#include <stdarg.h>
#include <stdio.h>
#include <wchar.h>
int vfwscanf_s(FILE x restrict stream,
const wchar_t x restrict format, va_list arg);

Runtime-constraints
2 Neither stream nor format shall be a null pointer. Any argument indirected though in order to
store converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vfwscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vfwscanf_s performed input before discovering
the runtime-constraint violation.

Description

4  The vfwscanf_s function is equivalent to fwscanf_s, with the variable argument list replaced by
arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
calls). The vfwscanf_s function does not invoke the va_end macro.*°)

Returns

5 The vfwscanf_s function returns the value of the macro EOF if an input failure occurs before any
conversion or if there is a runtime-constraint violation. Otherwise, the vfwscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.1.8 The vsnwprintf_s function
Synopsis

1 #define _STDC_WANT_LIB_EXT1 _ 1

#include <stdarg.h>

#include <wchar.h>

int vsnwprintf_s(wchar_t * restrict s,
rsize_t n,
const wchar_t x restrict format,
va_list arg);

Runtime-constraints

2 Neither s nor format shall be a null pointer. n shall neither equal zero nor be greater than
RSIZE_MAX/sizeof (wchar_t). The %n specifier*®”) (modified or not by flags, field width, or preci-

460 As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the valuerepresentation of arg
after the return is indeterminate.

471t is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at
by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was

Bounds-checking interfaces differences to ISO/IEC 9899:2018, § K.3.9.1.8 page 471

©ISO/IEC 2023 - All rights reserved 121



ISO/IEC TS 6010:2023(E)

K.3.9.1.10 The vswscanf_s function
Synopsis

1 #define _STDC_WANT_LIB_EXT1__ 1

#include <stdarg.h>

#include <wchar.h>

int vswscanf_s(const wchar_t * restrict s,
const wchar_t x restrict format,
va_list arg);

Runtime-constraints
2 Neither s nor format shall be a null pointer. Any argument indirected though in order to store
converted input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vswscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vswscanf_s performed input before discovering
the runtime-constraint violation.

Description

4 The vswscanf_s function is equivalent to swscanf_s, with the variable argument list replaced by
arg, which shall have been initialized by the va_start macro (and possibly subsequent va_arg
calls). The vswscanf_s function does not invoke the va_end macro.**)

Returns

5 The vswscanf_s function returns the value of the macro EOF if an input failure occurs before any
conversion or if there is a runtime-constraint violation. Otherwise, the vswscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.1.11 The vwprintf_s function
Synopsis

1 #define _STDC_WANT_LIB_EXT1 _ 1

#include <stdarg.h>

#include <wchar.h>

int vwprintf_s(const wchar_t * restrict format,
va_list arg);

Runtime-constraints

2 format shall not be a null pointer. The %n specifier’’? (modified or not by flags, field width, or
precision) shall not appear in the wide string pointed to by format. Any argument to vwprintf_s
corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the vwprintf_s function does not attempt to produce
further output, and it is unspecified to what extent vwprintf_s produced output before discovering
the runtime-constraint violation.

Description

4 The vwprintf_s function is equivalent to the vwprintf function except for the explicit runtime-
constraints listed above.

Returns

5  The vwprintf_s function returns the number of wide characters transmitted, or a negative value if
an output error, encoding error, or runtime-constraint violation occurred.

469 As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the valuerepresentation of arg
after the return is indeterminate.

4701t is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at
by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

Bounds-checking interfaces differences to ISO/IEC 9899:2018, § K.3.9.1.11 page 473

122 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

K.3.9.1.12 The vwscanf_s function
Synopsis

1 #define _STDC_WANT_LIB_EXT1 _ 1

#include <stdarg.h>

#include <wchar.h>

int vwscanf_s(const wchar_t * restrict format,
va_list arg);

Runtime-constraints

2 format shall not be a null pointer. Any argument indirected though in order to store converted
input shall not be a null pointer.

3 If there is a runtime-constraint violation, the vwscanf_s function does not attempt to perform
further input, and it is unspecified to what extent vwscanf_s performed input before discovering
the runtime-constraint violation.

Description

4 The vwscanf_s function is equivalent to wscanf_s, with the variable argument list replaced by arg,
which shall have been initialized by the va_start macro (and possibly subsequent va_arg calls).
The vwscanf_s function does not invoke the va_end macro.*’?

Returns

5  The vwscanf_s function returns the value of the macro EOF if an input failure occurs before any
conversion or if there is a runtime-constraint violation. Otherwise, the vwscanf_s function returns
the number of input items assigned, which can be fewer than provided for, or even zero, in the event
of an early matching failure.

K.3.9.1.13 The wprintf_s function

Synopsis
1 #define _STDC_WANT_LIB_EXT1 _ 1
#include <wchar.h>
int wprintf_s(const wchar_t x restrict format, ...);

Runtime-constraints

2 format shall not be a null pointer. The %n specifier? (modified or not by flags, field width, or
precision) shall not appear in the wide string pointed to by format. Any argument to wprintf_s
corresponding to a %s specifier shall not be a null pointer.

3 If there is a runtime-constraint violation, the wprintf_s function does not attempt to produce
further output, and it is unspecified to what extent wprintf_s produced output before discovering
the runtime-constraint violation.

Description

4 The wprintf_s function is equivalent to the wprintf function except for the explicit runtime-
constraints listed above.

Returns

5 Thewprintf_s function returns the number of wide characters transmitted, or a negative value if
an output error, encoding error, or runtime-constraint violation occurred.

471) As the functions vfwscanf_s, vwscanf_s, and vswscanf_s invoke the va_arg macro, the vatue-representation of arg

after the return is indeterminate.

472)1t is not a runtime-constraint violation for the wide characters %n to appear in sequence in the wide string pointed at
by format when those wide characters are not a interpreted as a %n specifier. For example, if the entire format string was
L"%%n".

differences to ISO/IEC 9899:2018, § K.3.9.1.13 page 474 Bounds-checking interfaces

©ISO/IEC 2023 - All rights reserved 123



ISO/IEC TS 6010:2023(E)

Annex L
(normative)

Analyzability

L.1 Scope

1 This annex specifies optional behavior that can aid in the analyzability of C programs.

2 Animplementation that defines __STDC_ANALYZABLE__ shall conform to the specifications in this
annex.*8®
L.2 Definitions
L.2.1

1 out-of-bounds store

an (attempted) access (3.1) that, at run time, for a given computational state, would modify (or, for
an object declared volatile, fetch) one or more bytes that lie outside the bounds permitted by this
document.

L.2.2
1 bounded undefined behavior

undefined behavior (3.4.3) that does not perform an out-of-bounds store.
2 Note 1 to entry: The behavior might perform a trap.

3 Note 2 to entry: Any values produced or stored might be indeterminate-valuesunspecified values, and the representation
of objects that are written to might become indeterminate.

L.2.3

1 critical undefined behavior

undefined behavior that is not bounded undefined behavior.

2 Note 1 to entry: The behavior might perform an out-of-bounds store or perform a trap.

L.3 Requirements

1 If the program performs a trap (3.21.5), the implementation is permitted to invoke a runtime-
constraint handler. Any such semantics are implementation-defined.

2 All undefined behavior shall be limited to bounded undefined behavior, except for the following
which are permitted to result in critical undefined behavior:

— An object is referred to outside of its lifetime (6.2.4 ).
— A store is performed to an object that has two incompatible declarations (6.2.7),

— A pointer is used to call a function whose type is not compatible with the referenced type
(6.2.7,6.3.2.3,6.5.2.2).

— An Ivalue does not designate an object when evaluated (6.3.2.1).
— The program attempts to modify a string literal (6.4.5).
— The operand of the unary * operator has an invalid value (6.5.3.2).

— Addition or subtraction of a pointer into, or just beyond, an array object and an integer type
produces a result that points just beyond the array object and is used as the operand of a unary
* operator that is evaluated (6.5.6).

— An attempt is made to modify an object defined with a const-qualified type through use of an
Ivalue with non-const-qualified type (6.7.3).

488)Implementations that do not define —STDC_ANALYZABLE_ are not required to conform to these specifications.

Analyzability differences to ISO/IEC 9899:2018, § L.3 page 485

124 ©ISO/IEC 2023 - All rights reserved



ISO/IEC TS 6010:2023(E)

Bibliography

[1]

[13]

David Chisnall, Justus Matthiesen, Kayvan Memarian, Kyndylan Nienhuis, Peter Sewell, and Robert
N. M. Watson. C memory object and value semantics: the space of de facto and ISO standards.
http://www.cl.cam.ac.uk/~pes20/cerberus/notes30.pdf (arevison of ISO SC22 WG14 N2013),
March 2016.

Clive D. W. Feather. Indeterminate values and identical representations (DR260). Technical report,
September 2004. http://wuw.open-std.org/jtcl/sc22/wgld/www/docs/dr_260.htm.

Jens Gustedt. Pointers and integer types. Research Report N2889, ISO JCT1/SC22/WG14, January
2022. URL https://hal.inria.fr/hal-03363711.

Jens Gustedt, Peter Sewell, Kayvan Memarian, Victor B F Gomes, and Martin Uecker. Moving to
a provenance-aware memory object model for C: proposal for C2x. Technical Report N2362, ISO
JCT1/SC22/WG14, April 2019. URL https://hal.inria.fr/hal-02089889.

Krebbers and Wiedijk. N1637: Subtleties of the ANSI/ISO C standard, September 2012. http://www.
open-std.org/jtcl/sc22/wgld/www/docs/n1637.pdf.

Robbert Krebbers. The C standard formalized in Coq. PhD thesis, Radboud University Nijmegen, De-
cember 2015.

Juneyoung Lee, Chung-Kil Hur, Ralf Jung, Zhengyang Liu, John Regehr, and Nuno P. Lopes. Reconciling
high-level optimizations and low-level code with twin memory allocation. In Proceedings of the 2018
ACM SIGPLAN International Conference on Object Oriented Programming Systems Languages & Applica-
tions, OOPSLA 2018, part of SPLASH 2018, Boston, MA, USA, November 4-9, 2018. ACM, 2018.

Kayvan Memarian, Justus Matthiesen, James Lingard, Kyndylan Nienhuis, David Chisnall, Robert N.M.
Watson, and Peter Sewell. Into the depths of C: elaborating the de facto standards. In PLDI 2016:
37th annual ACM SIGPLAN conference on Programming Language Design and Implementation (Santa
Barbara), June 2016. URL http://www.cl.cam.ac.uk/users/pes20/cerberus/pldil6.pdf. PLDI
2016 Distinguished Paper award.

Kayvan Memarian, Victor B. F. Gomes, Kyndylan Nienhuis, Justus Matthiesen, James Lingard, Stella Lau,
and Peter Sewell. Cerberus tool for exploring the semantics of the ¢ programming language., 2016-
2022. http://cerberus.cl.cam.ac.uk/cerberus.

Kayvan Memarian, Victor B. F. Gomes, Brooks Davis, Stephen Kell, Alexander Richardson, Robert
N. M. Watson, and Peter Sewell. Exploring C semantics and pointer provenance. In POPL 2019:
Proc. 46th ACM SIGPLAN Symposium on Principles of Programming Languages, January 2019. doi:
10.1145/3290380. Proc. ACM Program. Lang. 3, POPL, Article 67. Also available as ISO WG14 N2311,
http://www.open-std.org/jtcl/sc22/wgld/www/docs/n2311.pdf.

Dominic P. Mulligan, Scott Owens, Kathryn E. Gray, Tom Ridge, and Peter Sewell. Lem: reusable en-
gineering of real-world semantics. In Proceedings of ICFP 2014: the 19th ACM SIGPLAN International
Conference on Functional Programming, pages 175-188,2014. doi: 10.1145/2628136.2628143. URL
http://doi.acm.org/10.1145/2628136.2628143.

Peter Sewell, Kayvan Memarian, Victor B F Gomes, Jens Gustedt, and Martin Uecker. C provenance
semantics: examples. Technical Report N2363, ISO JCT1/SC22/WG14, April 2019. URL https://
hal.inria.fr/hal-02089907.

Martin Uecker and Jens Gustedt. Indeterminate Values and Trap Representations. Research Report
2772,1SO TC1/SC22/WG14, July 2021. URL https://hal.inria.fr/hal-03408023.

©ISO/IEC 2023 - All rights reserved 125



