n2529 - New pointer-proof keyword to determine array length

Proposal for the upcoming C2X standard
Submitter: Xavier Del Campo Romero
Submission date: 2020-06-04

Problem

Extracting the number of elements in an array is a typical operation on C programs, as relying on
magic constants or macros is very error-prone and will cause undefined behavior if the size of the
array is somehow modified.

Tipically, most developers use the following operation to determine the number of elements inside
an array, usually via a user-defined macro:

sizeof (x) / sizeof *(x)
However, there is a well-known issue that occurs when a pointer is (most times accidentally) used
instead of an array. Despite the similarities between pointers and arrays, a pointer will much likely
return an unexpected value when this construct is used, creating a silent error that can be only
detected at run-time. For example:

#include <stddef.h>
#define ARRAY_SIZE(x) sizeof (x) / sizeof *(x)

static void foo(int *const arr) {
for (size_ti=0;i<ARRAY_SIZE(arr); i++) {
/* sizeof *int / sizeof int = 1, not 6. */
printf("arr[%zu] = %d\n", i, arr[i]);
}
}

int main(const int argc, const char *argv[]) {
int arr[] = {1, 2, 3, 4, 5, 6};

foo(arr);
return O;

}

By using C11 features and GNU extension typeof, the ARRAY_SIZE macro can be improved so it
returns a compile-time error when a pointer is given instead of an array:

#define ARRAY_SIZE(a) \
_Generic(&(a), \
typeof (*a)**: (void)0, \
typeof (*a)*const *: (void)0, \
default: sizeof (a) / sizeof ((a)[0]))

If this macro was used on the example above, the following compile-time error would trigger:

$ gcc lengthof.c -std=gnull

lengthof.c: In function ‘foo’:

lengthof.c:7:30: error: void value not ignored as it ought to be
typeof (*a)*const *: (void)0, \

lengthof.c:11:29: note: in expansion of macro ‘ARRAY_SIZE’
for (size_ti =0 ;i <ARRAY_SIZE(arr); i++){
A~oromsmsmsmsmsmns

However, error description is vague and confusing to the developer, and the GNU extension typedef
is not part of the standard, as of C11.

Proposal

Since there is no portable, pointer-proof way to determine the number of elements of an array, this
document suggests adding a new keyword to the C standard that aims not to introduce any breaking
changes to existing code.

According to the standard, symbol names preceded by a leading underscore and a capital letter or
another underscore are reserved for the implementation. Therefore, the _Lengthof operator is
suggested, aiming to provide the same functionality as the ARRAY_SIZE macro above, while
providing better diagnostic messages when a pointer is accidentally given.

Examples
The example above has been modified by introducing this new _Lengthof operator:

#include <stddef.h>
#include <stdio.h>

int main(const int argc, const char *argv[]) {
int arr[] = {1, 2, 3, 4, 5, 6};

for (size_ti =0 ;i < _Lengthof arr; i++) {
printf("arr[%zu] = %d\n", i, arr[i]);
}

return O;

}

Therefore, the following modified example must produce a diagnostic error because a pointer is
given:

#include <stddef.h>
#include <stdio.h>

static void foo(int *const arr) {
for (size_ti =0 ;i< _Lengthof arr; i++) { /* Diagnostic message here. */
printf("arr[%zu] = %d\n", i, arr[i]);
}
}

int main(const int argc, const char *argv[]) {

intarr[] = {1, 2, 3, 4, 5, 6};

foo(arr);
return 0;

}
Usage

Similarly to the sizeof operator, the _Lengthof operator returns a value of type size_t that is resolved
at compile-time, unless using _Lengthof on variable-length arrays, where complexity is O(1), as in
sizeof. Except from this latter case, _Lengthof returns an integer constant that can be used with other
constructs such as _Static_assert. For example:

int main(const int argc, const char *argv[]) {
int arr[] = {1, 2, 3, 4, 5, 6};
_Static_assert (_Lengthof arr == 6);
return O;

}
Reason behind this proposal

This new keyword introduces a portable solution that provides better safety than the sizeof-based
one, which surely has introduced along the years silent bugs into many applications and caused
confusion and frustration among developers. The final objective of this proposal is therefore to
increase safety on applications written in C without extra memory footprint.

