
ISO/IEC JTC 1/SC 22/WG14

September 3, 2019

N2417

v 2
Modernize time.h functions v.2
It’s about time

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

The interfaces in time.h are inconsistent, partially underspecified, subject to undetectable overflow, not

thread-safe and present security issues. Along the lines of ISO 9945 (POSIX), we propose to modernize the
interfaces to avoid these problems.

Changes in v2

— properly distinguish calendar time and elapsed time
— the _r functions are not reentrant and may have races if the time environment is changed
— avoid to use the tm buffer where it is not allowed
— define offset macros for the tm structure
— relate the monotonic clock to system suspension
— change from pointer to array notation
— better explanation why overflow of clock values is a user space problem

Contents

1. INTRODUCTION

1.1. Problem description

The interfaces in time.h to manipulate time values have grown mostly unattended over
the years and present several problems that could be easily avoided with more modern,
redesigned interfaces. The main problems are as follows:

(1) The function clock is subject to overflows that are undetectable by its users1 and has
non-standard semantics on one of the major legacy implementations.

(2) The function time does not specify the encoding that is used in the time_t type and the
resolution of this time has no query interface. There is only the function difftime to
obtain the relative difference between two time measurements, but there is no interface
to know about the granularity that we can expect.

(3) Compared to ISO (and common English) date and time enumeration, the members of
the structure tm have offsets that can only be understood as historic artifacts.

(4) The function timespec_get has a resolution for which there is no query interface. Its use
of time_t is not necessarily consistent with the use of the same type by time.

(5) It is not specified, if the function timespec_get when called with TIME_UTC is sensible to
changes of the system clock or not. (Besides that, TIME_UTC is a misnomer.)

(6) The standard allows implementations to add more time bases than TIME_UTC but gives
no guidance in which direction to go with such new base values.

(7) The return value specification of timespec_get does not allow to dissociate different
types of errors.

(8) The function asctime has undefined behavior when it is called with time values that are
out-of-bounds. Since the output format and length for this function is prescribed to the
byte, this is an unnecessary loop hole that can easily be fixed.

(9) The function ctime has implicit undefined behavior when it is called with an argument
that is not presentable as local time.

1The question whether or not the implementation might detect such overflows is not directly related to
that problem. Even if an implementation would detect an overflow (which is a QoI question) the interface
provides no reliable means to transmit this information to the caller.

© 2019 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

N2417:2 Jens Gustedt

(10) The functions asctime, ctime, gmtime and localtime refer to static state and can thus
not thread-safe. In addition, giving write access to a static variable in the program state
provides an exploitable attack vector for buffer overflow attacks.

1.2. Strategy

Most of these problems have already been addressed by ISO 9945 (POSIX) (after which
the most recent addition of timespec_get has been modeled) so we propose a simple and
straight forward solution: adopt and adapt the interfaces from there as far as possible.
We do not propose to promote interfaces of Annex K to Clause 7.27, because this would
in turn introduce two new major problems:

(1) Annex K interfaces need the infrastructure of constraint handlers. We don’t think that
the attempt to repair time.h justifies us to force implementations to introduce new
infrastructure.

(2) Because of that globally shared infrastructure, Annex K interfaces are inherently thread-
unsafe.

In addition, the runtime constraints that are covered for the corresponding time functions
in Annex K are mostly size constraints of the arrays that are provided as arguments. Such
constraints can be expressed in the syntax, and can, for many cases, be detected at compile
time. Therefore, in accordance with the C2x charter, we propose to update the existing
interfaces syntactically such that they are more friendly to static analysis.
Because the problems and solutions are much intertwined, we propose all these additions in
this single paper. For those in WG14 that prefer to have smaller bits and pieces to swallow,
we have divided the paper into sections that all have their specific questions (potential straw
polls for the committee) at the end, such that WG14 may cherry-pick modifications to the
standard as seems fit.
In case of adoption of any of the new functions2 or the changes to the return value of
timespec_get we also propose to add a feature test macro __STDC_VERSION_TIME_H__.

Question 0. Shall a feature test macro __STDC_VERSION_TIME_H__ as proposed in N2417
be added to 7.27.1?

2. PUT THE BOUNDS INTO THE INTERFACES

According to the C2x charter,3 we should aim that interfaces specify the constraints on the
corresponding functions as thorough as possible:

15. Application Programming Interfaces (APIs) should be self-
documenting when possible. In particular, the order of parameters in func-
tion declarations should be arranged such that the size of an array appears before
the array. The purpose is to allow Variable-Length Array (VLA) notation to be
used. This not only makes the code’s purpose clearer to human readers, but also
makes static analysis easier. Any new APIs added to the Standard should take
this into consideration.

In the case of time.h we can already apply this strategy to the existing interfaces to make
them analysis friendly. E.g the function

1 time_t mktime(struct tm *timeptr);

can be expressed with the equivalent prototype

2Proposed are asctime_r, ctime_r, localtime_r, gmtime_r, and timespec_getres.
3See http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2086.htm

Modernize time.h functions v.2 N2417:3

1 time_t mktime (struct tm timeptr [static 1]);

that emphasizes on the fact that the function expects a non-null pointer to at least one
element as an argument.
Such changes (adding static bound constraints) can be added to most of the existing
functions in time.h. Since these interfaces are rewritten during compilation, such additions
are always compatible with existing code.
On the other hand, coding such restrictions into header files allows compilers to diagnose
the most flagrant violations of the requirements. In particular, compilers can track pointers
they know to be null, and may then diagnose an invalid call to a time.h function.
There is only one of the functions that should not be rewritten with a [static] parameter
instead of a pointer, the time function. Here, it is specified that a null pointer is a valid
argument.
All these changes are straight forward and we refer to the annex for the concrete formulation
of that change. Note that changing the specification within the standard for these functions
will not force implementations to use exactly this specification, if they fear e.g that their
headers would become incompatible for use with C++.4 The sought effects are merely better
documentation and an incentive for implementations to diagnose invalid usages of these
interfaces.

Question 1. Shall we adopt [static] array parameter specifications for the time.h
header as proposed in N2417?

Question 2. If yes, does WG14 want to see a proposal that changes pointer parameters
of library functions to [static] array parameters?

3. ADD USER HELPER MACROS TO DEAL WITH THE TYPES

The types that are used to represent times have some crude historical oddities and magic
constants that can easily be tamed by providing macros to our users. We propose to add
two types of macros

— Macros to represent the offsets that are needed for the members of the tm structure, for
example TIME_TM_YEAR_OFFSET representing the value 1900.

— Macros to represent the invalid values of time_t and clock_t.

The text addition for these is boringly simple and can be found in 7.27.1 p2. In addition,
we propose to adjust the example in 7.27.2.3 p4 (mktime) with these new constants.

Question 3. Shall we add “offset” macros for the members of the tm structure to the
time.h header as proposed in N2417?

Question 4. Shall we add “invalid” macros for the types time_t and clock_t to the
time.h header as proposed in N2417?

4. MAKE THE UB OF CTIME EXPLICIT

In C17, the call ctime(timer) is declared to be functionally equivalent to

1 asctime(localtime(timer))

This definition has one surprising nob: localtime has conditions under which it returns a
null pointer, but asctime is not allowed to receive such a pointer. Such a return happens, if
timer cannot be interpreted as local time (for whatever reasons). Thus, ctime is implicitly
undefined in that situation.

4But they could easily use conditional compilation with __cplusplus to avoid such problems.

N2417:4 Jens Gustedt

We see two possibilities to improve that situation:

(1) Make this behavior explicitly undefined; or
(2) widen the specification of asctime and impose that it should accept a null pointer and

then also would return a null pointer to propagate the error return.

The second approach would only make programs that previously have been (implicitly)
undefined, defined. But it would also impose implementations to change their code.
We propose to make that undefined behavior explicit by reformulating a phrase
in 7.27.3.2 p2:

:::
The

::::::::
calendar

:::::
time

::::::::
specified

:::
by

:::::::::
timer[0]

::::
shall

:::
be

::::::::::
convertible

:::
to

::::
local

:::::
time.

Question 5. Shall we add a phrase that spells out the undefined behavior of ctime as
proposed in N2417?

Question 6. If not, shall we change asctime such that it accepts null pointer argu-
ments?

4.1. Avoid UB for asctime

The asctime function writes a textual representation of a broken down time in to a char
buffer. Due to the exact output format, the buffer size that is needed is exactly 26. In our
proposal (7.27.3.1) we use that fact in two places:

— We change the use of sprintf in the operational specification to snprintf with a second
argument set to 26.

— Later, we augment the syntactical specification of the newly introduced asctime_r.

The first has the advantage that we then can guarantee that the input buffer will never
be accessed out-of-bounds, and that we can get rid of undefined behavior for invalid time
values. We propose to replace

If any of the members of the broken-down time contain values that are outside
their normal ranges,the behavior of the asctime functions is undefined. Likewise,
if the calculated year exceeds four digits or is less than the year 1000, the behavior
is undefined.

by

:::
The

:::::::
return

:::::
value

::::::
points

::
to

::
a

::::
zero

::::::::::
terminated

::::::
string

::
of

::::::
length

::
at

:::::
most

:::
25

::::
and

:::
no

::::
write

::::::::
beyond

:::
the

:::::
26th

::::
byte

:::::::
occurs.

::
If

::::
any

::
of
::::

the
:::::::::
members

::
of

::::
the

::::::::::::
broken-down

::::
time

:::::::
contain

::::::
values

:::::
that

:::
are

::::::::
outside

:::::
their

:::::::
normal

:::::::
ranges,

::
or

::
if
::::

the
::::::::::
calculated

::::
year

:::::::
exceeds

::::
four

:::::
digits

:::
or

::
is

::::
less

::::
than

::::
the

::::
year

:::::
1000,

::::
the

::::::::
returned

::::::
string

::
is

::::
null

::::::::::
terminated

::::::
within

:::
the

::::
first

:::
26

:::::
bytes

::::
but

:::
its

::::::::
contents

::
is

:::::::::
otherwise

::::::::::
unspecified.

This specification allows implementations not to use the function snprintf for their imple-
menation if this would be considered too costly (in executable size, for example).

Question 7. Shall we change the specification of asctime to use snprintf and modify
the undefined behavior to unspecified behavior as proposed in N2417?

5. MAKE THE RETURN OF THE CONVERSION FUNCTIONS CONST QUALIFIED

The functions asctime, ctime, gmtime and localtime return pointers to static state and can
thus not be thread-safe. In addition, exposing a modifiable static variable in the program
state provides an exploitable attack vector for buffer overflow attacks. The corresponding
return values of the functions are not even const qualified, but they cannot not be put in a
read-only section, anyhow, because their contents is subject to change with different calls.

Modernize time.h functions v.2 N2417:5

So, changing the return types of these functions will not help against malicious overflow
attacks but at least it could prevent these buffers from accidental overwrites.

Question 8. Shall the return types of functions asctime, ctime, gmtime and localtime
be changed to pointer-to const qualified types as as proposed in N2417?

6. ADD CONVERSION FUNCTIONS THAT ARE RELATIVELY THREAD-SAFE

ISO 9945 has four simple replacement functions for the conversion functionalities. They are
suffixed with _r and just add a pointer to a buffer that is also returned to the parameters.
Provided that any of these functions is integrated we propose to add an explicit requirement
as a new first paragraph of 7.27.3:

::::::::
Functions

:::::
with

::
a
:::
_r

::::::
suffix

:::::
place

::::
the

::::::
result

:::
of

:::
the

::::::::::
conversion

:::::
into

::::
the

::::::
buffer

:::::::
referred

:::
by

::::
buf

::::
and

:::::::
return

:::::
that

::::::::
pointer.

::::::
These

:::::::::
functions

::::
and

::::
the

:::::::::
function

::::::::
strftime

:::::
shall

:::
not

:::
be

:::::::
subject

::
to

:::::
data

:::::
races,

::::::
unless

::::
the

::::
time

:::
or

::::::::
calendar

:::::
state

::
is

:::::::
changed

::
in

::
a
::::::::::::
multi-thread

:::::::::
execution.

6.1. The asctime_r function

We augment the syntactical specification of the newly introduced asctime_r from ISO 9945
by an explicit requirement about the size of the buffer by using [static restrict 26]. In
ISO 9945 there is already text that requires this size for the buffer, but there is not syntax
to make this detectable.

Question 9. Shall we adopt asctime_r as proposed in N2417?

6.2. The localtime_r function

A localtime_r function can be specified easily. To simplify the text, we propose that the
operational definition is directly given in terms of asctime_r, see 7.27.3.1.

Question 10. Shall we adopt localtime_r as proposed in N2417?

6.3. The ctime_r function

To add the ctime_r function we have to specify in addition how the chaining of localtime_r,
asctime and asctime_r is to be performed. For 2.27.3.2 we propose

1 asctime(localtime_r(timer , (struct tm[1]){ 0 }))
2 asctime_r(localtime_r(timer , (struct tm[1]){ 0 }), buf)

That is, we propose the implicit creation of an otherwise unaccessible temporary object that
is used to transfer the broken down time. This allows also to clarify the fact that the ctime
functions are not expected to modify the static buffer that would be used for the return of
localtime.

Question 11. Shall we adopt ctime_r as proposed in N2417?

6.4. The gmtime_r function

Question 12. Shall we adopt gmtime_r as proposed in N2417?

7. ADD NEW OPTIONAL TIME BASES

C11 and C17 left the addition of new time bases completely to the implementation. Although
it is a good principle to leave room for extensions, certain of them already have a connotation
in other normative context. In particular, ISO 9945 already provides specifications for four
different time bases, two for elapsed time measurement, and two for CPU time.

N2417:6 Jens Gustedt

We propose to add optional macros for these time bases to the standard, such that the
names, if defined, bind implementations to a particular semantic. ISO 9945 and ISO 9899
differ slightly in their interfaces, we propose to have macros were we replace a CLOCK prefix
by TIME for of the four different clocks defined in ISO 9945. Since these will be generally
different from the values provided by ISO 9945 (there the constants have type clockid_t)
we can impose that the corresponding values are positive without invalidating components
of ISO 9945.

:::::
Time

:::::
bases

:::::
other

:::::
than

:::::::::
TIME_UTC

:::
are

::::::::
optional;

:::
all

:::::
time

:::::
bases

::::::::
evaluate

:::
to

::::::
values

::::::
greater

:::::
than

::
0.

Generally, since these functions now can deal with several different time concepts, we found
it useful to be a bit more specific about these “times” in 7.27.1 p1.

7.1. Elapsed time

ISO 9945 has two different “clocks” for measurement of elapsed time, CLOCK_REALTIME and
CLOCK_MONOTONIC. They differ eventually in the starting point of the measurement (epoch
vs. boot time) and, more importantly, concerning their behavior when the system time is
set:

— CLOCK_REALTIME changes when the clock is set to a new value, e.g if a background time
daemon adjusts to a drift indicated by a time servers, or if calendar time is adjusted with
a leap second. This is the only clock in ISO 9945 that is mandatory, and as such plays a
similar role as TIME_UTC for ISO 9899.

— CLOCK_MONOTONIC is guaranteed not to be affected by such changes of the system clock and
to measure physical time as perceived by the platform.

Which of these two (if any) would best to model the behavior of current C implementations
when using TIME_UTC could be subject to debade. We propose not to go into such discussion,
but to leave such details to the implementations.
The addition of the macros TIME_REALTIME and TIME_MONOTONIC is straight forward,
see 7.27.1 p2. We then propose the additional text in 7.27.2.5 p3:

:
If
:::::
base

:::
is

::::::::::::::
TIME_REALTIME

:::
the

:::::::::
behavior

::
is

::::
the

:::::::
similar,

:::::
only

:::::
that

:::
the

::::::
result

:::
is

:::::::
affected

::
by

:::::::
imple

::::
men

::
ta

:::::::::::
tion-defined

::::::::
functions

:::::
that

:::
set

:::
the

:::::::
system

:::::
time,

::
if

::::
any.

::
If

::::::::
functions

::::
that

:::
set

::::
the

:::::::
system

::::
time

::::
are

::::::::
provided,

::
it
::

is
:::::::

imple
::::
men

::
ta

:::::::::::
tion-defined

::
if

::::
they

:::::
affect

:::::
base

:::::::::
TIME_UTC.

::::
For

::::::::::::::
TIME_MONOTONIC

::::
the

::::::::
reference

:::::
point

:::::
may

::
or

:::::
may

:::
not

:::
be

::::
the

:::::
same

::::::
epoch

:::
or

::::
any

:::::
other

::::::
imple

::::
men

:::
ta

:::::::::::
tion-defined

::::
time

::::::
point;

:::::
this

:::::
point

::::
shall

::::
not

:::::::
change

:::::::
during

:::
the

::::::::
program

:::::::::
execution

:::::
and

:::
the

::::::
result

:::::
shall

::::
not

::
be

::::::::
affected

::
by

::::
any

:::::::
imple

::::
men

::
ta

:::::::::::
tion-defined

::::::::
functions

:::::
that

:::
set

::::
the

::::::
system

::::::
time,

:
if
:::::
any;

::
it

::
is

::::::
imple

:::::
men

::
ta

::::::::::
tion-defined

::
if

::::
this

::::
base

:::::::::
accounts

:::
for

::::
time

:::::::
during

::::::
which

:::
the

:::::::::
execution

::
of

:::
the

::::::
whole

:::::::
system

::
is

::::::::::
suspended.

Question 13. Shall we adopt TIME_REALTIME as proposed in N2417?

Question 14. Shall we adopt TIME_MONOTONIC as proposed in N2417?

Question 15. Shall we relate TIME_UTC to the new optional time bases as proposed
in N2417?

7.2. CPU time

In C17, CPU time of a program execution can be measured by means of the clock function.
Unfortunately this functions has several problems, the most sever being that it may overflow
without notice. Another disadvantage of clock is that there is one legacy C implementation
that gets this function fundamentally wrong when compared to the C standard: it accounts

Modernize time.h functions v.2 N2417:7

for elapsed (wallclock) time instead of CPU time. This repeatably leads to confusion when
code is ported from or to conforming platforms. For these reasons we think that clock is
best deprecated and replaced by an appropriate time base for timespec_get.
ISO 9945 has two such “clocks” which we propose to adapt to the needs of the C standard.
Because implementations might need to dynamically distinguish different values for these
bases for concurrent program executions (processes) or threads, the specifications of the
values exempts them from being compile time constants and we add in 7.25.1 p3:

:::
The

::::::
value

:::
of

:::::::::::::::::::::::::
TIME_PROCESS_CPUTIME_ID

:::::
shall

:::
be

:::::::::
different

:::::
from

::::
the

:::::::
above

:::
and

::::::
shall

::::
not

::::::::
change

:::::::
during

::::
the

::::::
same

:::::::::
program

:::::::::::
execution.

:::::
The

:::::::
macro

::::::::::::::::::::::
TIME_THREAD_CPUTIME_ID

:::::
shall

::::
not

:::
be

:::::::
defined

::
if

::::
the

::::::::::::::
implementation

:::::
does

::::
not

:::::::
support

::::::::
threads;

::
its

::::::
value

:::::
shall

::
be

::::::::
different

:::::
from

::::
the

::::::
above,

:::::
shall

:::
be

:::
the

::::::
same

::
for

:::
all

:::::::::::
invocations

::::
from

::::
the

:::::
same

:::::::
thread,

::::
and

:::
the

:::::
value

:::::::::
provided

:::
for

:::
one

:::::::
thread

::::
shall

::::
not

::
be

:::::
used

:::
by

:
a
::::::::
different

:::::::
thread

::
as

:::::
base

:::::::::
argument

::
of

:::::::::::::
timespec_get.

For timespec_get itself the text proposal in 7.27.2.5 is then quite simple:

:::
For

:::::
base

::::
set

::
to

::::::::::::::::::::::::
TIME_PROCESS_CPUTIME_ID

:::::
and

:::::::::::::::::::::::
TIME_THREAD_CPUTIME_ID

::::
the

:::::
result

::
is

:::::::
similar,

::::
but

:::
the

::::
call

:::::::::
measures

:::
the

:::::::
amount

:::
of

::::::::
processor

:::::
time

::::::::::
associated

::::
with

:::
the

::::::::
program

:::::::::
execution

:::
or

:::::::
thread,

:::::::::::
respectively.

Calls with TIME_PROCESS_CPUTIME_ID could replace calls of clock, provided we knew the
resolution of this time base.
Calls with TIME_THREAD_CPUTIME_ID would implement a new feature that allows to distin-
guish the cost of threads individually.

Question 16. Shall we adopt TIME_PROCESS_CPUTIME_ID as proposed in N2417?

Question 17. Shall we adopt TIME_THREAD_CPUTIME_ID as proposed in N2417?

8. ADD AN INTERFACE TO QUERY RESOLUTION OF TIME BASES

Already for TIME_UTC, C17 has no interface that would allow to query the resolution of the
resulting time. If on the long run we want to replace clock with timespec_get() we have to
ensure that we also have a tool that provides a functionality similar to CLOCKS_PER_SECOND.
Because of the genericity of timespec_get, the interface to query resolutions should not be
a series of macros:

— User functions may have a time base as a parameter, so they cannot decided at compile
time which resolution would be to query.

— The resolution may not be part of the platform ABI but be dependent of a particular
version of the CPU or operating system.

— The resolution for a specific time base should not change during program execution. There-
fore performance critical code can easily cache these values at program startup or thread
startup if they need to.

ISO 9945 has a function that is capable to capture resolutions of predefined bases (which
could probably be done with a macro) and also of all implementation-defined bases, the
clock_getres function.
We propose to model such a function, timespec_getres, accordingly. The specification is
straight forward and can be inspected in the appendix, see the new clause 7.27.2.6 (and
also a crossreference for timespec_get in 7.27.2.5 p2).

Question 18. Shall we add function timespec_getres as proposed in N2417?

N2417:8 Jens Gustedt

9. DEFINE THE RETURN OF THE TIMESPEC_ FUNCTIONS FOR A NON-SUPPORTED BASE

As much as the resolution of a particular time base may not be part of the platform ABI,
the whole support of such a base may be subject to conditions that can only be detected
at runtime. The easiest way to deal with such situations is to provide well-specified error
returns to functions that use time bases.
ISO 9945 uses errno to distinguish different error returns, and in particular a value EINVAL
for this particular error. We propose to stay with the same error codes, which implies to
add EINVAL to errno.h (7.5 p2).

Question 19. Shall we add the return value -EINVAL to timespec_getres if it is called
with a non-supported base as proposed in N2417?

10. ALLOW TIMESPEC_GET TO DIFFERENTIATE ERROR RETURNS

The timespec_get can fail for different reasons, such as an invalid time base or an overflow.
Currently, such errors can only be modeled with one return value, 0. ISO 9945 also only has
one explicit error return (−1) but will then distinguish different errors by changing errno.
We don’t think that we should follow the lead here an introduce the dependency of a
complicated thread specific state. Instead we should widen the possible return values to
negative values, which could encode the negative of the value that would otherwise be
found in errno.
Again, the specification is straight forward and can be inspected in the appendix, see the
clauses 7.27.2.5 p5 and 7.26.2.6 p3.

Question 20. Shall we change the possible error returns of function timespec_get (and
timespec_getres if adopted) to allow negative values as proposed in N2417?

If the answer is yes, we can to a similar addition as for timespec_getres.

Question 21. Shall we change the return of timespec_get to -EINVAL if it is called with
a non-supported base as proposed in N2417?

11. RECOMMEND CONSISTENCY BETWEEN THE DIFFERENT TIME INTERFACES

As mentioned above there are several consistency issues between different interfaces. So we
propose to add a “Recommended practice” section to timespec_get that encourages to have
clock and time consistent with their respective counterparts for timespec_get.
We also add a recommendation to have the global and the thread-wise CPU time consistent,
such that the sum of the thread-wise times should be the same as the global CPU time.
The exact wording is 7.27.2.5 p6.

Question 22. Shall we add a recommendation for consistency between the legacy inter-
faces and timespec_get as proposed in N2417?

Question 23. Shall we add a recommendation for consistency amoung the CPU time
interfaces of timespec_get as proposed in N2417?

12. DEPRECATE CLOCK

As has been observed over the last revision cycle, the clock function has a severe problem
with the fact that its return value can silently overflow without giving any indication to
the caller. Additionally there is still a major legacy platform that gets the semantics of it
fundamentally wrong by providing elapsed time instead of CPU time.
Therefore we think that clock should just be phased out. The proposed changes to 7.27.2.1
add a recommendation to use the new interface.

Question 24. Should we make clock obsolescent as proposed in N2417?

Modernize time.h functions v.2 N2417:9

13. DEPRECATE THE UNSAFE CONVERSION FUNCTIONS

The unsafe conversion functions are generally problematic and have to many design flaws.
We propose to deprecated them:

Question 25. Should we make asctime, ctime, localtime, and gmtime obsolescent as
proposed in N2417?

14. APPENDIX: PAGES WITH DIFFMARKS OF THE PROPOSED CHANGES

The following page numbers are from the particular snapshot and may vary once the changes
are integrated.

ISO/IEC 9899:202x (E) working draft — September 3, 2019 C2x..time-C2x n2417

__DATE__ The date of translation of the preprocessing translation unit: a character string literal of
the form "Mmm dd yyyy", where the names of the months are the same as those generated
by the asctime function, and the first character of dd is a space character if the value is
less than 10. If the date of translation is not available, an implementation-defined valid
date shall be supplied.

__FILE__ The presumed name of the current source file (a character string literal).189)

__LINE__ The presumed line number (within the current source file) of the current source line (an
integer constant).189)

__STDC__ The integer constant 1, intended to indicate a conforming implementation.

__STDC_HOSTED__ The integer constant 1 if the implementation is a hosted implementation or the
integer constant 0 if it is not.

__STDC_VERSION__ The integer constant yyyymmL.190)

__TIME__ The time of translation of the preprocessing translation unit: a character string literal
of the form "hh:mm:ss" as in the time generated by the asctime function

::::::::
functions. If

the time of translation is not available, an implementation-defined valid time shall be
supplied.

Forward references: the asctime function (??
::::::::
functions

::::::::
(7.27.3.1).

6.10.8.2 Environment macros
1 The following macro names are conditionally defined by the implementation:

__STDC_ISO_10646__ An integer constant of the form yyyymmL (for example, 199712L). If this
symbol is defined, then every character in the Unicode required set, when stored in an
object of type wchar_t, has the same value as the short identifier of that character. The
Unicode required set consists of all the characters that are defined by ISO/IEC 10646, along
with all amendments and technical corrigenda, as of the specified year and month. If
some other encoding is used, the macro shall not be defined and the actual encoding
used is implementation-defined.

__STDC_MB_MIGHT_NEQ_WC__ The integer constant 1, intended to indicate that, in the encoding for
wchar_t, a member of the basic character set need not have a code value equal to its
value when used as the lone character in an integer character constant.

__STDC_UTF_16__ The integer constant 1, intended to indicate that values of type char16_t are
UTF–16 encoded. If some other encoding is used, the macro shall not be defined and the
actual encoding used is implementation-defined.

__STDC_UTF_32__ The integer constant 1, intended to indicate that values of type char32_t are
UTF–32 encoded. If some other encoding is used, the macro shall not be defined and the
actual encoding used is implementation-defined.

Forward references: common definitions (7.19), unicode utilities (7.28).

6.10.8.3 Conditional feature macros
1 The following macro names are conditionally defined by the implementation:

__STDC_ANALYZABLE__ The integer constant 1, intended to indicate conformance to the specifica-
tions in Annex L (Analyzability).

189)The presumed source file name and line number can be changed by the #line directive.
190)See Annex M for the values in previous revisions. The intention is that this will remain an integer constant of type
long int that is increased with each revision of this document.

144 Language § 6.10.8.3

ISO/IEC 9899:202x (E) working draft — September 3, 2019 C2x..time-C2x n2417

7.5 Errors <errno.h>
1 The header <errno.h> defines several macros, all relating to the reporting of error conditions.

2
:::
The

:::::::
macros

:::
are

:

:: ::: ::::
EDOM

:: ::: ::::::
EILSEQ

:: ::: ::::::
EINVAL

:: ::: ::::::
ERANGE

which expand to integer constant expressions with type int, distinct positive values, and which are
suitable for use in #if preprocessing directives; and

errno

which expands to a modifiable lvalue214) that has type int and thread local storage duration, the
value of which is set to a positive error number by several library functions. If a macro definition is
suppressed in order to access an actual object, or a program defines an identifier with the name
errno, the behavior is undefined.

3 The value of errno in the initial thread is zero at program startup (the initial value of errno in other
threads is an indeterminate value), but is never set to zero by any library function.215) The value of
errno may be set to nonzero by a library function call whether or not there is an error, provided the
use of errno is not documented in the description of the function in this document.

4 Additional macro definitions, beginning with E and a digit or E and an uppercase letter,216) may also
be specified by the implementation.

214)The macro errno need not be the identifier of an object. It might expand to a modifiable lvalue resulting from a function
call (for example,*errno()).
215)Thus, a program that uses errno for error checking would set it to zero before a library function call, then inspect it

before a subsequent library function call. Of course, a library function can save the value of errno on entry and then set it to
zero, as long as the original value is restored if errno’s value is still zero just before the return.
216)See "future library directions" (7.31.3).

166 Library § 7.5

ISO/IEC 9899:202x (E) working draft — September 3, 2019 C2x..time-C2x n2417

7.27 Date and time <time.h>

7.27.1 Components of time
1 The header <time.h> defines several macros, and declares types and functions for manipulating

time. Many
:::::
These functions deal with a

::::::::
different

:::::::
notions

::
of

:::::
time:

:

— processor time ,
::::::
which

::
is

:::
the

::::::::
amount

::
of

::::::::::
processing

:::::::::
resources

::::
that

:::
are

:::::::::
attributed

::
to

::::
the

::::::::
program

:::::::::
execution;

:

— elapsed time
:
,
::::::
which

::
is
::::

the
:::::
time

::::
that

::::::::
elapsed

::
in

::::
the

::::::::
physical

:::::::::
reference

:::::::
system

:::::::
during

::::
the

::::::::
program

:::::::::
execution;

:

— calendar time
:
, that represents the current date (

::::
and

::::
time according to the Gregorian calendar)

and time. Some functions deal with ;
:

— local time, which is the calendar time expressed for some specific time zone, ;
:

— and with Daylight Saving Time, which is a temporary change in the algorithm for determining
local time.

The local time zone and Daylight Saving Time are implementation-defined.

2
:::
The

::::::::
feature

::::
test

::::::
macro

::::::::::::::::::::::::::
__STDC_VERSION_TIME_H__

::::::::
expands

:::
to

::::
the

::::::
token

:::::::::
yyyymmL.

::::
The

::::::
other

::::::
macros

::::::::
defined

:::
are NULL

:::::::::
(described

:::
in

:::::
7.19);

:: ::: :::::::::::::
CLOCKS_PER_SEC

which expands to an expression with type clock_t (described below) that is the number per second
of the value returned by the clock function; and

:: ::: ::::::::::::
CLOCK_INVALID

:: ::: :::::::::::
TIME_INVALID

:::::
which

::::
are

::
a

::::::::
constant

:::::::::::
expressions

:::
of

:::::
value

:::
−1

:::::
and

::::
type

:::::::::
clock_t

::::
and

:::::::
time_t

::::::::::
(described

:::::::
below)

:::::::::::
respectively;

::::::
offsets

:::
for

::::
the

:::::
fields

::
of

:::
the

:::
tm

:::::::::
structure

:::::::::
(described

:::::::
below)

:: ::: :::::::::::::::::
TIME_TM_SEC_OFFSET

: :::
//

::
0

:: ::: :::::::::::::::::
TIME_TM_MIN_OFFSET

: :::
//

::
0

:: ::: ::::::::::::::::::
TIME_TM_HOUR_OFFSET

:::
//

::
0

:: ::: ::::::::::::::::::
TIME_TM_MDAY_OFFSET

:::
//

::
0

:: ::: :::::::::::::::::
TIME_TM_MON_OFFSET

: :::
//

::
1

:: ::: ::::::::::::::::::
TIME_TM_YEAR_OFFSET

:::
//

:::::
1900

:: ::: ::::::::::::::::::
TIME_TM_WDAY_OFFSET

:::
//

::
0

:: ::: ::::::::::::::::::
TIME_TM_YDAY_OFFSET

:::
//

::
1

:::::
which

::::
are

::::::
integer

::::::::
constant

:::::::::::
expressions

::::::::
suitable

:::
for

:::
use

::
in

::::
#if

:::::::::::::
preprocessing

:::::::::
directives

:::::
with

::::::
values

::
of

::::
type

::::
int

::
as

::::::::::
indicated;

:::
and

:::::
time

:::::
bases

:::
for

::::::::::::::
timespec_get

::::::::::::
representable

::
in

::::
int

:

TIME_UTC

:: ::: ::::::::::::
TIME_REALTIME

:: ::: :::::::::::::
TIME_MONOTONIC

which expands to an integer constant greater than 0 that designates the UTC time base.
:::
are

:::::::
integer

:::::::
constant

:::::::::::
expressions

::::::::
suitable

:::
for

:::
use

::
in

::::
#if

:::::::::::::
preprocessing

::::::::::
directives,

::::
and

:: ::: ::::::::::::::::::::::
TIME_PROCESS_CPUTIME_ID

:: ::: :::::::::::::::::::::
TIME_THREAD_CPUTIME_ID

338 Library § 7.27.1

n2417 working draft — September 3, 2019 ISO/IEC 9899:202x (E)

:::::
which

:::::
may

:::
not

:::
be

:::::::::
constants.338)

3
::::
Time

::::::
bases

:::::
other

:::::
than TIME_UTC

::
are

:::::::::
optional;

:::
all

::::
time

::::::
bases

::::::::
evaluate

::
to

:::::::
values

:::::::
greater

::::
than

::
0.
:::

If

:::::::
defined,

:
TIME_REALTIME

::::
and TIME_MONOTONIC

::::
have

::::::::
different

:::::::
values,

:::
but

:
TIME_UTC

::::
may

:::::
share

::::
one

::
of

:::::
these

:::::::
values.

:::::
The

:::::
value

:::
of TIME_PROCESS_CPUTIME_ID

::::
shall

:::
be

::::::::
different

:::::
from

::::
the

::::::
above

::::
and

::::
shall

::::
not

::::::
change

:::::::
during

:::
the

::::::
same

::::::::
program

:::::::::
execution.

:::::
The

::::::
macro TIME_THREAD_CPUTIME_ID

::::
shall

:::
not

::
be

::::::::
defined

:
if
::::
the

::::::::::::::
implementation

:::::
does

:::
not

::::::::
support

:::::::
threads;

:::
its

:::::
value

:::::
shall

:::
be

::::::::
different

::::
from

::::
the

::::::
above,

:::::
shall

::
be

::::
the

:::::
same

:::
for

::
all

:::::::::::
invocations

:::::
from

:::
the

::::::
same

::::::
thread,

::::
and

::::
the

:::::
value

:::::::::
provided

:::
for

::::
one

::::::
thread

::::
shall

::::
not

::
be

:::::
used

:::
by

:
a
::::::::
different

:::::::
thread

::
as

:::::
base

:::::::::
argument

::
of

::::::::::::::
timespec_get.

:

4 The types declared are size_t (described in 7.19);

clock_t

and

time_t

which are real types capable of representing times;

struct timespec

which holds an interval specified in seconds and nanoseconds (which may represent a calendar
time based on a particular epoch, or processing or elapsed time based on a start time specific to the
program execution); and

struct tm

which holds the components of a calendar time, called the broken-down time.

5 The range and precision of times representable in clock_t and time_t are implementation-defined.
The timespec structure shall contain at least the following members, in any order. The semantics of
the members and their normal ranges are expressed in the comments.339)

time_t tv_sec; // whole seconds -- ≥ 0
long tv_nsec; // nanoseconds -- [0, 999999999]

The tm structure shall contain at least the following members, in any order. The semantics of the
members and their normal ranges are expressed in the comments.340)

int tm_sec; // seconds after the minute -- [0, 60]
int tm_min; // minutes after the hour -- [0, 59]
int tm_hour; // hours since midnight -- [0, 23]
int tm_mday; // day of the month -- [1, 31]
int tm_mon; // months since January -- [0, 11]
int tm_year; // years since 1900
int tm_wday; // days since Sunday -- [0, 6]
int tm_yday; // days since January 1 -- [0, 365]
int tm_isdst; // Daylight Saving Time flag

The value of tm_isdst is positive if Daylight Saving Time is in effect, zero if Daylight Saving Time
is not in effect, and negative if the information is not available.

7.27.2 Time manipulation functions
7.27.2.1 The clock function
338)

::::::::::::
Implementations

:::
can

:::::
define

:::::::
additional

::::
time

::::
bases,

:::
but

:::
are

:::
only

::::::
required

::
to
::::::
support

:
a
:::
real

::::
time

::::
clock.

:::
See

::::::
"future

:::::
library

::::::::
directions"

::::::
(7.31.16).

339)The tv_sec member is a linear count of seconds and might not have the normal semantics of a time_t.
340)The range [0, 60] for tm_sec allows for a positive leap second.

§ 7.27.2.1 Library 339

ISO/IEC 9899:202x (E) working draft — September 3, 2019 C2x..time-C2x n2417

Synopsis

1 #include <time.h>
clock_t clock(void);

Description

2 The clock function determines the processor time used.
:
It
::
is
:::
an

:::::::::::
obsolescent

:::::::
feature.341)

Returns
3 The clock function returns the implementation’s best approximation to the processor time used

by the program since the beginning of an implementation-defined era related only to the program
invocation. To determine the time in seconds, the value returned by the clock function should be
divided by the value of the macro CLOCKS_PER_SEC. If the processor time used is not available, the
function returns the value (clock_t)(−1)

:::::::::::::::
CLOCK_INVALID . If the value cannot be represented, the

function returns an unspecified value.342)

:::::::::::::::::::::
Recommended practice

4
:::::::::
Programs

:::::::
should

::::::
prefer

::::
the

::::
use

:::
of

::::
the

::::::::::::::
timespec_get

:::::::::
function

:::::
with

::
a
::::::
base

::::::::::
argument

:::
of

:

:::::::::::::::::::::::::
TIME_PROCESS_CPUTIME_ID

:::::::::
whenever

::::
that

::::::::::::
functionality

::
is

:::::::
defined

:::
by

:::
the

:::::::::::::::
implementation.

:

Forward references:
:::
the

::::::::::::::
timespec_get

::::::::
function

:::::::::
(7.27.2.5).

7.27.2.2 The difftime function
Synopsis

1 #include <time.h>
double difftime(time_t time1, time_t time0);

Description
2 The difftime function computes the difference between two calendar times: time1 - time0.

Returns
3 The difftime function returns the difference expressed in seconds as a double.

7.27.2.3 The mktime function
Synopsis

1 #include <time.h>
time_t mktime(struct tm *timeptr);

:: ::: ::::::
time_t

::::::
mktime

:
(
::::::
struct

:::
tm

:::
ts

:
[
::::::
static

::::
1])

:
;

Description
2 The mktime function converts the broken-down time, expressed as local time, in the structure

pointed to by timeptr
::::::
ts[0] into a calendar time value with the same encoding as that of the

values returned by the time function. The original values of the tm_wday and tm_yday components
of the structure are ignored, and the original values of the other components are not restricted to
the ranges indicated above.343) On successful completion, the values of the tm_wday and tm_yday
components of the structure are set appropriately, and the other components are set to represent the
specified calendar time, but with their values forced to the ranges indicated above; the final value of
tm_mday is not set until tm_mon and tm_year are determined.

341)
::
See

::::::
"future

:::::
library

::::::::
directions"

:::::::
(7.31.16).

342)This could be due to overflow of the clock_t type.
343)Thus, a positive or zero value for tm_isdst causes the mktime function to presume initially that Daylight Saving Time,

respectively, is or is not in effect for the specified time. A negative value causes it to attempt to determine whether Daylight
Saving Time is in effect for the specified time.

340 Library § 7.27.2.3

n2417 C2x..time-C2x working draft — September 3, 2019 ISO/IEC 9899:202x (E)

Returns
3 The mktime function returns the specified calendar time encoded as a value of type time_t. If the

calendar time cannot be represented, the function returns the value (time_t)(−1)
:::::::::::::
TIME_INVALID .

4 EXAMPLE What day of the week is July 4, 2001?

#include <stdio.h>
#include <time.h>
static const char *const wday[] = {

"Sunday", "Monday", "Tuesday", "Wednesday",
"Thursday", "Friday", "Saturday", "-unknown-"

};
struct tm time_str;
/* ... */

-
time_str.tm_year = 2001 - 1900;
time_str.tm_mon = 7 - 1;
time_str.tm_mday = 4;
time_str.tm_hour = 0;
time_str.tm_min = 0;
time_str.tm_sec = 1;
time_str.tm_isdst = -1;
if (mktime(&time_str) == (time_t)(-1))

time_str.tm_wday = 7;
printf("%s\n", wday[time_str.tm_wday]);

:: ::: ::::::
struct

:::
tm

::
ts

::
=
::
{

:: ::: :: ::: :
.

::::::
tm_year

: :::
=
:::::
2001

::
-
::::::::::::::::::::
TIME_TM_YEAR_OFFSET

:
,

:: ::: :: ::: :
.

:::::
tm_mon

: ::::
=
::
7
:::::

-
:::::::::::::::::::
TIME_TM_MON_OFFSET

:
,

:: ::: :: ::: :
.

::::::
tm_mday

: :::
=
::
4
:::::

-
::::::::::::::::::::
TIME_TM_MDAY_OFFSET

:
,

:: ::: :: ::: :
.

::::::
tm_hour

: :::
=
::
0
:::::

-
::::::::::::::::::::
TIME_TM_HOUR_OFFSET

:
,

:: ::: :: ::: :
.

:::::
tm_min

: ::::
=
::
0
:::::

-
:::::::::::::::::::
TIME_TM_MIN_OFFSET

:
,

:: ::: :: ::: :
.

:::::
tm_sec

: ::::
=
::
1
:::::

-
:::::::::::::::::::
TIME_TM_SEC_OFFSET

:
,

:: ::: :: ::: :
.

:::::::
tm_isdst

: ::
=
::::
-1,

:: ::: ::
};

:: ::: ::
if

::
(

::::::
mktime

:
(&

::
ts

:
)
:::
==

:::::::::::::
TIME_INVALID

:
)

:: ::: :: ::: ::
ts

:
.

::::::
tm_wday

::
=
:::
7;

:: ::: ::
if

::
(

::
ts

:
.

:::::::
tm_isdst

::
>
:::
0)

:: ::: :: ::: ::::
puts

:
("

:::
DST

::::
was

:::::::
active

:::
in

::::
the

::::::::
current

:::::
time

::::
zone

:::
on

:::::
July

:::
4,

::::::::
2001.")

:
;

:: ::: ::::::
printf

::
("

:::
July

:::
4,

::::::
2001,

::::
was

::
a
::
%
:
s
:
,
::
%
:::
dth

::::
day

:::
of

::::
the

::::
year

:
\
:
n
::
",

:: ::: :: ::: ::::
wday

:
[

:
ts

:
.
:::::::
tm_wday

::
],

:::
ts

:
.
:::::::
tm_wday

::
+
:::::::::::::::::::
TIME_TM_YDAY_OFFSET

:
)
:
;

7.27.2.4 The time function
Synopsis

1 #include <time.h>
time_t time(time_t *timer);

Description
2 The time function determines the current calendar time. The encoding of the value is unspecified.

Returns
3 The time function returns the implementation’s best approximation to the current calendar time.

The value (time_t)(−1)
:::::::::::::
TIME_INVALID

:
is returned if the calendar time is not available. If timer is

not a null pointer, the return value is also assigned to the object it points to.

7.27.2.5 The timespec_get function
Synopsis

1 #include <time.h>
int timespec_get(struct timespec *ts, int base);

§ 7.27.2.5 Library 341

ISO/IEC 9899:202x (E) working draft — September 3, 2019 C2x..time-C2x n2417

:: ::: :::
int

::::::::::::
timespec_get

:
(
::::::
struct

:::::::::
timespec

:::
ts

:
[
::::::
static

::::
1],

:::
int

:::::
base

:
)
:
;

Description
2 The timespec_get function sets the interval pointed to by ts

:::::
ts[0]

:
to hold the current calendar

time
::::
time

:::::
value

:
based on the specified time base.

:::
For

:::
all

::::::::::
supported

::::::
bases,

:::
the

::::::::::
resolution

::
of

::::
the

::::::::
returned

::::
time

::::::
values

::
is
:::::::
imple

::::
men

::
ta

:::::::::::
tion-defined

::::
and

::::
can

::
be

::::::::
queried

::::
with

:::::::::::::::::
timespec_getres.

:

3 If base is TIME_UTC, the tv_sec member is set to the number of seconds since an implementation
defined

::::::
imple

::::
men

:::
ta

:::::::::::
tion-defined

:
epoch, truncated to a whole value and the tv_nsec member is

set to the integral number of nanoseconds, rounded to the resolution of the system clock.344)
:
If

:

::::
base

::
is
:
TIME_REALTIME

:::
the

::::::::
behavior

::
is
::::
the

:::::::
similar,

:::::
only

::::
that

:::
the

::::::
result

::
is

::::::::
affected

::
by

:::::::
imple

:::::
men-

::
ta

:::::::::::
tion-defined

::::::::
functions

:::::
that

:::
set

:::
the

:::::::
system

:::::
time,

::
if

::::
any.

::
If
:::::::::

functions
::::
that

::::
set

:::
the

:::::::
system

::::
time

::::
are

:::::::::
provided,

::
it

::
is

::::::
imple

::::
men

::
ta

:::::::::::
tion-defined

::
if
:::::
they

:::::
affect

:::::
base

:
TIME_UTC

:
.
::::

For
:
TIME_MONOTONIC

:::
the

::::::::
reference

:::::
point

::::
may

:::
or

::::
may

:::
not

:::
be

:::
the

:::::
same

::::::
epoch

::
or

::::
any

:::::
other

::::::
imple

::::
men

:::
ta

:::::::::::
tion-defined

::::
time

::::::
point;

:::
this

:::::
point

:::::
shall

:::
not

:::::::
change

:::::::
during

:::
the

::::::::
program

:::::::::
execution

::::
and

:::
the

:::::
result

:::::
shall

:::
not

:::
be

:::::::
affected

:::
by

::::
any

::::::
imple

:::::
men

::
ta

:::::::::::
tion-defined

::::::::
functions

::::
that

:::
set

::::
the

:::::::
system

:::::
time,

::
if

::::
any;

::
it

::
is

::::::
imple

:::::
men

:::
ta

:::::::::::
tion-defined

::
if

:::
this

:::::
base

::::::::
accounts

:::
for

::::
time

:::::::
during

::::::
which

:::
the

:::::::::
execution

:::
of

:::
the

::::::
whole

::::::
system

::
is
:::::::::::
suspended.345)

4
:::
For

:::::
base

:::
set

::
to TIME_PROCESS_CPUTIME_ID

::::
and TIME_THREAD_CPUTIME_ID

:::
the

::::::
result

:
is
:::::::
similar,

::::
but

:::
the

:::
call

:::::::::
measures

::::
the

:::::::
amount

:::
of

:::::::::
processor

::::
time

::::::::::
associated

:::::
with

:::
the

::::::::
program

::::::::::
execution

::
or

:::::::
thread,

:::::::::::
respectively.

:

Returns
5 If the timespec_get function is successful,

:
it returns the nonzero

:::::::
positive

:
value base;

::
if

::::
base

::
is
::::
not

:::::::::
supported

::
it

:::::::
returns-EINVAL ;

:
otherwise, it returns zero.

:::::::
another

:::::
value

::::
less

:::::
than

::
or

:::::
equal

:::
to

::::
zero.

:

:::::::::::::::::::::
Recommended practice

6
:::
The

:::::::::
following

:::::::
should

:::
be

:::::::::
consistent

:::::::::
whenever

::::::::
possible:

:

—
:::
The

:::::::
results

::
of

::::
calls

:::::
with

:::::
base

:::
set

::
to TIME_UTC

:::
and

:::
the

::::::
return

:::::::
values

::
of

:::::
time.

:

—
:
If
::::::::
defined,

:::
the

:::::::
results

::
of

::::
calls

:::::
with

:::::
base TIME_PROCESS_CPUTIME_ID

:::
and

:::
the

::::::
return

::::::
values

:::
of

::::::
clock.

:

—
:
If
:::::

both
::::
are

::::::::
defined,

:::
the

:::::::
results

:::
of

::::
calls

:::::
with

:::::
base

:::
set

:::
to

:
TIME_PROCESS_CPUTIME_ID

:::
and

:

TIME_THREAD_CPUTIME_ID
:
,
::::
such

::::
that

:::
the

:::::
sum

::
of

::
all

:::::::
thread

:::::::
specific

:::::::::
processor

:::::
times

::
is

::
as

:::::
close

::
to

:::
the

:::::::::
processor

::::
time

:::
for

::::
the

:::::::::
execution

::
as

::::::::
possible.

:

Forward references:
:::
the

:::::::::::::::::
timespec_getres

::::::::
function

:::::::::
(7.27.2.6).

7.27.2.6 The timespec_getres function
Synopsis

1
:: ::: :

#
:::::::
include

:
<time.h>

:: ::: :::
int

:::::::::::::::
timespec_getres

:
(
::::::
struct

:::::::::
timespec

:::
ts

:
[

::::::
static

:::
1],

::::
int

:::::
base

:
)
:
;

:::::::::::
Description

2
:::
The

:
timespec_getres function

:::::
stores

::::
the

::::::
imple

:::::
men

:::
ta

:::::::::::
tion-defined

:::::::::
resolution

::
of

::::
the

::::
time

:::::::::
provided

::
by

::::
the

:::::::::::::
timespec_get

::::::::
function

:::
for

:::::
base

::
in

:::::::
ts[0].

::::
For

::::
each

:::::
fixed

::::::
value

::
of

:::::
base,

::::
the

:::::
result

:::::
shall

:::
be

::::::::
invariant

:::::::
during

:::
the

::::::::
program

::::::::::
execution.

:::::::
Returns

344)
:::::::
Although

:
a
::::::::::::::
struct timespec

::::
object

::::::::
describes

::::
times

::::
with

:::::::::
nanosecond

::::::::
resolution,

:::
the

:::::::
available

:::::::
resolution

::
is
::::::
system

::::::::
dependent

:::
and

::::
could

::::
even

::
be

:::::
greater

::::
than

:
1
::::::
second.

345)
::::
Thus,

:::
the

::::::
values

:::
that

:::
are

:::::::
returned

:::::
with

:::::::
argument

:
TIME_REALTIME

::
are

:::::::
calendar

:::::
times,

:::::::
whereas

::::::::
differences

:::
of

::::::::::
measurements

::::
with TIME_MONOTONIC

::::::
represent

::::::
elapsed

::::
time.

342 Library § 7.27.2.6

n2417 C2x..time-C2x working draft — September 3, 2019 ISO/IEC 9899:202x (E)

3
:
If
::::

the
:
timespec_getres function

:
is

::::::::::
successful,

::
it
:::::::

returns
::::

the
::::::::
positive

:::::
value

::::::
base;

::
if

:::::
base

::
is

::::
not

:::::::::
supported

::
it

:::::::
returns-EINVAL ;

::::::::::
otherwise,

::
it

:::::::
returns

:::::::
another

:::::
value

::::
less

:::::
than

::
or

:::::
equal

:::
to

::::
zero.

:

7.27.3 Time conversion functions
1 Except for the function

:::::::::
Functions

::::
with

::
a

::
_r

::::::
suffix

:::::
place

:::
the

::::::
result

::
of

:::
the

:::::::::::
conversion

::::
into

:::
the

::::::
buffer

:::::::
referred

:::
by

::::
buf

::::
and

::::::
return

::::
that

::::::::
pointer.

::::::
These

:::::::::
functions

::::
and

:::
the

::::::::
function

::::::::::
strftime

::::
shall

::::
not

:::
be

::::::
subject

::
to

:::::
data

:::::
races,

::::::
unless

::::
the

::::
time

::
or

:::::::::
calendar

::::
state

::
is

::::::::
changed

::
in

::
a
::::::::::::
multi-thread

:::::::::
execution.346)

2
:::::::::::
Obsolescent

::::::::
functions

:::::::::
asctime,

:::::::
ctime,

:::::::
gmtime,

::::
and

::::::::::
localtime

::::
are

:::
the

:::::
same

::
as

:::::
their

::::::::::::
counterparts

:::::::
suffixed

:::::
with

:::
_r.347)

::
In

:::::
place

::
of

::::
the

::::::::::
parameter

::::
buf , these functions each return

:::
use

:
a pointer to

one of two types of static objects: a
:
a
:::::
static

::::::
object

::::
and

:::::::
return

::
it:

::::
one

:::
or

::::
two

:
broken-down time

structure
:::::::::
structures

::::
(for

:::::::
gmtime

::::
and

:::::::::::
localtime) or an array of char

::::::::::
(commonly

:::::
used

:::
by

::::::::
asctime

:::
and

:::::::
ctime). Execution of any of the functions that return a pointer to one of these object types

:::::
static

::::::
objects

:
may overwrite the information in any object of the same type pointed to by the value

returned from any previous call to any of them and the
::::
one

::
of

:::::
these

:::::::::
functions

::::
that

::::
uses

::::
the

:::::
same

::::::
object.

::::::
These functions are not

::::::::
reentrant

::::
and

:::
are

:::
not

:
required to avoid data races with each other.

The implementation shall behave as if no other library functions call these functions.

7.27.3.1 The asctime functions
Synopsis

1 #include <time.h>
char *asctime(const struct tm *timeptr);

:: ::: :::::
const

:::::
char

:*:::::::
asctime

:
(
:::::
const

:::::::
struct

:::
tm

:::
ts

:
[

::::::
static

:::
1])

:
;

:: ::: ::::
char

::* ::::::::
asctime_r

:
(
:::::
const

:::::::
struct

:::
tm

:::
ts

:
[
::::::
static

::::::::
restrict

::::
1],

:: ::: :: ::: ::::
char

:::
buf

:
[
::::::
static

:::::::::
restrict

:::::
26])

:
;

Description
2 The asctime functions converts

:::::::
convert the broken-down time in the structure pointed to by

timeptr
::::::
ts[0] into a string in the form

Sun Sep 16 01:03:52 1973\n\0

using the equivalent of the following algorithm.

char *asctime(const struct tm *timeptr)

::::
char

::*:::::::::
asctime_r

:
(

::::
const

:::::::
struct

:::
tm

:::
ts

:
[
::::::
static

:::::::::
restrict

:::
1],

:: ::: ::::
char

::::
buf

:
[

:::::
static

:::::::::
restrict

:::::
26])

:
;

{
static const char wday_name[7][3] = {

"Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"
};
static const char mon_name[12][3] = {

"Jan", "Feb", "Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct", "Nov", "Dec"

};
static char result[26];

sprintf(result, "%.3s %.3s%3d %.2d:%.2d:%.2d %d\n",
wday_name[timeptr->tm_wday],
mon_name[timeptr->tm_mon],
timeptr->tm_mday, timeptr->tm_hour,
timeptr->tm_min, timeptr->tm_sec,
1900 + timeptr->tm_year);

return result;

346)
:::
This

::::
does

::
not

:::::
mean

:::
that

::::
these

:::::::
functions

::::
may

:::
not

:::
read

:::::
global

::::
state

:::
that

:::::::
describes

:::
the

::::
time

:::
and

::::::
calendar

::::::
settings

::
of

:::
the

:::::::
execution,

::::
such

::
as

::
the

:::::::
LC_TIME

::::
locale

::
or

:::
the

:::::::::::
implementation

::::::
defined

:::::::::
specification

::
of

:::
the

:::
local

::::
time

::::
zone.

::::
Only

:::
the

:::::
setting

::
of

:::
that

:::
state

:::
by

::::::::
setlocale

::
or

::
by

:::::
means

::
of

:::::
imple

::::
men

::
ta

::::::::
tion-defined

:::::::
functions

::::
may

:::::::
constitute

:::::
races.

347)
::
See

::::::
"future

:::::
library

::::::::
directions"

:::::::
(7.31.16).

§ 7.27.3.1 Library 343

ISO/IEC 9899:202x (E) working draft — September 3, 2019 C2x..time-C2x n2417

:: ::: ::::::::
snprintf

:
(

::
buf

:
,
::::
26,

:::::
"%.3

:
s
::::
%.3

:
s
::
%3

:
d
::::
%.2

:
d
::::
:%.2

:
d

::::
:%.2

:
d

:
%
:
d
:
\
:
n
::
",

:: ::: :: ::: ::::::::
wday_name

:
[
::
ts

::
->

:::::::
tm_wday

::
],

:: ::: :: ::: :::::::
mon_name

:
[
::
ts

::
->

::::::
tm_mon

::
],

:: ::: :: ::: ::
ts

::
->

::::::
tm_mday

:
,
:::
ts

::
->

:::::::
tm_hour

:
,

:: ::: :: ::: ::
ts

::
->

:::::
tm_min

:
,
:::
ts

::
->

::::::
tm_sec

:
,

:: ::: :: ::: ::::
1900

:
+
:::
ts

::
->

:::::::
tm_year

:
)
:
;

:: ::: ::::::
return

::::
buf

:
;

}

3
:::
The

::::::
return

::::::
value

::::::
points

::
to

::
a
::::
zero

:::::::::::
terminated

::::::
string

::
of

::::::
length

::
at

:::::
most

:::
25

::::
and

:::
no

:::::
write

:::::::
beyond

::::
the

:::
26th

:::::
byte

:::::::
occurs. If any of the members of the broken-down time contain values that are outside

their normal ranges,348) the behavior of the is undefined. Likewise,
::
or if the calculated year exceeds

four digits or is less than the year 1000, the behavior is undefined
::::::::
returned

::::::
string

:
is
::::
null

:::::::::::
terminated

::::::
within

:::
the

::::
first

:::
26

:::::
bytes

:::
but

:::
its

::::::::
contents

::
is

:::::::::
otherwise

:::::::::::
unspecified.

Returns
4 The asctime functions returns

:::::
return

:
a pointer to the string.

7.27.3.2 The ctime functions
Synopsis

1 #include <time.h>
char *ctime(const time_t *timer);

:: ::: :::::
const

:::::
char

:*:::::
ctime

:
(
:::::
const

:::::::
time_t

::::::
timer

:
[
::::::
static

::::
1]);

:: ::: ::::
char

::* ::::::
ctime_r

:
(
:::::
const

:::::::
time_t

::::::
timer

:
[
::::::
static

::::::::
restrict

::::
1],

:: ::: :: ::: ::::
char

:::
buf

:
[
::::::
static

:::::::::
restrict

:::::
26])

:
;

Description
2 The converts the calendar time pointed to by

:::::::
calendar

:::::
time timer

::::::::
specified

:::
by

:::::::::
timer[0]

:::::
shall

:::
be

::::::::::
convertible

::
to

:::::
local

:::::
time.

::::
The ctime functions

::::::
convert

::::
the

::::::::
specified

::::
time

:
to local time in the form of

a string. It is
::::
They

:::
are

:
equivalent to

asctime(localtime(timer))

:: ::: :::::::
asctime

:
(

::::::::::
localtime_r

:
(
:::::
timer

:
,
::
(
::::::
struct

:::
tm

::::
[1])

:
{

::
0

:::
}))

:::
and

:

:: ::: :::::::::
asctime_r

:
(

::::::::::
localtime_r

:
(
:::::
timer

:
,
::
(
::::::
struct

:::
tm

::::
[1])

:
{

::
0

::
})

:
,
::::
buf

:
)

Returns
3 The ctime functions returns

::::::
return the pointer returned by the asctime function

::::::::
functions

:
with

that broken-down time as argument.

Forward references: the localtime function (??
:::::::::
functions

:::::::
(7.27.3.4).

7.27.3.3 The gmtime functions
Synopsis

1 #include <time.h>
struct tm *gmtime(const time_t *timer);

:: ::: :::::
const

::::::
struct

:::
tm

::*::::::
gmtime

:
(
:::::
const

:::::::
time_t

::::::
timer

:
[

:::::
static

::::
1])

:
;

:: ::: ::::::
struct

:::
tm

::* :::::::
gmtime_r

:
(
:::::
const

:::::::
time_t

::::::
timer

:
[

::::::
static

:::
1],

:::::::
struct

:::
tm

::::
buf

:
[
::::::
static

::::
1])

:
;

Description
2 The gmtime functions converts

::::::
convert

:
the calendar time pointed to by timer

:::::::::
timer[0] into a

broken-down time, expressed as UTC.

348)See 7.27.1.

344 Library § 7.27.3.3

n2417 C2x..time-C2x working draft — September 3, 2019 ISO/IEC 9899:202x (E)

Returns
3 The gmtime functions returns

::::::
return a pointer to the broken-down time, or a null pointer if the

specified time cannot be converted to UTC.

7.27.3.4 The localtime functions
Synopsis

1 #include <time.h>
struct tm *localtime(const time_t *timer);

:: ::: :::::
const

::::::
struct

:::
tm

::*:::::::::
localtime

:
(
:::::
const

:::::::
time_t

::::::
timer

:
[

:::::
static

::::
1])

:
;

:: ::: ::::::
struct

:::
tm

::* ::::::::::
localtime_r

:
(
:::::
const

:::::::
time_t

::::::
timer

:
[

:::::
static

::::
1],

:::::::
struct

:::
tm

::::
buf

:
[
::::::
static

::::
1])

:
;

Description
2 The localtime functions converts the calendar time pointed to by timer

:::::::::
timer[0]

:
into a broken-

down time, expressed as local time.

Returns
3 The localtime functions returns

:::::
return

:
a pointer to the broken-down time, or a null pointer if the

specified time cannot be converted to local time.

7.27.3.5 The strftime function
Synopsis

1 #include <time.h>
size_t strftime(char * restrict s, size_t maxsize, const char * restrict format,

const struct tm * restrict timeptr);

:: ::: ::::::
size_t

::::::::
strftime

:
(
::::
char

::
s
:
[
::::::
static

:::::::::
restrict

::::
1],

::::::
size_t

::::::::
maxsize

:
,

:: ::: :: ::: :::::
const

::::
char

:::::::
format

:
[
::::::
static

:::::::::
restrict

::::
3],

:: ::: :: ::: :::::
const

::::::
struct

:::
tm

:::
ts

:
[
::::::
static

:::::::::
restrict

::::
1])

:
;

Description
2 The strftime function places characters into the array pointed to by s as controlled by the string

pointed to by format. The format shall be a multibyte character sequence, beginning and ending in
its initial shift state. The format string consists of zero or more conversion specifiers and ordinary
multibyte characters. A conversion specifier consists of a % character, possibly followed by an E or O
modifier character (described below), followed by a character that determines the behavior of the
conversion specifier. All ordinary multibyte characters (including the terminating null character) are
copied unchanged into the array. If copying takes place between objects that overlap, the behavior is
undefined. No more than maxsize characters are placed into the array.

3 Each conversion specifier shall be replaced by appropriate characters as described in the following
list. The appropriate characters shall be determined using the LC_TIME category of the current
locale and by the values of zero or more members of the broken-down time structure pointed to by
timeptr

::::::
ts[0] , as specified in brackets in the description. If any of the specified values is outside

the normal range, the characters stored are unspecified.

%a is replaced by the locale’s abbreviated weekday name. [tm_wday]

%A is replaced by the locale’s full weekday name. [tm_wday]

%b is replaced by the locale’s abbreviated month name. [tm_mon]

%B is replaced by the locale’s full month name. [tm_mon]

%c is replaced by the locale’s appropriate date and time representation. [all specified in 7.27.1]

%C is replaced by the year divided by 100 and truncated to an integer, as a decimal number (00–99).
[tm_year]

%d is replaced by the day of the month as a decimal number (01–31). [tm_mday]

%D is equivalent to "%m/%d/%y". [tm_mon, tm_mday, tm_year]

§ 7.27.3.5 Library 345

n2417 C2x..time-C2x working draft — September 3, 2019 ISO/IEC 9899:202x (E)

cracosh
cracospi
cracos
crasinh
crasinpi
crasin
cratan2pi
cratan2

cratanh
cratanpi
cratan
crcompoundn
crcosh
crcospi
crcos
crexp10m1

crexp10
crexp2m1
crexp2
crexpm1
crexp
crhypot
crlog10p1
crlog10

crlog1p
crlog2p1
crlog2
crlogp1
crlog
crpown
crpowr
crpow

crrootn
crrsqrt
crsinh
crsinpi
crsin
crtanh
crtanpi
crtan

and the same names suffixed with f, l, d32, d64, or d128 may be added to the <math.h> header.
The cr prefix is intended to indicate a correctly rounded version of the function.

7.31.9 Signal handling <signal.h>
1 Macros that begin with either SIG and an uppercase letter or SIG_ and an uppercase letter may be

added to the macros defined in the <signal.h> header.

7.31.10 Atomics <stdatomic.h>
1 Macros that begin with ATOMIC_ and an uppercase letter may be added to the macros defined

in the <stdatomic.h> header. Typedef names that begin with either atomic_ or memory_, and
a lowercase letter may be added to the declarations in the <stdatomic.h> header. Enumeration
constants that begin with memory_order_ and a lowercase letter may be added to the definition
of the memory_order type in the <stdatomic.h> header. Function names that begin with atomic_

and a lowercase letter may be added to the declarations in the <stdatomic.h> header.

2 The macro ATOMIC_VAR_INIT is an obsolescent feature.

7.31.11 Boolean type and values <stdbool.h>
1 The ability to undefine and perhaps then redefine the macros bool, true, and false is an obsolescent

feature.

7.31.12 Integer types <stdint.h>
1 Typedef names beginning with int or uint and ending with _t may be added to the types defined

in the <stdint.h> header. Macro names beginning with INT or UINT and ending with _MAX, _MIN,
_WIDTH, or _C may be added to the macros defined in the <stdint.h> header.

7.31.13 Input/output <stdio.h>
1 Lowercase letters may be added to the conversion specifiers and length modifiers in fprintf and

fscanf. Other characters may be used in extensions.

2 The use of ungetc on a binary stream where the file position indicator is zero prior to the call is an
obsolescent feature.

7.31.14 General utilities <stdlib.h>
1 Function names that begin with str or wcs and a lowercase letter may be added to the declarations

in the <stdlib.h> header.

2 Invoking realloc with a size argument equal to zero is an obsolescent feature.

7.31.15 String handling <string.h>
1 Function names that begin with str, mem, or wcs and a lowercase letter may be added to the

declarations in the <string.h> header.

7.31.16 Date and time <time.h>
1 Macros beginning with TIME_ and an uppercase letter may be added to the macros in the

<time.h> header.
:::
The

:::::::
macros

:::::::::::::::
TIME_REALTIME,

::::::::::::::::
TIME_MONOTONIC,

::::::::::::::::::::::::::
TIME_PROCESS_CPUTIME_ID

::::
and

::::::::::::::::::::::::
TIME_THREAD_CPUTIME_ID

::::
may

:::::::
become

:::::::::::
mandatory

::
in

::::::
future

::::::::
editions

::
of

::::
this

::::::::
standard.

:

2
:::
The

:::::::::
functions

:::::::::
asctime,

::::::
ctime,

::::::::
gmtime,

::::
and

::::::::::
localtime

:::
are

:::::::::::
obsolescent

::::::::
features.

§ 7.31.16 Library 391

ISO/IEC 9899:202x (E) working draft — September 3, 2019 n2417

3
:::
The

:::::::::
function

::::::
clock

::::
and

:::
the

::::::::::
associated

:::::::
return

::::
type

:::::::::
clock_t

::::
and

:::::::
macros

::::::::::::::::
CLOCKS_PER_SEC

::::
and

:

::::::::::::::
CLOCK_INVALID

:::
are

:::::::::::
obsolescent

::::::::
features.

:

7.31.17 Threads <threads.h>
1 Function names, type names, and enumeration constants that begin with either cnd_, mtx_, thrd_,

or tss_, and a lowercase letter may be added to the declarations in the <threads.h> header.

7.31.18 Extended multibyte and wide character utilities <wchar.h>
1 Function names that begin with wcs and a lowercase letter may be added to the declarations in the

<wchar.h> header.

2 Lowercase letters may be added to the conversion specifiers and length modifiers in fwprintf and
fwscanf. Other characters may be used in extensions.

7.31.19 Wide character classification and mapping utilities <wctype.h>
1 Function names that begin with is or to and a lowercase letter may be added to the declarations in

the <wctype.h> header.

392 Library § 7.31.19

ISO/IEC 9899:202x (E) working draft — September 3, 2019 C2x..time-C2x n2417

2 The following 629
:::
643

:
identifiers or keywords match these patterns and have particular semantics

provided by this document.

_Alignas
__alignas_is_defined
_Alignof
__alignof_is_defined
_Atomic
atomic_bool
ATOMIC_BOOL_LOCK_FREE
atomic_char
atomic_char16_t
ATOMIC_CHAR16_T_LOCK_FREE
atomic_char32_t
ATOMIC_CHAR32_T_LOCK_FREE
ATOMIC_CHAR_LOCK_FREE
atomic_compare_exchange_strong
atomic_compare_exchange_strong_explicit
atomic_compare_exchange_weak
atomic_compare_exchange_weak_explicit
atomic_exchange
atomic_exchange_explicit
atomic_fetch_

atomic_fetch_add
atomic_fetch_add_explicit
atomic_fetch_and
atomic_fetch_and_explicit
atomic_fetch_or
atomic_fetch_or_explicit
atomic_fetch_sub
atomic_fetch_sub_explicit
atomic_fetch_xor
atomic_fetch_xor_explicit
atomic_flag
atomic_flag_clear
atomic_flag_clear_explicit
ATOMIC_FLAG_INIT
atomic_flag_test_and_set
atomic_flag_test_and_set_explicit
atomic_init
atomic_int
atomic_int_fast16_t
atomic_int_fast32_t
atomic_int_fast64_t
atomic_int_fast8_t
atomic_int_least16_t
atomic_int_least32_t
atomic_int_least64_t
atomic_int_least8_t
ATOMIC_INT_LOCK_FREE
atomic_intmax_t
atomic_intptr_t
atomic_is_lock_free
atomic_llong
ATOMIC_LLONG_LOCK_FREE
atomic_load

atomic_load_explicit
atomic_long
ATOMIC_LONG_LOCK_FREE
ATOMIC_POINTER_LOCK_FREE
atomic_ptrdiff_t
atomic_schar
atomic_short
ATOMIC_SHORT_LOCK_FREE
atomic_signal_fence
atomic_size_t
atomic_store
atomic_store_explicit
atomic_thread_fence
atomic_uchar
atomic_uint
atomic_uint_fast16_t
atomic_uint_fast32_t
atomic_uint_fast64_t
atomic_uint_fast8_t
atomic_uint_least16_t
atomic_uint_least32_t
atomic_uint_least64_t
atomic_uint_least8_t
atomic_uintmax_t
atomic_uintptr_t
atomic_ullong
atomic_ulong
atomic_ushort
ATOMIC_VAR_INIT
atomic_wchar_t
ATOMIC_WCHAR_T_LOCK_FREE
_Bool
__bool_true_false_are_defined
cnd_broadcast
cnd_destroy
cnd_init
cnd_signal
cnd_t
cnd_timedwait
cnd_wait
_Complex
_Complex_I
__cplusplus
__DATE__

DBL_DECIMAL_DIG
DBL_DIG
DBL_EPSILON
DBL_HAS_SUBNORM
DBL_MANT_DIG
DBL_MAX
DBL_MAX_10_EXP
DBL_MAX_EXP
DBL_MIN

504 Portability issues § J.6.1

n2417 C2x..time-C2x working draft — September 3, 2019 ISO/IEC 9899:202x (E)

totalorderf
totalorderl
totalordermag
totalordermagd128
totalordermagd32
totalordermagd64
totalordermagf
totalordermagl
toupper
towctrans
towlower
towupper
tss_create
tss_delete
tss_dtor_t
tss_get
tss_set
tss_t
UINT16_C
UINT16_MAX
uint16_t
UINT32_C
UINT32_MAX
uint32_t
UINT64_C
UINT64_MAX
uint64_t
UINT8_C
UINT8_MAX
uint8_t
uint_fast16_t
uint_fast32_t
uint_fast64_t
uint_fast8_t
uint_least16_t
uint_least32_t
uint_least64_t
uint_least8_t
UINT_MAX
UINTMAX_C
UINTMAX_MAX
uintmax_t
UINTMAX_WIDTH
UINTPTR_MAX
uintptr_t

UINTPTR_WIDTH
UINT_WIDTH
__VA_ARGS__

wcscat
wcscat_s
wcschr
wcscmp
wcscoll
wcscpy
wcscpy_s
wcscspn
wcsftime
wcslen
wcsncat
wcsncat_s
wcsncmp
wcsncpy
wcsncpy_s
wcsnlen_s
wcspbrk
wcsrchr
wcsrtombs
wcsrtombs_s
wcsspn
wcsstr
wcsto
wcstod
wcstod128
wcstod32
wcstod64
wcstof
wcstoimax
wcstok
wcstok_s
wcstol
wcstold
wcstoll
wcstombs
wcstombs_s
wcstoul
wcstoull
wcstoumax
wcsxfrm
_WIDTH

J.6.2 Particular identifiers or keywords
1 The following 1188

::::
1194

:
identifiers or keywords are not covered by the above and have particular

semantics provided by this document.

abort
abort_handler_s
abs
acos
acosd128

acosd32
acosd64
acosf
acosh
acoshd128

acoshd32
acoshd64
acoshf
acoshl
acosl

§ J.6.2 Portability issues 509

