
IEC 60559
SUPPLEMENTARY

ATTRIBUTES
N2421

WG 14 - Ithaca
October 21 – 25, 2019

C FP group

Proposal for C2X

• N2407

• Add ISO/IEC TS 18661-5abc supplementary attributes to

C2X.

• IEC 60559 recommends language standards provide

block-scope attributes to control expression evaluation,

value-changing optimizations, and reproducible results.

• TS 18661-5abc provides these attributes as standard

pragmas in <fenv.h>, like existing FP pragmas.

• This proposal does not include TS 18661-5d alternate

exception handling.

• Attributes are intended to address three problems with FP

programming …

Problem 1
Porting floating-point code between platforms and tool sets,
including debugging ported code
• Program development tools typically provide controls to

manage optimizations and evaluation methods.
• These controls are implementation specific, both in

syntax and semantics, and are often vaguely defined.
• It’s difficult to impossible to map controls on one system

to equivalent ones on another.
• Standard pragmas for evaluation methods and

optimizations are intended to address this problem.

Problem 2
Balancing performance against precision and reliability
• Current implementation-specific controls are usually compiler

options that apply to the whole translation unit.
• However, many programs need aggressive optimizations only

for relatively small performance-critical blocks.
• Applying the optimizations where they aren’t needed

unnecessarily risks floating-point anomalies throughout the
entire program.

• Similarly, extra precision might be needed only in relatively
small precision-critical blocks.

• Using extra precision throughout the program might
unnecessarily degrade performance.

• The block-scope semantics of the pragmas address this
problem.

Problem 3
Obtaining reproducible results (on same or different
platforms)
• Some users want results that are the same on different

platforms and that remain the same after tool set updates.
• Usually variations in floating-point results are harmless,

but not always, and the cost to determine whether a
difference is benign or the result of a serious bug can be
great.

• Potential causes of differences in floating-point results are
many and difficult for most programmers to avoid.

• A pragma and guidance for reproducible results is
intended to help with this problem.

5a – Evaluation methods

The following pragmas provide the preferredWidth

attributes recommended for language standards by IEC

60559:

#pragma STDC FENV_FLT_EVAL_METHOD width
• width indicates a supported evaluation method for which

macro FLT_EVAL_METHOD has the value width.

• Requires support for width equal 0 (evaluate to wider of

float and type), allows support for other values.

5a – Evaluation methods (2)

#pragma STDC FENV_DEC_EVAL_METHOD width
• Like FENV_FLT_EVAL_METHOD, but for decimal.
• width indicates a supported evaluation method for which

macro DEC_EVAL_METHOD has the value width.
• Requires support for width equal 1 (evaluate to wider of

_Decimal64 and type), allows support for other values.

5a also specifies a user definable macro
__STDC_TGMATH_OPERATOR_EVALUATION__ to
have tgmath macros follow the evaluation method like
operators do -- to allow wide evaluation that is consistent
for all FP operations.

5b – Optimizations

The following pragmas provide value-changing-optimization attributes
recommended for language standards by IEC 60559:

#pragma STDC FENV_ALLOW_ASSOCIATIVE_LAW on-off-switch
• x + (y + z) = (x + y) + z
• x * (y * z) = (x * y) * z

#pragma STDC FENV_ALLOW_DISTRIBUTIVE_LAW on-off-switch
• x *(y + z) = (x * y) + (x * z)
• x *(y − z) = (x * y) − (x * z)
• (x + y) / z = (x / z) + (y / z)
• (x − y) / z = (x / z) − (y / z)

5b – Optimizations (2)

#pragma STDC FENV_ALLOW_MULTIPLY_BY_RECIPROCAL on-
off-switch
• x / y = x *(1 / y)

#pragma STDC FENV_ALLOW_CONTRACT_FMA on-off-switch
• Contract (compute with just one rounding) floating-point multiply and

add or subtract (with the result of the multiply).

• x * y + z x * y − z

• x + y * z x − y * z

#pragma STDC FENV_ALLOW_CONTRACT_OPERATION_CONVERSION
on-off-switch
• Contract a floating-point operation and a conversion (of the result of

the operation), e.g., flt_var = dbl_var * dbl_var.

5b – Optimizations (3)

#pragma STDC FENV_ALLOW_CONTRACT on-off-switch
• Equivalent to FP_CONTRACT pragma in <math.h> - includes effects

of two “contract” pragmas above.

#pragma STDC FENV_ALLOW_ZERO_SUBNORMAL on-off-switch
• Replace subnormal operands and results by zero.

#pragma STDC FENV_ALLOW_VALUE_CHANGING_OPTIMIZATION on-
off-switch
• Equivalent to all the optimization pragmas above.

Optimization pragmas allow but do not require the optimizations.

5c – Reproducibility

The following pragma provides the reproducible-results attribute
recommended for language standards by IEC 60559:

#pragma STDC FENV_REPRODUCIBLE on-off-switch
Implies effects of
• #pragma STDC FENV_ACCESS ON
• #pragma STDC FENV_ALLOW_VALUE_CHANGING_OPTIMIZATION OFF

and if __STDC_IEC_60559_BFP__ is defined
• #pragma STDC FENV_FLT_EVAL_METHOD 0

and if __STDC_IEC_60559_DFP__ is defined
• #pragma STDC FENV_DEC_EVAL_METHOD 1

5c – Reproducibility

• Recommends a diagnostic message if the source code

uses a language or library feature whose results may not

be reproducible.

• Includes guidelines for code intended to be reproducible,

e.g.,

• The code does not contain any use that may result in undefined behavior.

The code does not depend on any behavior that is unspecified,

implementation-defined, or locale-specific.

• The code does not use the long double type.

• The code does not depend on the payloads (F.10.13) or sign bits of quiet

NaNs.

• The code does not use signaling NaNs.

…

Notes

• A low-quality or initial implementation could have a
conformance mode where only FLT_EVAL_METHOD
equal 0 is supported, optimizations are disabled, and
pragmas are ignored.

• TS 18661-5abc could be recast as an annex to C2X.
• 5a and 5b are essentially independent of each other and

of 5c. 5c depends on 5a and 5b, at least as currently
written.

Publication
ISO/IEC TS 18661-5:2016, Information Technology —
Programming languages, their environments, and system
software interfaces — Floating-point extensions for C —
Part 5: Supplementary attributes.

