Function literals and value closures v.1
proposal for C23

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

We propose the inclusion of simple lambda expressions into the C standard. We build on a slightly restricted
syntax of that feature in C++. In particular, they only have immutable value captures, fully specified pa-
rameter types, and, based on N2632, the return type is inferred from return statements. This is part of a
series of papers for the improvement of type-generic programming in C that has been introduced in N2638.
Follow-up papers N2634 and N2635 will extend this feature with auto parameter types and lvalue captures,
respectively.

I. MOTIVATION

In N2638 it is argued that the features presented in this paper are useful in a more general
context, namely for the improvement of type-generic programming in C. We will not repeat
this argumentation here, but try to motivate the introduction of lambdas as a stand-alone
addition to C.

When programming in C we are often confronted with the need of specifying small functional
units that

—are to be reused in several places
— are to be passed as argument to another function
—need a fine control of data in- and outflow.

The smallest unit currently is the specification of a function, that is a top-level named entity
with identified parameters for input and output. Current C provides several mechanisms to
ease the specification of such small functions:

— The possibility to distinguish internal and external linkage via a specification with static
(or not).

— The possibility to add function definitions to header files and thus to make the definitions
and not only the interface declaration available across translation units via the inline
mechanism.

— The possibility to add additional properties to functions via the attribute mechanism.

All these mechanisms are relatively rigid:

(1) They require a naming convention for the function.

(2) They require a specification far away and ahead of the first use.

(3) They treat all information that is passed from the caller to the function as equally
important.

As an example, take the task of specifying a comparison function for strings to qsort. There
is already such a function, strcmp, in the C library that is almost fit for the task, only that
its prototype is missing an indirection. The semantically correct comparison function could
look something like this:

© 2021 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2632.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2638.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2634.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2635.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2638.pdf

[N

N O U W=

W N

OO Ui W

N2633:2 Jens Gustedt

int strComp(charx const* a, charx const*x b) {
return strcmp(*a, *b);

3

Although probably for most existing ABI its call interface could be used as such (if charx*
const* and void const* have the same representation) the use of it in the following call is
a constraint violation:

#define NUMEL 256
charx stringArray[NUMEL] = { "hei", "you", ... };

gsort(stringArray, NUMEL, sizeof(charx),
strComp); // mismatch, constraint violation

The reflex of some C programmers will perhaps be to paint over this by using a cast:

gsort(stringArray, NUMEL, sizeof(charx),
(int(*) (void const*, void constx*))strComp); // UB

This does not only make the code barely readable, but also just introduces undefined behav-
ior instead of a constraint violation. On the other hand, on many platforms the behavior
of this code may indeed be well defined, because finally the ABI of strComp is the right
one. Unfortunately there is no way for the programmer to know that for all possible target
platforms.

So the “official” strategy in C is to invent yet another wrapper:

int strCompV(void const* a, void const* b) {
return strComp(a, b);

3

gsort(stringArray, NUMEL, sizeof(charx),
strCompV); // OK

This strategy has the disadvantages (1) and (2), but on most platforms it will also miss
optimization opportunities:

— Since strCompV is specified as a function its address must be unique. The caller cannot

inspect gsort, it cannot know if strCompV and strComp must have different addresses.
Thus we are forcing the creation of a function that only consists of code duplication.

— If the two functions are found in two different translation units, strCompV will just consist

of a tail call to strComp and thus create a useless indirection for every call within gsort.

C++’s lambda feature that we propose to integrate into C allows the following simple speci-
fication:

Function literals and value closures v.1 N2633:3

gsort(stringArray, NUMEL, sizeof(charx),
[1J(void const* a, void constx b){
return strComp(a, b);

s

ST LN

By such a specification of a lambda we do not only avoid (1) and (2), but we also leave it
to the discretion of the implementation if this produces the a new function with a different
address or if the tail call is optimized at the call site and the address of strComp is used
instead.

Altogether, the improvements that we want to gain with this feature are:

— Similar to compound literals, avoid useless naming conventions for functions with a local
scope (anonymous functions).

— Avoid to declare and define small functions far from their use.

— Allow the compiler to reuse functions that have the same functionality and ABI.

— Split interface specifications for such small functions into an invariant part (captures) and
into a variable part (parameters).

— Strictly control the in- and outflow of data into specific functional units.

— Provide more optimization opportunities to the compiler, for example better tail call
elimination or JIT compilation of code snippets for fixed run-time values.

Il. DESIGN CHOICES
11.1. Expression versus function definition

Currently, the C standard imposes to use named callbacks for small functional units that
would be used by C library functions such as atexit or gsort. Where inventing a name
is already an unnecessary burden to the programming of small one-use functionalities, the
distance between definition and use is a real design problem and can make it difficult to
enforce consistency between a callback and a call. Already for the C library itself this is a
real problem, because function arguments are even reinterpreted (transiting through void
constx) by a callback to gsort, for example. The situation is even worse, if input data for
the function is only implicitly provided by access to global variables as for atexit.

Nested functions improve that situation only marginally: definition and use are still disso-
ciated, and access to variables from surrounding scopes can still be used within the local
function. In many cases the situation can even be worse than for normal functions, because
variables from outside that are accessed by nested functions may have automatic storage
duration. Thus, nested functions may access objects that are already dead when they are
called, making the behavior of the execution undefined.

For these reasons we opted for an expression syntax referred to as lambda. This particular
choice not withstanding we think that it should still be possible to name a local functionality
if need be, and to reuse it in several places of the same program. Therefore, lambdas still
allow to manipulate lambda values, the results of a lambda expresssion, and in particular
that these values are assigned to objects of lambda type.

N2633:4 Jens Gustedt

11.2. Capture model

For the possible visibility of types and objects inside the body of a lambda, the simplest is
to apply the existing scope model. This is what is chosen here (consistently with C++) for
all use of types and objects that do not need an evaluation.

— All visible types can be used, if otherwise permitted, as type name in within alignof,
alignas or sizeof expressions, type definitions, generic choice expressions, casts or com-
pound literals, as long as they do not lead to an evaluation of a variably modified type.

— All visible objects can be used within the controlling expression of _Generic, within
alignof expressions, and, if they do not have a variably modified type, within sizeof
expressions.

In contrast to that and as we have discussed in N2638, there are four possible design
choices for the access of automatic variables that are visible at the point of the evaluation
of a lambda expression. We don’t think that there is any “natural” choice among these,
but that for a given lambda the choice has to depend on several criteria, some of which are
general (such as personal preferences or coding styles) and some of which are special (such
as a subsequent modification of the object or optimization questions).

As a consequence, we favor a solution that leaves the principal decision if a capture is a
value capture or an lvalue capture to the programmer of the lambda; it is only they who can
appreciate the different criteria. For this particular paper, we put the question on how lvalue
captures should be be handled aside and only introduce value captures.! Nevertheless we
think that the choice of explicit specification of value captures as provided by C++ lambdas is
preferable to the implicit use of value captures for all automatic variables as in Objective C’s
blocks, or of lvalue captures as for gcc’s compound expression or nested functions.?

11.3. Call sequence

As for all papers in this series, we intend not to impose ABI changes to implementations.
We chose a specification for a call sequence for lambdas that either uses an existing function
call ABI or encapsulates all calls to lambdas within a given translation unit.

For function literals, that is lambdas that have no captures, we impose that they should
be convertible to function pointers with the same prototype. It is easy to see that such a
lambda can be rewritten to a static function with an auxiliary name which then is used in
place of the lambda expression itself.

For closures, that is lambdas with captures, the situation is a bit more complicated. Where
some implementations, building for example upon gcc’s nested functions, may prefer to use
the same calling sequence as for functions, others may want to evaluate captures directly
in place and use an extended ABI to call a derived function interface or pass information
for the captures implicitly in a special register.

Therefore, our proposal just adds lambda values to the possibilities of the postfix expression
(LHS) of a function call, and imposes no further restrictions how this feature is to be
implemented.

ILvalue captures will be proposed in N2635.
2These different possibilities have been discussed in N2638.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2638.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2635.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2638.pdf

Function literals and value closures v.1 N2633:5

11.4. Interoperability

The fact that objects with lambda type can be defined and may have external linkage, could
imply that such lambda objects are made visible between different translation units. If that
would be possible, implementations would be forced to extend ABIs with the specification
of lambda types, and platforms that have several interoperable implementations would have
to agree on such ABI.

To require such an ABI specifiction would have several disadvantages:

— A cross-implementation effort of for an ABI extension would incur a certain burden for
implementations.

— Many different ABI are possible, in particular special cases have a certain of potential for
optimization. Fixing an ABI too early, forces implementations to give stability guarantees
for the interface.

For our proposal here, we expect that most lambda expressions that appear in file scope
will be function literals. Since function literals can be converted to function pointers, no
special syntax is needed to make their functionalities available to other translation units.

Because there are no objects with automatic storage duration in file scope, the only captures
that can be formed in file scope are those that are derived from expressions, and these
expression must have a value that can be determined at translation time. We think that
it should be possible to define most such captures as lambda-local unmutable objects with
static storage duration, and thus, in general such lambdas are better formulated as function
literals.

To be accessible in another translation unit a closure expression that is evaluated in block
scope, would have to be assigned to a global variable of lambda type. We inhibit this by
not specifying a declaration syntax for lambdas. Thereby the only possibility to declare
an object of lambda type is to use auto, and thus each such declaration must also be a
definition such that the full specification of the lambda expression is visible. But then, no
translation unit can declare an object of lambda value with external linkage that is not
already a definition.

I11.5. Invariability

Since lambdas will often concern small functional units, our intent is that implementations
use all the means available to optimize them, as long as the security of the execution can
be guaranteed. Therefore we will enforce that lambda values, once they are stored in an
object, will be known to never change. This will inhibit, e.g, that implementation specific
functions or jump targets will change between calls to the same lambda value, or that any
lambda value can escape to a context where its originating lambda expression is not known.

11.6. Recursion

Since there is no syntax to forward-declare a lambda and they cannot be assigned, a lambda
cannot refer to itself (same lambda value and type), neither directly nor indirectly by
calling other functions or lambdas. The only possibility is for function literals, when they
are converted and assigned to function pointers. Such a function pointer can then be used
directly or indirectly as any other function pointer, also by the function literal expression
that gave rise to its conversion.

1 i // file scope definition

N2633:6 Jens Gustedt

static int (xcomp)(void const*, void constx) = 0;
int main(void) {

comp = [J(void const*x A, void constx B){
if (something) {
return 0;
} else {
return comp(B, A);
3
3

— e
W= O OO0 Utk W

Such examples for function literals are a bit contrived, and will probably not be very com-
mon.

In contrast to that, closures cannot be called recursively because they don’t even convert
to function pointers. This is a conscious decision for this paper, because we don’t want to
constrain implementations in the way(s) they reserve the storage that is necessary to hold
captures, and how they implement captures in general. For example, closures that return
void can be implement relatively simple as-if by adding some small state, an entry label,
one return label per call, and some switched or computed goto statements.

As a consequence, the maximum storage that is needed for the captures of a given closure
can be computed at translation time, and no additional mechanism to handle dynamic
storage is necessary.

I1l. SYNTAX AND TERMINOLOGY

For all proposed wording see Section VII.

111.1. Lambda expressions

Since it is the most flexible and expressive, we propose to adopt C++ syntax for lambdas,
6.5.2.6 pl1, as a new form of postfix expression (6.5.2 p1) introducing the terms lambda
expression, capture clause, capture list, capture default, value capture, capture and parameter
clause.

We make some exceptions from that C++ syntax for the scope of this paper:

(1) We omit the possibility to specify the return type of a lambda. The corresponding
C++ syntax

[
\ -> return-type
L

reuses the => token in an unexpected way, and is not strictly necessary if we have auto
return. If WG14 wishes so, this feature could be added easily in the future as a general
function return type syntax.

(2) We omit the possibility to specify all value captures as mutable. The C++ syntax intro-
duces a keyword, mutable, that would be new to C. We don’t see enough gain that would
justify the introduction of a new keyword.

Function literals and value closures v.1 N2633:7

(3) For the simplicity of this proposal we omit lvalue captures and lvalue aliases. A follow-
up paper, N2635, takes care of Ivalue captures. The introduction of lvalue aliases (C++’s
references) is not currently planned.

As this syntax leaves the parameter clause as optional, 6.5.2.6 p7 fixes the semantics for
this case to be equivalent to an empty parameter list, and also introduces the terminology
of function literal (no captures) and closure (any capture).

Also, 6.5.2.6 p3 introduces a distinction between explicit captures, that are captures that
are explicitly listed in the capture list, and implicit captures, that are automatic variables
of a surrounding scope that are caught because the capture clause is [=].

The terminology for lambda values and lambda types and their prototype is introduced with
the other type categories in 6.2.5 p20, and then later specified in the clause for lambda
expressions, 6.5.2.6 p11.

111.2. Adjustments to other constructs

With the introduction of lambda expressions, functions bodies can now be nested and several
standard constructs become ambiguous. Therefore it is necessary to adjust the definitions of
these constructs and relate them to the nearest other constructs to which they could refer.
This ensures that their use remains unique and well defined, and that no jumps across
boundaries of function bodies are introduced.

— For labels we enforce that they are anchored within the nearest function body in which
they appear:
— Function scope as the scope for labels must only extend to the innermost function body
in which a label is found and such function scopes are not nested (6.2.1 p3).
— Case labels must be found within a corresponding switch statement of their innermost
function body (6.8.1 p2).

— continue and break statements must match to a loop or switch construct that is found
in the innermost function body that contains them (6.8.6.2 p1 and 6.8.6.3 p1).

— A return statement also has to be associated to the innermost function body. It has to
return a value, if any, according to the type of that function body. Also, if its function
body is associated to a lambda, it only has to terminate the corresponding call to the
lambda, and not the surrounding function (6.8.6.4 p3).

IV. SEMANTICS

The principal semantic of lambda expressions themselves is described in 6.2.5.6 p8.
Namely, it describes how lambda expressions are similar to functions concerning the scope
of visibility and the lifetime of captures and parameters.

Captures are handled in two paragraphs, but the main feature is the description of the
evaluation that provides values for value captures, 6.5.2.6 p10. It stipulates that their
values are determined at the point of evaluation of the lambda expression (basically in
order of declaration), that the value undergoes lvalue, array-to-pointer or function-to-pointer
conversion if necessary, and that the type of the capture then is the type of the expression
after that conversion, that is without any qualification or atomic derivation, and, that it
gains a const qualification. Additionally, we insist that the so-determined value of a value
capture will and cannot not change by any means and is the same during all evaluations
during all calls to the same lambda.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2635.pdf

N2633:8 Jens Gustedt

Another paragraph, 6.5.2.6 p9, describes how the two forms of value captures relate,
namely that the form without assignment expression is really a short form that evaluates
an automatic variable of the surrounding scope of the same name.

The other specifications for lambda expressions are then their use in different contexts.

— Function literals may be converted to function pointers, 6.3.2.1 p5. For these this is easily
possible because they have exactly the same functionality as functions: all additional caller
information is transferred by arguments to the call. Thus the existing function ABI can
be used to call a function literal, and the translator has in fact all information to provide
such a call interface.

— As postfix expression within function calls they can take the place that previously only had
function pointers. If we would not provide the possibility of captures, the corresponding
function literals could all first be converted to function literals (see above) and called then.
But since we don’t want to impose how lambda-specific capture information is transferred
during a call and to guarantee the properties specified in I1.3 above, we just add lambdas
to the possibilities of the postfix expression that describes the called function.?

V. CONSTRAINTS AND REQUIREMENTS

As a general policy, we try to fix as much requirements as possible through constraints,
either with specific syntax or explicit constraints. Only if a requirement is not (or hardly)
detectable at translation time, or if we want to leave design space to implementations,
we formulate it as an imperative, indicating that the behavior then is undefined by the
C standard.

— Captures are introduced to handle objects of automatic storage duration, all other cat-
egories of objects and functions are to use other mechanisms of access within lamb-
das. Therefore, we constrain captures to names of objects of automatic storage duration
(6.5.2.6 p4) and limit the evaluation of all such objects from a surrounding scope to
the initialization of captures (6.5.2.6 p5). All such evaluations thus take place during
the evaluation of the lambda expression itself, not during a subsequent call to the lambda
value.

— Since an automatic object of array type would evaluate to a pointer type, it would give rise
to a capture of a different type than in the surrounding scope. Therefore in 6.5.2.6 p4 we
also add a constraint that forbids array types for captures (explicit or implicit) without
assignment expression. It is possible to overwrite that constraint by explicitly specifying
a capture of the form id = id, even if id has an array type; within the lambda expression
id then has pointer type and retrieving the size of the underlying array is not possible.*

— Calling a closure needs additional information, namely the transfer of lambda-specific
values for captures. In 6.3.2.1 p5 we explicitly call out the fact that converting closures
to function pointers is not defined by the text. This would also follow as implicit undefined
behavior from the following text, but we found it important to point this out and thereby
guide the expectations of programmers.

— A switch label should not enable control flow that jumps from the controlling expression
of the switch into a lambda. The corresponding property is syntactic and can be checked
at translation time. Therefore we formulate this as a constraint in 6.8.1 p2.

— Labels should not be used to bypass the calling sequence (capture and parameter instan-
ciation) and jump into a lambda. Therefore we constrain the visibility scope of labels to

3A similar addition for function designators could also be made, see [Gustedt 2016].
4 Arrays themselves can be accessed as lvalue captures that will be introduced in N2635.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2635.pdf

Function literals and value closures v.1 N2633:9

the surrounding function body, 6.2.1 p3. With these constraints, no goto statement can
be formed that jumps into or out of a lambda or into a different function.

— Similarly, all jump statements other than return should never attempt to jump into or
out of the nearest enclosing function body. To ensure this we add an explicit constraint
as 6.8.6 p2,and in 6.8.6.2 p1 and 6.8.6.3 p1.

— According to I1.5 we don’t want lambda values to be modified. If they were specified from
scratch, this would probably be reflected in both, a constraint and a requirement. But
since we want to be able to leave the possibility that lambda values are implemented as
function pointers (in particular for function literals) we cannot make this a requirement.
Therefore, we only introduce a requirement (6.5.2.6 p11 last sentence) and recommended
practice for applications to use a const qualification and for implementations to diagnose
modifications when possible (6.5.2.6 p12).

— There is no direct syntax to declare lambda types, and so objects of lambda type can
only be declared (and defined) through type inference. The necessary adjustments to that
feature are integrated to the constraints of 6.7.10 p4.

VI. QUESTIONS FOR WG14

(1) Does WG14 want the lambda feature for C23 along the lines of N2633?
(2) Does WG14 want to integrate the changes as specified in N2633 into C23?

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2633.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2633.pdf

N2633:10 Jens Gustedt

References

Jens Gustedt. 2016. The register overhaul. Technical Report N2067. ISO. available at http://www.open-std.
org/jtcl/sc22/wgld /www/docs/n2067.pdf.

Jens Gustedt. 2021a. Function literals and value closures. Technical Report N2633. ISO. available at http:
//www.open-std.org/jtcl/sc22/wgld/www/docs/n2633.pdf.

Jens Gustedt. 2021b. Improve type generic programming. Technical Report N2638. ISO. available at http:
//www.open-std.org/jtcl/sc22/wgld/www/docs/n2638.pdf.

Jens Gustedt. 2021c. Lvalue closures. Technical Report N2635. ISO. available at http://www.open-std.org/
jtel/sc22/wgld /www/docs/n2635.pdf.

Jens Gustedt. 2021d. Type-generic lambdas. Technical Report N2634. ISO. available at http://www.
open-std.org/jtcl/sc22/wgld/www/docs/n2634.pdf.

Jens Gustedt. 2021e. Type inference for variable definitions and function return. Technical Report N2632.
ISO. available at http://www.open-std.org/jtcl/sc22/wgld/www/docs/n2632.pdf.

Vil. PROPOSED WORDING

The proposed text is given as diff against N2632.

— Additions to the text are marked as shown.
— Deletions of text are marked as show.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2067.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2067.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2633.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2633.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2638.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2638.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2635.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2635.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2634.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2634.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2632.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2632.pdf

CORE 202101 (E) § 6, working draft — January 10, 2021 auto-return.. N2633

6. Language

6.1 Notation

In the syntax notation used in this clause, syntactic categories (nonterminals) are indicated by italic
type, and literal words and character set members (terminals) by bold type. A colon () following
a nonterminal introduces its definition. Alternative definitions are listed on separate lines, except
when prefaced by the words “one of”. An optional symbol is indicated by the subscript “opt”, so
that

{ expressionept }
indicates an optional expression enclosed in braces.

When syntactic categories are referred to in the main text, they are not italicized and words are
separated by spaces instead of hyphens.

A summary of the language syntax is given in Annex A.

6.2 Concepts
6.2.1 Scopes of identifiers

An identifier can denote an object; a function; a tag or a member of a structure, union, or enumeration;
a typedef name; a label name; a macro name; or a macro parameter. The same identifier can denote
different entities at different points in the program. A member of an enumeration is called an
enumeration constant. Macro names and macro parameters are not considered further here, because
prior to the semantic phase of program translation any occurrences of macro names in the source file
are replaced by the preprocessing token sequences that constitute their macro definitions.

For each different entity that an identifier designates, the identifier is visible (i.e., can be used) only
within a region of program text called its scope. Different entities designated by the same identifier
either have different scopes, or are in different name spaces. There are four kinds of scopes: function,
file, block, and function prototype. (A function prototype is a declaration of a function that declares
the types of its parameters.)

A label name is the only kind of identifier that has function scope. It can be used (in a goto statement)
anywhere-in the function body in which it appears, and is declared implicitly by its syntactic

appearance (followed by a : and a statement). Each function body has a function scope that is
separate from the function scope of any other function body. In particular, a label is visible in
exactly one function scope (the innermost function body in which it appears) and distinct function

bodies may use the same identifier to desienate different labels.??)

Every other identifier has scope determined by the placement of its declaration (in a declarator
or type specifier). If the declarator or type specifier that declares the identifier appears outside
of any block or list of parameters, the identifier has file scope, which terminates at the end of the
translation unit. If the declarator or type specifier that declares the identifier appears inside a block
or within the list of parameter declarations in a function definition, the identifier has block scope,
which terminates at the end of the associated block. If the declarator or type specifier that declares
the identifier appears within the list of parameter declarations in a function prototype (not part
of a function definition), the identifier has function prototype scope, which terminates at the end of
the function declarator.?” If an identifier designates two different entities in the same name space,
the scopes might overlap. If so, the scope of one entity (the inner scope) will end strictly before the
scope of the other entity (the outer scope). Within the inner scope, the identifier designates the entity
declared in the inner scope; the entity declared in the outer scope is hidden (and not visible) within
the inner scope.

) As a consequence, it is not possible to specify a goto statement that jumps into or out of a lambda or into another

function.

30)Identifiers that are defined in the parameter list of a lambda expression do not have prototype scope, but a scope that
comprises the whole body of the lambda.

modifications to ISO/IEC 9899:2018, § 6.2.1 page 28 Language

21

22

23

24

25

26

27

N2633 auto-return.. § 6.2.5, working draft — January 10, 2021 CORE 202101 (E)

— A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name
and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called “function returning T”. The construction of a function type from a return type is called
“function type derivation”.

— A lambda type is a complete object type that describes the value of a lambda expression. A
lambda type is characterized but not determined by a return type that is inferred from the
function body of the lambda expression, and by the number, order, and type of parameters
that are expected for function calls. The function type that has the same return type and list
of parameter types as the lambda is called the prototype of the lambda.

— A pointer type may be derived from a function type or an object type, called the referenced type. A
pointer type describes an object whose value provides a reference to an entity of the referenced
type. A pointer type derived from the referenced type T is sometimes called “pointer to T”.
The construction of a pointer type from a referenced type is called “pointer type derivation”.
A pointer type is a complete object type.

— An atomic type describes the type designated by the construct _Atomic (type-name). (Atomic
types are a conditional feature that implementations need not support; see 6.10.8.3.)

These methods of constructing derived types can be applied recursively.

Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.>”

An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope.

A type has known constant size if the type is not incomplete and is not a variable length array type.

Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted above in the construction of derived types), or the type itself if the type consists of no
derived types.

Any type so far mentioned is an unqualified type. Each unqualified type has several qualified versions
of its type,®V corresponding to the combinations of one, two, or all three of the const, volatile,
and restrict qualifiers. The qualified or unqualified versions of a type are distinct types that
belong to the same type category and have the same representation and alignment requirements.>?
A derived type is not qualified by the qualifiers (if any) of the type from which it is derived.

Further, there is the _Atomic qualifier. The presence of the _Atomic qualifier designates an atomic
type. The size, representation, and alignment of an atomic type need not be the same as those of
the corresponding unqualified type. Therefore, this document explicitly uses the phrase “atomic,

50)Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

51See 6.7.3 regarding qualified array and function types.

52)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,
return values from functions, and members of unions.

Language modifications to ISO/IEC 9899:2018, § 6.2.5 page 33

N2633 auto-return.. § 6.3.2.2, working draft — January 10, 2021 CORE 202101 (E)

Except when it is the operand of the sizeof operator, or the unary & operator, or is a string literal
used to initialize an array, an expression that has type “array of type” is converted to an expression
with type “pointer to type” that points to the initial element of the array object and is not an lvalue.
If the array object has register storage class, the behavior is undefined.

A function designator is an expression that has function type. Except when it is the operand of the
sizeof operator,”? or the unary & operator, a function designator with type “function returning
type” is converted to an expression that has type “pointer to function returning type”.

Closures shall not be converted to any other object type. A function literal with a type “lambda with
prototype type” can be converted implicitly or explicitly to an expression that has type “pointer
to type”.”" The function pointer value behaves as if a function with internal linkage with the
appropriate prototype, a unique name, and the same function body as for A had been specified
in the translation unit and the function pointer had been formed by function-to-pointer conversion
of that function. The only difference is that the function pointer needs not necessarily to be distinct

from any other compatible function pointer that provides the same observable behavior.

Forward references: lambda expressions (6.5.2.6) address and indirection operators (6.5.3.2), as-
signment operators (6.5.16), common definitions <stddef.h> (7.19), initialization (6.7.9), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), the
sizeof and _Alignof operators (6.5.3.4), structure and union members (6.5.2.3).

6.3.2.2 void

The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any
way, and implicit or explicit conversions (except to void) shall not be applied to such an expression.
If an expression of any other type is evaluated as a void expression, its value or designator is
discarded. (A void expression is evaluated for its side effects.)

6.3.2.3 Pointers

A pointer to void may be converted to or from a pointer to any object type. A pointer to any object
type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

For any qualifier g, a pointer to a non-g-qualified type may be converted to a pointer to the g-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

An integer constant expression with the value 0, or such an expression cast to type void x, is called
a null pointer constant.” If a null pointer constant is converted to a pointer type, the resulting
pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.

Conversion of a null pointer to another pointer type yields a null pointer of that type. Any two null
pointers shall compare equal.

An integer may be converted to any pointer type. Except as previously specified, the result is imple-
mentation-defined, might not be correctly aligned, might not point to an entity of the referenced
type, and might be a trap representation.”)

Any pointer type may be converted to an integer type. Except as previously specified, the result
is implementation-defined. If the result cannot be represented in the integer type, the behavior is
undefined. The result need not be in the range of values of any integer type.

A pointer to an object type may be converted to a pointer to a different object type. If the resulting
pointer is not correctly aligned” for the referenced type, the behavior is undefined. Otherwise,

70)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4.

DIt follows that lambdas of different type cannot be assigned to each other. Thus, in the conversion of a function literal
to a function pointer, the prototype of the originating lambda expression can be assumed to be known, and a diagnostic can
be issued if the prototypes do not aggree.

72)The macro NULL is defined in <stddef.h> (and other headers) as a null pointer constant; see 7.19.

73 The mapping functions for converting a pointer to an integer or an integer to a pointer are intended to be consistent with
the addressing structure of the execution environment.

"n general, the concept “correctly aligned” is transitive: if a pointer to type A is correctly aligned for a pointer to type B,
which in turn is correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

Language modifications to ISO/IEC 9899:2018, § 6.3.2.3 page 41

1

CORE 202101 (E) § 6.5.2, working draft — January 10, 2021 auto-return.. N2633

default : assignment-expression

Constraints

A generic selection shall have no more than one default generic association. The type name in a
generic association shall specify a complete object type other than a variably modified type. No two
generic associations in the same generic selection shall specify compatible types. The type of the
controlling expression is the type of the expression as if it had undergone an Ivalue conversion,’”
array to pointer conversion, or function to pointer conversion. That type shall be compatible with at
most one of the types named in the generic association list. If a generic selection has no default
generic association, its controlling expression shall have type compatible with exactly one of the
types named in its generic association list.

Semantics

The controlling expression of a generic selection is not evaluated. If a generic selection has a generic
association with a type name that is compatible with the type of the controlling expression, then the
result expression of the generic selection is the expression in that generic association. Otherwise, the
result expression of the generic selection is the expression in the default generic association. None
of the expressions from any other generic association of the generic selection is evaluated.

The type and value of a generic selection are identical to those of its result expression. It is an
lvalue, a function designator, or a void expression if its result expression is, respectively, an lvalue, a
function designator, or a void expression.

EXAMPLE The cbrt type-generic macro could be implemented as follows:

#define cbrt(X) _Generic((X),
long double: chrtl,
default: cbrt,
float: cbrtf
) (X)

~ s

6.5.2 Postfix operators

Syntax

postfix-expression:
primary-expression
postfix-expression [expression]
postfix-expression (argument-expression-listopt)
postfix-expression . identifier
postfix-expression => identifier
postfix-expression ++
postfix-expression -
(type-name) { initializer-list }
(type-name) { initializer-list , }
lambda-expression

argument-expression-list:
assignment-expression
argument-expression-list , assignment-expression

6.5.2.1 Array subscripting
Constraints

One of the expressions shall have type “pointer to complete object type”, the other expression shall
have integer type, and the result has type “type”.

%) An lvalue conversion drops type qualifiers.

modifications to ISO/IEC 9899:2018, § 6.5.2.1 page 58 Language

N2633 auto-return.. § 6.5.2.2, working draft — January 10, 2021 CORE 202101 (E)

Semantics

A postfix expression followed by an expression in square brackets [] is a subscripted designation of
an element of an array object. The definition of the subscript operator [] is that E1[E2] is identical
to (x((E1)+(E2))). Because of the conversion rules that apply to the binary+ operator, if E1 is an
array object (equivalently, a pointer to the initial element of an array object) and E2 is an integer,
E1[E2] designates the E2 -th element of E1 (counting from zero).

Successive subscript operators designate an element of a multidimensional array object. If E is an
n-dimensional array (n > 2) with dimensions ¢ x j x --- x k, then E (used as other than an lvalue) is
converted to a pointer to an (n — 1)-dimensional array with dimensions j x --- x k. If the unary *
operator is applied to this pointer explicitly, or implicitly as a result of subscripting, the result is the
referenced (n — 1)-dimensional array, which itself is converted into a pointer if used as other than an
lvalue. It follows from this that arrays are stored in row-major order (last subscript varies fastest).

EXAMPLE Consider the array object defined by the declaration

int x[3]1[5];

Here x
isa 3 x 5 array of

int s; more precisely, x is an array of three element objects, each of which is an array of five int s. In the expression x[1i],
which is equivalent to (*((x)+(1))), x is first converted to a pointer to the initial array of five int s. Then 1 is adjusted
according to the type of x, which conceptually entails multiplying i by the size of the object to which the pointer points,
namely an array of five int objects. The results are added and indirection is applied to yield an array of five int s. When
used in the expression x[1][]j], that array is in turn converted to a pointer to the first of the int s, so x[1]1[]j] yields an int.

Forward references: additive operators (6.5.6), address and indirection operators (6.5.3.2), array
declarators (6.7.6.2).

6.5.2.2 Function calls
Constraints

The expression-that-denetes-the-ealled-funetionpostfix expression'®?) shall have type-lambda type

or pointer to function type, returning void or returning a complete object type other than an array
type.

If the expression-that-denotes-the called-funetion-has-a-type that postfix expression is a lambda or if
the type of the function includes a prototype, the number of arguments shall agree with the number
of parameters of the function or lambda type. Each argument shall have a type such that its value
may be assigned to an object with the unqualified version of the type of its corresponding parameter.

Semantics

A postfix expression followed by parentheses () containing a possibly empty, comma-separated list
of expressions is a function call. The postfix expression denotes the called function or lambda. The
list of expressions specifies the arguments to the function or lambda.

An argument may be an expression of any complete object type. In preparing for the call to a
function, the arguments are evaluated, and each parameter is assigned the value of the corresponding
argument.!0

If the expression that denotes the called function has lambda type or type pointer to function
returning an object type, the function call expression has the same type as that object type, and has
the value determined as specified in 6.8.6.4. Otherwise, the function call has type void.

If the expression that denotes the called function has a type that does not include a prototype, the
integer promotions are performed on each argument, and arguments that have type float are
promoted to double. These are called the default argument promotions. If the number of arguments
does not equal the number of parameters, the behavior is undefined. If the function is defined with

100)Most often, this is the result of converting an identifier that is a function designator.

10D A function or lambda can change the values of its parameters, but these changes cannot affect the values of the arguments.
On the other hand, it is possible to pass a pointer to an object, and the function or lambda can then change the value of the
object pointed to. A parameter declared to have array or function type is adjusted to have a pointer type as described in 6.9.1.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.2 page 59

10

11

12

CORE 202101 (E) § 6.5.2.3, working draft — January 10, 2021 auto-return.. N2633

a type that includes a prototype, and either the prototype ends with an ellipsis (, ...) or the types
of the arguments after promotion are not compatible with the types of the parameters, the behavior
is undefined. If the function is defined with a type that does not include a prototype, and the types
of the arguments after promotion are not compatible with those of the parameters after promotion,
the behavior is undefined, except for the following cases:

— one promoted type is a signed integer type, the other promoted type is the corresponding
unsigned integer type, and the value is representable in both types;

— both types are pointers to qualified or unqualified versions of a character type or void.

If the expression that denotes the called function is a lambda or is a function has a type that does
include a prototype, the arguments are implicitly converted, as if by assignment, to the types of
the corresponding parameters, taking the type of each parameter to be the unqualified version of
its declared type. The ellipsis notation in a function prototype declarator causes argument type
conversion to stop after the last declared parameter. The default argument promotions are performed
on trailing arguments.

No other conversions are performed implicitly; in particular, the number and types of arguments are
not compared with those of the parameters in a function definition that does not include a function
prototype declarator.

If the lambda or function is defined with a type that is not compatible with the type (of the expression)
pointed to by the expression that denotes the called lambda or function, the behavior is undefined.

There is a sequence point after the evaluations of the function designator and the actual arguments
but before the actual call. Every evaluation in the calling function (including other function calls) that
is not otherwise specifically sequenced before or after the execution of the body of the called function
or lambda is indeterminately sequenced with respect to the execution of the called function.!%?

Recursive function calls shall be permitted, both directly and indirectly through any chain of other
functions or lambdas.

EXAMPLE In the function call

(xpf[fL()]1) (F2(), f3() + f4())

the functions f1, f2, 3, and f4 can be called in any order. All side effects have to be completed before the function pointed
toby pf[f1()] is called.

Forward references: function declarators (including prototypes) (6.7.6.3), function definitions
(6.9.1), the return statement (6.8.6.4), simple assignment (6.5.16.1).

6.5.2.3 Structure and union members
Constraints

The first operand of the . operator shall have an atomic, qualified, or unqualified structure or union
type, and the second operand shall name a member of that type.

The first operand of the-> operator shall have type “pointer to atomic, qualified, or unqualified
structure” or “pointer to atomic, qualified, or unqualified union”, and the second operand shall
name a member of the type pointed to.

Semantics

A postfix expression followed by the . operator and an identifier designates a member of a structure
or union object. The value is that of the named member,'®® and is an Ivalue if the first expression is
an lvalue. If the first expression has qualified type, the result has the so-qualified version of the type
of the designated member.

102
103

)In other words, function executions do not “interleave” with each other.

)If the member used to read the contents of a union object is not the same as the member last used to store a value in the
object, the appropriate part of the object representation of the value is reinterpreted as an object representation in the new
type as described in 6.2.6 (a process sometimes called “type punning”). This might be a trap representation.

modifications to ISO/IEC 9899:2018, § 6.5.2.3 page 60 Language

13

14

15

16

CORE 202101 (E) § 6.5.2.6, working draft — January 10, 2021 auto-return.. N2633

EXAMPLE 6 Like string literals, const-qualified compound literals can be placed into read-only memory and can even be
shared. For example,

(const char []){"abc"} == "abc"

might yield 1 if the literals’ storage is shared.

EXAMPLE 7 Since compound literals are unnamed, a single compound literal cannot specify a circularly linked object. For
example, there is no way to write a self-referential compound literal that could be used as the function argument in place of
the named object endless_zeros below:

struct int_list { int car; struct int_list *cdr; };
struct int_list endless_zeros = {0, &endless_zeros};
eval(endless_zeros);

EXAMPLE 8 Each compound literal creates only a single object in a given scope:

struct s { int i; };
int f (void)
{
struct s xp = 0, xq;
int j = 0;
again:
q=p, p=_&((struct s){ j++ });
if (j < 2) goto again;
return p == q &8 g->1i == 1;
}

The function f () always returns the value 1.

Note that if an iteration statement were used instead of an explicit goto and a labeled statement, the lifetime of the unnamed
object would be the body of the loop only, and on entry next time around p would have an indeterminate value, which would
result in undefined behavior.

Forward references: type names (6.7.7), initialization (6.7.9).

6.5.2.6 Lambda expressions
Syntax

lambda-expression:
capture-clause parameter-clause,p attribute-specifier-sequenceop: function-body

capture-clause:

[1]

[capture-list]

[capture-default]

capture-list:
value-capture
capture-list , value-capture

capture-default:

value-capture:
capture
capture = assignment-expression

capture:
identifier

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 64 Language

10

N2633 auto-return.. § 6.5.2.6, working draft — January 10, 2021 CORE 202101 (E)

parameter-clause:
(parameter-type-listopt)

Constraints
110)

A lambda expression shall not be operand of the unary & operator.

A capture that is listed in the capture list is an explicit capture . If the capture clause is [=], id is the
name of an object with automatic storage duration in a surrounding scope, id is used within the
function body of the lambda without redeclaration and id is not a parameter, the effect is as if id
had been used in a capture list. Such a capture is an implicit capture .

Captures without assignment expression shall be names of complete objects with automatic storage
duration in a scope surrounding the lambda expression that do not have array type and that are
visible at the point of evaluation of the lambda expression. An identifier shall appear at most once;

Within the function body, identifiers (including explicit and implicit captures, and parameters of
the lambda) shall be used according to the usual scoping rules, but identifiers of a scope that
includes the lambda expression and that are declared with automatic storage duration shall onl

be evaluated within the assignment expression of a value capture.!')
The function body shall be such that a return type fype according to the rules in 6.8.6.4 can be

inferred.

Semantics

If the parameter clause is omitted, a clause of the form () is assumed. A lambda expression without
capture list is called a function literal expression , otherwise it is called a closure expression . A lambda

value originating from a function literal expression is called a function literal , otherwise it is called

a closure . _

Similar to a function definition, a lambda expression forms a single block scope that comprises its
capture clause, its parameter clause and its function body. Each explicit capture and parameter has
a scope of visibility that starts immediately after its definition is completed and extends to the end
of the function body. The scope of visibility of implicit captures is the function body. In particular,
captures and parameters are visible throughout the whole function body, unless they are redeclared
in a depending block within that function body. Captures and parameters have automatic storage
duration; in each function call to the formed lambda value, a new instance of each capture and
parameter is created and initialized in order of declaration and has a lifetime until the end of the
call, only that the address of captures is not necessarily unique.

If a capture id is defined without an assienment expression, the assignment expression is assumed
to be id itself, referring to the object of automatic storage duration of the surrounding scope that
exists according to the constraints.!?

The implicit or explicit assignment expression E in the definition of a value capture determines
a value Ey with type To, which is E after possible lvalue, array-to-pointer or function-to-pointer
conversion. The type of the capture is Tg_const and its value is E for all evaluations in all function
calls to the lambda value. If, within the function body, the address of the capture id or one of
its members is taken, either explicitly by applying a unary & operator or by an array to pointer
conversion,'® and that address is used to modify the underlying object, the behavior is undefined.

10 Objects with lambda type that can be operand of the unary & operator can be formed by type inference and initialization

with a lambda value.

A A A A A A A

D 1dentifiers of visible automatic objects that are not captures, may still be used if they are not evaluated, for example in

sizeof expressions (if they are not VM types) or as controlling expression of a generic primary expression.
112)The evaluation in rules in the next paragraph then stipulates that it is evaluated at the point of evaluation of the lambda
expression, and that within the body of the lambda an unmutable auto object of the same name, value and type is made

accesssible.

113)The capture does not have array type, but if it has a union or structure type, one of its members may have such a type.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 65

11

12

13

14

CORE 202101 (E) § 6.5.2.6, working draft — January 10, 2021 auto-return.. N2633

The evaluation of E takes place during the evaluation of the lambda expression; for an explicit
capture when the value capture is met and for an implicit capture at the beginning of the evaluation
of the function body.

For each lambda expression, the return type fype is inferred as indicated in the constraints. A
lambda expression A has an unspecified lambda type L that is the same for every evaluation of .
If X appears in a context that is not a function call, a value of type L is formed that identifies A and
the specific set of values of the identifiers in the capture clause for the evaluation, if any. This is
called a lambda value . It is unspecified, whether two lambda expressions A and « share the same
lambda type even if they are lexically equal but appear at different points of the program. Objects
of lambda type shall not be modified.

Recommended practice

To avoid their accidental modification, it is recommended that declarations of lambda type objects
are const qualified. Whenever possible, implementations are encouraged to diagnose any attempt
to modify a lambda type object.

EXAMPLE 1 The usual scoping rules extend to lambda expressions; the concept of captures only restricts which identifiers
may be evaluated or not.

L J(void){ printf("%ld\n", var); }(); // valid, prints 0
var](void){ printf("sld\n", var); }();: // invalid, var is static

(void){ printf("%zu\n", sizeof var); . // valid, prints sizeof(int)
() ("%zu\n", sizeof var);
()

P

EXAMPLE 2 The following uses a function literal as a comparison function areument for qsort.

#define SORTFUNC(TYPE) [](size_t nmemb, TYPE A[nmemb]) \

~asort(A, nmemb, sizeof(ALBL), X

TYPE X = x(TYPE constx)x; \

TYPE Y = x(TYPE constx)y; \

return (X <Y) ? -1 : ((X>Y) ? 1 : 0); /x return of type int x/ \

X \

NS I3 \

return A; \
3

10 C 5 = 4, 3, 2, 11 01 ;
SORTFUNC(long)(5, C); ___________// lambda — (pointer —) function call

auto const sortDouble = SORTFUNC(double); // lambda value — lambda object

doublex (xsF)(size_ t nmemb, double[nmemb]) = sortDouble; // conversion

doublex ap = sortDouble(4, (double[]){ 5, 8.9, 0.1, 99, });

double B[27] = /* some values ... x/ };
sF(27, B);

SFQRTB A/ _TeUSES the same function

doublex (*sG)(size_t nmemb, double[nmemb]) = SORTFUNC(double); // conversion

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 66 Language

15

1

N2633 auto-return.. § 6.5.3, working draft — January 10, 2021 CORE 202101 (E)

This code evaluates the macro SORTFUNC twice, therefore in total four lambda expressions are formed.

The function literals of the “comparison lambdas” are not operands of a function call expression, and so by conversion a
pointer to function is formed and passed to the corresponding call of gsort. Since the respective captures are empty, the
effect s as if to define two comparison functions, that could equally well be implemented as static functions with auxiliary
names and these names could be used to pass the function pointers to gsort;

The outer lambdas are again without capture. In the first case, for long, the lambda value is subject to a function call, and
it is unspecified if the function call uses a specific lambda type or directly uses a function pointer. For the second, a copy
of the lambda value is stored in the variable sortDouble and then converted to a function pointer sF. Other than for the
difference in the function arguments, the effect of calling the lambda value (for the compound literal) or the function pointer
(for array B) is the same.

For optimization purposes, an implementation may fold lambda values that are expanded at different points of the program
such that effectively only one function is generated. For example here the function pointers sF and sG may or may not be
equal.

EXAMPLE 3

void matmult(size_t k, size t 1, size_tm
double const A[Kk][1l], double const B[l][m], double const C[k][m

// dot product with stride of m for B
// ensure constant propagation of 1 and m
_auto const A6 = [1,m](double const v[l], double const B[l][m], size_t mO

for (size_t i =0; i < 1; ++i) {
ot
return ret;
A
A/ vector matrix product
ot
AL
for (size_t kO =
double const (*A
double (*Cp)[m]
o Au(xAp, B, *Cp);
4
t

0; kO < k; ++k0) {
p)[l] = A[KO],
= C[kO];

This function evaluates two closures; Ad has a return type of double, A of void. Both lambda values serve repeatedly as
first operand to function evaluation but the evaluation of the captures is only done once for each of the closures. For the
purpose of optimization, an implementation could generate copies of the underlying functions for each evaluation of such
a closure such that the values of the captures 1 and m are replaced on a machine instruction level.

6.5.3 Unary operators

Syntax

unary-expression:
postfix-expression
++ unary-expression
- unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
—Alignof (type-name)

unary-operator: one of
& x + - 7|

Language modifications to ISO/IEC 9899:2018, § 6.5.3 page 67

37

38

39

CORE 202101 (E) § 6.7.10, working draft — January 10, 2021 auto-return.. N2633

struct T x = {.1

43, .k = 42, };

void f(void)

{
struct S 1

1}
-~
—
ald

=x, .t.1 =41, };

}

The value of 1.1t.kis 42, because implicit initialization does not override explicit initialization.

EXAMPLE 13 Space can be “allocated” from both ends of an array by using a single designator:

int a[MAX] = {
1, 3,5, 7, 9, [MAX-5] =8, 6, 4, 2, 0
T

In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it is less than ten, some of
the values provided by the first five initializers will be overridden by the second five.

EXAMPLE 14 Any member of a union can be initialized:

union { /* ... %/ } u = {.any_member = 42 };

Forward references: common definitions <stddef.h> (7.19).

6.7.10 Type inference

Constraints
An underspecified declaration shall contain the storage class specifier auto.

For an underspecified declaration of a function that is also a definition, the return type shall be
completed as of 6.9.1. For an underspecified declaration of a function that is not a definition a prior
definition of the declared function shall be visible.

An underspecified declaration of an object that is also a definition and that is not the declaration of a
parameter shall be of one of the forms

declarator = assignment-expression
declarator = { assignment-expression }
declarator = { assignment-expression , }

such that the declarator does not declare an array.

For an underspecified declaration such that the assignment expression does not have lambda type
there shall be a type specifier type that can be inserted in the declaration immediately after the last

storage class specifier that makes the adjusted declaration a valid declaration and such that the
assignment expression, after possible Ivalue, array-to-pointer or function-to-pointer conversion, has
the non-atomic, unqualified type of the declared object.'®Yif the assignment expression has lambda
type, the declarator shall only consist of storage class specifiers, qualifiers and the identifier that is
to be declared. A function declaration that is not a definition shall have a type that is compatible
with the type of the corresponding definition.

Description

Provided-Although there is no syntax derivation to form declarators of lambda type, values of

lambda type can be used as assienment expression and the inferred type is that lambda type,
ossibly qualified. Otherwise, provided the constraints above are respected, in an underspecified

declaration the type of the declared identifiers is the type after the declaration has been adjusted by
type. The type of each identifier that declares an object is incomplete until the end of the assignment
expression that initializes it.

NOTE The scope of the identifier for which the type is inferred only starts after the end of the initializer (6.2.1), so the

assignment expression cannot use the identifier to refer to the object or function that is declared, for example to take its
address. Any use of the identifier in the initializer is invalid, even if an entity with the same name exists in an outer scope.

1649 For most assignment expressions of integer or floating point type, there are several types type that would make such a

declaration valid. The second part of the constraint ensures that among these a unique type is determined that does not need
further conversion to be a valid initializer for the object.

modifications to ISO/IEC 9899:2018, § 6.7.10 page 110 Language

N2633 auto-return.. § 6.8, working draft — January 10, 2021 CORE 202101 (E)

6.8 Statements and blocks

Syntax
1 statement:

labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement

Semantics

2 A statement specifies an action to be performed. Except as indicated, statements are executed in
sequence.

3 A block allows a set of declarations and statements to be grouped into one syntactic unit. The
initializers of objects that have automatic storage duration, and the variable length array declarators
of ordinary identifiers with block scope, are evaluated and the values are stored in the objects
(including storing an indeterminate value in objects without an initializer) each time the declaration
is reached in the order of execution, as if it were a statement, and within each declaration in the
order that declarators appear.

4 A full expression is an expression that is not part of another expression, nor part of a declarator
or abstract declarator. There is also an implicit full expression in which the non-constant size
expressions for a variably modified type are evaluated; within that full expression, the evaluation of
different size expressions are unsequenced with respect to one another. There is a sequence point
between the evaluation of a full expression and the evaluation of the next full expression to be
evaluated.

5 NOTE Each of the following is a full expression:

— a full declarator for a variably modified type,

— an initializer that is not part of a compound literal,

— the expression in an expression statement,

— the controlling expression of a selection statement (if or switch),
— the controlling expression of a while or do statement,

— each of the (optional) expressions of a for statement,

— the (optional) expression in a return statement.

While a constant expression satisfies the definition of a full expression, evaluating it does not depend on nor produce any
side effects, so the sequencing implications of being a full expression are not relevant to a constant expression.

Forward references: expression and null statements (6.8.3), selection statements (6.8.4), iteration
statements (6.8.5), the return statement (6.8.6.4).

6.8.1 Labeled statements

Syntax
1 labeled-statement:
identifier : statement
case constant-expression : statement
default : statement
Constraints

2 A case or default label shall appear only in a switch statement --that is associated with the same

function body as the statement to which the label is attached.'®® Further constraints on such labels
are discussed under the switch statement.

165)Thus, a label that appears within a lambda expression may only be associated to a switch statement within the body of
the lambda.

Language modifications to ISO/IEC 9899:2018, § 6.8.1 page 113

CORE 202101 (E) § 6.8.5.3, working draft — January 10, 2021 auto-return.. N2633

6.8.5.3 The for statement
The statement

for (clause-1; expression-2; expression-3) statement

behaves as follows: The expression expression-2 is the controlling expression that is evaluated before
each execution of the loop body. The expression expression-3 is evaluated as a void expression after
each execution of the loop body. If clause-1 is a declaration, the scope of any identifiers it declares
is the remainder of the declaration and the entire loop, including the other two expressions; it is
reached in the order of execution before the first evaluation of the controlling expression. If clause-1
is an expression, it is evaluated as a void expression before the first evaluation of the controlling
expression.'”!)

Both clause-1 and expression-3 can be omitted. An omitted expression-2 is replaced by a nonzero
constant.

6.8.6 Jump statements

Syntax

jump-statement:
goto identifier ;
continue ;
break ;
return expressiongpt ;

Constraints
No jump statement other than return shall have a target that is found in another function body.}”?

Semantics
A jump statement causes an unconditional jump to another place.

6.8.6.1 The goto statement

Constraints

The identifier in a goto statement shall name a label located somewhere in the enclosing function
body. A goto statement shall not jump from outside the scope of an identifier having a variably
modified type to inside the scope of that identifier.!”>

Semantics

A goto statement causes an unconditional jump to the statement prefixed by the named label in the
enclosing function.

EXAMPLE 1 It is sometimes convenient to jump into the middle of a complicated set of statements. The following outline
presents one possible approach to a problem based on these three assumptions:

1. The general initialization code accesses objects only visible to the current function.

2. The general initialization code is too large to warrant duplication.

3. The code to determine the next operation is at the head of the loop. (To allow it to be reached by continue statements,
for example.)

| /5 . % |
\ goto first_time; \
\ for (;;) { |

7D Thus, clause-1 specifies initialization for the loop, possibly declaring one or more variables for use in the loop; the

controlling expression, expression-2, specifies an evaluation made before each iteration, such that execution of the loop
continues until the expression compares equal to 0; and expression-3 specifies an operation (such as incrementing) that is
performed after each iteration.

172 Thus jump statements other than return may not jump between different functions or cross the boundaries of a lambda
expression, that is, they may not jump into or out of the function body of a lambda. Other features such as signals (7.14) and
long jumps (7.13) may delegate control to points of the program that do not fall under these constraints.

179The visibility of labels is restricted such that a goto statement that jumps into or out of a different function body, even

if it is nested within a lambda, is a constraint violation.

modifications to ISO/IEC 9899:2018, § 6.8.6.1 page 118 Language

4

N2633 auto-return.. § 6.8.6.2, working draft — January 10, 2021 CORE 202101 (E)

// determine next operation
/* ... %/
if (need to reinitialize) {
// reinitialize-only code

/*x ... %/
first_time:
// general initialization code
/* ... *x/
continue;
}
// handle other operations
/* ... %/

EXAMPLE 2 A goto statement is not allowed to jump past any declarations of objects with variably modified types. A jump
within the scope, however, is permitted.

goto lab3; // invalid: going INTO scope of VLA.
{
double a[n];
aljl = 4.4;
lab3:
aljl = 3.3;
goto lab4; // valid: going WITHIN scope of VLA.
aljl = 5.5;
lab4:
aljl = 6.6;
}
goto lab4; // invalid: going INTO scope of VLA.

6.8.6.2 The continue statement

Constraints

A continue statement shall appear only in or as a loop body —that is associated to the same function
body."*

Semantics

A continue statement causes a jump to the loop-continuation portion of the smallest enclosing
iteration statement; that is, to the end of the loop body. More precisely, in each of the statements

while (/* ... x/) { do { for (/x ... x/) {
/* ... %/ /* ... %/ /*x ... %/
continue; continue; continue;
/* .. %/ /* .. *x/ /* ... x/

contin:; contin:; contin:;

} } while (/* ... x/); }

unless the continue statement shown is in an enclosed iteration statement (in which case it is
interpreted within that statement), it is equivalent to goto contin;.1”

6.8.6.3 The break statement

Constraints

A break statement shall appear only in or as a switch body or loop body ~that is associated to the
same function body."””

174 Thus a continue statement by itself may not be used to terminate the execution of the body of a lambda expresssion.

175 Following the contin: label is a null statement.
176)Thus a break statement by itself may not be used terminate the execution of the body of a lambda expresssion.

Language modifications to ISO/IEC 9899:2018, § 6.8.6.3 page 119

CORE 202101 (E) § 6.8.6.4, working draft — January 10, 2021 auto-return.. N2633

Semantics
A break statement terminates execution of the smallest enclosing switch or iteration statement.

6.8.6.4 The return statement
Constraints

A return statement with an expression shall not appear in a function body whose return type is
void. A return statement without an expression shall only appear in a function body whose return
type is void.

For a function body that has an underspecified return type, all return statements shall provide
expressions with a consistent type or none at all. That is, if any return statement has an expression,
all return statements shall have an expression (after lvalue, array-to-pointer or function-to-pointer
conversion) with the same type; otherwise all return expressions shall have no expression.

Semantics

A return statement is associated to the innermost function body in which appears. It evaluates
the expression, if any, terminates the execution of the-that function body and returns control to

the-eallerits caller; if it has an expression, the value of the expression is returned to the caller as the
value of the function call expression. A function body may have any number of return statements.

If a return statement with an expression is executed, the value of the expression is returned to the
caller as the value of the function call expression. If the expression has a type different from the
return type of the function in which it appears, the value is converted as if by assignment to an
object having the return type of the function.””

For a lambda or a function that has an underspecified return type, the return type is determined by
the lexically first return statement, if any, that is associated to the function body and is specified as
the type of that expression, if any, after Ivalue, array-to-pointer, function-to-pointer conversion, or
as void if there is no expression.

EXAMPLE In:

struct s { double i; } f(void);

union {
struct {
int f1;
struct s f2;
}oul;
struct {
struct s f3;
int f4;
}ou2;
}o;
struct s f(void)
{
return g.ul.f2;
}
/* ... x/
g.u2.f3 = f();

there is no undefined behavior, although there would be if the assignment were done directly (without using a function call
to fetch the value).

77)The return statement is not an assignment. The overlap restriction of 6.5.16.1 does not apply to the case of function

return. The representation of floating-point values can have wider range or precision than implied by the type; a cast can be
used to remove this extra range and precision.

modifications to ISO/IEC 9899:2018, § 6.8.6.4 page 120 Language

	Motivation
	Design choices
	Expression versus function definition
	Capture model
	Call sequence
	Interoperability
	Invariability
	Recursion

	Syntax and terminology
	Lambda expressions
	Adjustments to other constructs

	Semantics
	Constraints and requirements
	Questions for WG14
	References
	Proposed wording

