
Comma omission and
comma deletion

ISOIIEC JTCI SC22 WG21 D00306rO
Date: 2016-03-07

To: EWG, CWG, WG14 liaison
Thomas Koppe <tkoeppe@google.com>

Contents

1. Revision history
2. Summary
3. Details
4. Impact
5. Implementation experience
6. Proposed wording
7. Compatibility with C

Revision history

D00306rO: Initial proposal.

Summary

This is a proposal to make variadic macros easier to use with no arguments.

Details

Function-style macros that can have variable arguments work well if at least one actual
argument is provided in the macro invocation. For example, consider the following macro
definition:

#define F(X, ...) f(le, X, __VA_ARGS__)

The invocation F (a, b , c) is replaced by f (ie, a, b , c). However, invocations without

ISO/IEC JTC1 SC22 WG14 N2023

any arguments matching the ellipsis work less well. The invocation F(a) is not allowed by the
preprocessor rules, and the allowed invocation F(a,) results in the replacement f (la, a,
), which is a syntax error.

However, it is natural for a macro invocation with variable arguments to degenerate to the case
where there are no arguments at all. In the example, we would like F(a) to be replaced with
f (la, a). A more realistic example is a custom diagnostic facility such as the following:

#define ERROR(msg, ...) std::printf("["
LINE, _VA_ARGS_)

FILE- - ":%d] " msg,

ERROR("%d errors.\n", a); II OK, std::printf("[" "file.cpp"
":%d] II "%d errors.\n", 7, a);
ERROR("No errors.\n"); II Error

The proposal is to allow the macro invocation without any variable arguments. This requires
two changes to the core language:

1. Allow the omission of the comma before the variable arguments in the invocation (i.e.
allow F(a) rather than requiring F(a, »). This behaviour is already supported by many
popular compilers as a non-conforming extension.

2. Provide a mechanism to delete an existing comma from the replacement text (i.e. delete
the last comma from f(la, a,) to produce f(la, aj). This behaviour should not
occur automatically, but require opt-in. Many platforms already offer a non-conforming
extension that enables this behaviour, namely the syntax J ## _VA_ARGS_ in the
replacement text. This syntax reuses the concatenation operator ##,which cannot appear
in that position in conforming code.

We propose to standardise both of the described extensions. With this proposal, we can define:

#define F(X, ...) f(la, x, ## _VA_ARGS __)

Now F(a) is replaced by f (la, a).

Impact

The proposal is a pure extension of the preprocessor. Syntax that was previously not allowed

ISO/IEC JTC1 SC22 WG14 N2023

becomes admissible under the proposed changes.

Implementation experience

The proposed extensions are already implemented in GCC and Clang and are widely used
throughout many code bases. Many real-world macros would not work without these
extensions.

Proposed wording

Comma omission

Change paragraph 16.3p4 as follows.

If the identifier-list in the macro defmition does not end with an ellipsis, the number of
arguments (including those arguments consisting of no preprocessing tokens) in an
invocation ofa function-like macro shall equal the number of parameters in the macro
definition. Otherwise, there shall be ftffireat least as many arguments in the invocation
thftftas there are parameters in the macro defmition (excluding the ..•). There shall exist
a) preprocessing token that terminates the invocation.

Change paragraph 16.3p12 as follows.

If there is a ... immediately preceding the) in the function-like macro defmition, then
the trailing arguments (if any), including any separating comma preprocessing tokens,
are merged to form a single item: the variable arguments. The number of arguments so
combined is such that, following merger, the number of arguments is either equal to or
one more than the number of parameters in the macro defmition (excluding the ...).

Comma deletion

Insert a new paragraph into subsection 16.3.3 between existing paragraphs 2 and 3.

Tfthe replacement list ofa function-like macro contains the token sequence, ##

VA ARGS ,and if the variable arguments consist of no tokens, and if the number of
arguments in the macro invocation is equal to the number of parameters in the macro
definition (excluding the ...), the comma is removed from the resulting replacement.

[Example: In the following fragment:

ISO/IEC JTC1 SC22 WG14 N2023

#define F(x) fee, x. ## VA ARGS)

F(a. b. c)
F(a,)
F(a)

II more arguments than parameters
II more arguments than parameters
II equal number of arguments and parameters

The expansion produces:

fee. a, b, c)
fee, a,)
fee. a)

- end example]

Compatibility with C

The entire proposal (rationale, implementation experience and wording) applies almost
verbatim to the C language as well. (For the wording changes, the C++ section 16.3
corresponds to the C section 6.10.3.) We would like to ask the WG14liaison to discuss this
proposal with WG14 and provide feedback, and we would like to encourage WG14 to adopt
the same extension for C in the interest of future compatibility.

ISO/IEC JTC1 SC22 WG14 N2023

