IEC 60559
SUPPLEMENTARY
ATTRIBUTES

N2421
WG 14 - Ithaca
October 21 — 25, 2019

C FP group

-
Proposal for C2X

- N2407

- Add ISO/IEC TS 18661-5abc supplementary attributes to
C2X.

- [IEC 60559 recommends language standards provide
block-scope attributes to control expression evaluation,
value-changing optimizations, and reproducible results.

- TS 18661-5abc provides these attributes as standard
pragmas in <fenv.h>, like existing FP pragmas.

- This proposal does not include TS 18661-5d alternate
exception handling.

- Attributes are intended to address three problems with FP
programming ...

Problem 1

Porting floating-point code between platforms and tool sets,
including debugging ported code

- Program development tools typically provide controls to
manage optimizations and evaluation methods.

- These controls are implementation specific, both in
syntax and semantics, and are often vaguely defined.

- It's difficult to impossible to map controls on one system
to equivalent ones on another.

- Standard pragmas for evaluation methods and
optimizations are intended to address this problem.

-
Problem 2

Balancing performance against precision and reliability

- Current implementation-specific controls are usually compiler
options that apply to the whole translation unit.

- However, many programs need aggressive optimizations only
for relatively small performance-critical blocks.

- Applying the optimizations where they aren’t needed
unnecessarily risks floating-point anomalies throughout the
entire program.

- Similarly, extra precision might be needed only in relatively
small precision-critical blocks.

- Using extra precision throughout the program might
unnecessarily degrade performance.

- The block-scope semantics of the pragmas address this
problem.

-
Problem 3

Obtaining reproducible results (on same or different
platforms)

- Some users want results that are the same on different
platforms and that remain the same after tool set updates.

- Usually variations in floating-point results are harmless,
but not always, and the cost to determine whether a
difference is benign or the result of a serious bug can be
great.

- Potential causes of differences in floating-point results are
many and difficult for most programmers to avoid.

- A pragma and guidance for reproducible results is
iIntended to help with this problem.

5a — Evaluation methods

The following pragmas provide the preferredWidth
attributes recommended for language standards by IEC
60559:

#pragma STDC FENV_FLT_EVAL_METHOD width

- width indicates a supported evaluation method for which
macro FLT_EVAL_METHOD has the value width.

- Requires support for width equal O (evaluate to wider of
float and type), allows support for other values.

-
5a — Evaluation methods (2)

#pragma STDC FENV_DEC_EVAL_METHOD width
. Like FENV_FLT_EVAL_METHOD, but for decimal.

- width indicates a supported evaluation method for which
macro DEC_EVAL_METHOD has the value width.

- Requires support for width equal 1 (evaluate to wider of
_Decimal64 and type), allows support for other values.

5a also specifies a user definable macro

__STDC_TGMATH_OPERATOR_EVALUATION_ _to
have tgmath macros follow the evaluation method like
operators do -- to allow wide evaluation that is consistent
for all FP operations.

-
5b — Optimizations

The following pragmas provide value-changing-optimization attributes
recommended for language standards by IEC 60559:

#pragma STDC FENV_ALLOW_ASSOCIATIVE_LAW on-off-switch
X+ (y+z)=(x+y)+z
"X (y*z)=(x"y) "z

#pragma STDC FENV_ALLOW _DISTRIBUTIVE_LAW on-off-switch
" XHy+2z)=(xTy)+ (X" 2z)
"X y-2z)=(x"y)-(x*z)
- (x+y)/lz=(x/z)+(y/2z)
- (x-y)/lz=(x/z)-(y/2z)

I
5b — Optimizations (2)

#pragma STDC FENV_ALLOW_MULTIPLY_BY_RECIPROCAL on-
off-switch

- X/y=x*11/y)

#pragma STDC FENV_ALLOW_CONTRACT_FMA on-off-switch

- Contract (compute with just one rounding) floating-point multiply and
add or subtract (with the result of the multiply).

- X*y+z X*y-z
- X+y*z X—y*z

#pragma STDC FENV_ALLOW_CONTRACT_OPERATION_CONVERSION
on-off-switch

- Contract a floating-point operation and a conversion (of the result of
the operation), e.qg., flt_var = dbl_var * dbl_var.

e
5b — Optimizations (3)

#pragma STDC FENV_ALLOW_CONTRACT on-off-switch

- Equivalent to FP_CONTRACT pragma in <math.h> - includes effects
of two “contract” pragmas above.

#pragma STDC FENV_ALLOW_ZERO_SUBNORMAL on-off-switch
- Replace subnormal operands and results by zero.

#pragma STDC FENV_ALLOW_VALUE_CHANGING_OPTIMIZATION on-
off-switch

- Equivalent to all the optimization pragmas above.

Optimization pragmas allow but do not require the optimizations.

e
5¢c — Reproducibility

The following pragma provides the reproducible-results attribute
recommended for language standards by IEC 60559:

#pragma STDC FENV_REPRODUCIBLE on-off-switch

Implies effects of
- #pragma STDC FENV_ACCESS ON
- #pragma STDC FENV_ALLOW_VALUE_CHANGING_OPTIMIZATION OFF

and if _STDC_IEC_60559 BFP__is defined
. #pragma STDC FENV_FLT_EVAL_METHOD 0

and if _STDC_IEC_60559 DFP__is defined
. #pragma STDC FENV_DEC_EVAL_METHOD 1

e
5¢c — Reproducibility

- Recommends a diagnostic message if the source code
uses a language or library feature whose results may not
be reproducible.

- Includes guidelines for code intended to be reproducible,
e.g.,

The code does not contain any use that may result in undefined behavior.

The code does not depend on any behavior that is unspecified,
implementation-defined, or locale-specific.

- The code does not use the long double type.

- The code does not depend on the payloads (F.10.13) or sign bits of quiet
NaNs.

- The code does not use signaling NaNs.

Notes

- A low-quality or initial implementation could have a
conformance mode where only FLT_EVAL_METHOD

equal O is supported, optimizations are disabled, and
pragmas are ignored.

- TS 18661-5abc could be recast as an annex to C2X.

- 5a and 5b are essentially independent of each other and

of 5¢. 5¢ depends on 5a and 5b, at least as currently
written.

Publication

ISO/IEC TS 18661-5:2016, Information Technology —
Programming languages, their environments, and system
software interfaces — Floating-point extensions for C —
Part 5. Supplementary attributes.

