
Template for comments and secretariat observations Date: Document: WG 14/N 1742 Project: 18661

MB/
NC

1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment

2

Comments Proposed change Observations of the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by
**)
2 Type of comment: ge = general te = technical ed = editorial

page 1 of 1
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

GB ge The new interfaces defined in this document
should generally be considered experimental
until there is more implementation and user
experience with them. Although this document is
generally phrased in terms of amendments to the
text of C11, such experience should be
considered before any of those amendments are
included in a future revision of the C standard,
and consideration given at the time of such a
revision to being selective in which changes are
included, based on such experience.

GB Page v
line 31

Introduction ed The description of operations in IEC 60559:1989
starts a new sentence in parentheses without
any punctuation terminating what came before
("system (It ... operations.)").

Say “system; also conversions ...”.

GB Page vi
line 4

Introduction ed This line uses “--” (two hyphens) as a dash. Change “--” to an actual dash in both places.

GB Page vi
line 21

Introduction ed “defines it model” has a typo in it. Change to “defines its model”.

GB Page 1
line 9

1 ed The scope description calls out decimal floating
point as not covered but without mentioning other
uncovered features specifically. Given the
increased emphasis in ISO/IEC/IEEE
60559:2011 on reproducible results, in particular,
it seems desirable to emphasise the non-
inclusion of certain other features.

After “decimal floating-point arithmetic”, add “,
reproducible results, order of evaluation of
expressions beyond the definitions in C11, or
control of optimizations”.

GB Page 2
lines 11-
24

5.1 te Although, formally, the effects of this document's
changes to C11 are irrelevant to implementations
not defining __STDC_IEC_60559_BFP__ and
implementing Annex F, it still seems appropriate
for such changes to avoid placing undue burdens
on implementations not defining
__STDC_IEC_60559_BFP__ and implementing

Replace the proposed change to C11 by: Append
to the third sentence of 4#6: A conforming
freestanding implementation that defines
__STDC_IEC_60559_BFP__ shall also provide all
the library facilities specified in the standard
headers <fenv.h> and <math.h> and the numeric
conversion functions (7.22.1) of the standard

Template for comments and secretariat observations Date: Document: WG 14/N 1742 Project: 18661

MB/
NC

1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment

2

Comments Proposed change Observations of the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by
**)
2 Type of comment: ge = general te = technical ed = editorial

page 2 of 2
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

Annex F, if incorporated verbatim in a future
revision of the C standard. With that in mind,
requiring additional library support (especially the
full contents of <math.h>) from a conforming
freestanding implementation not claiming to
support Annex F seems inappropriate. Instead,
the additions to 4#6 should be phrased in a form
that only requires any additional library support
when __STDC_IEC_60559_BFP__ is defined.
Furthermore, this cannot be phrased in terms of
strictly conforming programs, because such
programs cannot depend on implementation-
defined behavior such as whether
__STDC_IEC_60559_BFP__ is defined.

header <stdlib.h>.

GB Page 2
lines 23-
24

5.1 te This text does not specify whether including
<stdlib.h> in a freestanding implementation may
define or reserve the other identifiers defined or
reserved when <stdlib.h> is included in a hosted
implementation.

At the end of the new text, add “All identifiers that
are defined or reserved when <stdlib.h> is
included in a hosted implementation are reserved
when it is included in a freestanding
implementation.”.

GB Page 2
lines 25-
36

5.2 te Removing __STDC_IEC_559__, if integrated in a
future revision of the C standard, would be an
incompatible quiet change for applications using
this macro (which would then exhibit undefined
behavior because it would be a macro in the
reserved namespace not specified by the
standard). It should be obsoleted like
__STDC_IEC_559_COMPLEX__, not removed.

Change “Note that an implementation may
continue to define
 __STDC_IEC_559__, so that current programs
that use __STDC_IEC_559__ may remain valid
under the
 changes in this Part of Technical Specification
18661.” to “The macro __STDC_IEC_559__ is
retained as obsolete, for compatibility with existing
applications.”. Change “In 6.10.8.3#1, replace …
with:” to “In 6.10.8.3#1, before the
__STDC_IEC_559__ item, insert the item:”. After
line 36, insert “In 6.10.8.3#1, append to the
__STDC_IEC_559__ item: Use of this macro is an
obsolescent feature.”.

GB Page 3 5.2 ed “__STDC_IEC_559_COMPLEX” is a typo. Change “__STDC_IEC_559_COMPLEX” to

Template for comments and secretariat observations Date: Document: WG 14/N 1742 Project: 18661

MB/
NC

1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment

2

Comments Proposed change Observations of the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by
**)
2 Type of comment: ge = general te = technical ed = editorial

page 3 of 3
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

line 5 “__STDC_IEC_559_COMPLEX__”.

GB Page 3
lines 8-
10

5.3 te __STDC_WANT_IEC_18661_EXT1__ should be
handled consistently with other
__STDC_WANT_* macros. The simpler practice
in this document may be better than the more
complicated practice in C11 Annex K and TR
24731-2 and ISO 24747, but either this
document should follow those documents, or
those documents should be amended to follow
the simpler practice.

Either insert amendments to the three other
documents listed to follow the form of wording
listed here, or amend the wording here to follow
C11 Annex K.

GB Page 4
lines 19-
20

7.1 te No method is provided for an application to
determine which choice has been made for the
long double type. (This is also an issue with C11
as it stands and so could also be addressed
through a TC.)

At the end of subclause 7.1 in this document,
insert the following: In 5.2.4.2.2, insert a new
paragraph after paragraph 10: Whether a type
matches an IEC 60559 type is characterized by
the implementation-defined values of
FLT_IS_IEC_60559, DBL_IS_IEC_60559, and
LDBL_IS_IEC_60559:
0 type does not match an IEC 60559 format
1 type's values and operations are those of an IEC
60559 basic, interchange or extended type

GB Page 4
lines 14-
32

7.1 te The C11 definition of FLT_ROUNDS is
inadequate in that it refers to floating-point
addition but does not say addition of what type.
If long double is not an IEC 60559 type, as still
permitted by this specification, it may not fully
support all rounding modes even though they are
supported by other types. (This is also an issue
with C11 as it stands and so could also be
addressed through a TC.)

At start of changes to C11 on this page, insert: In
5.2.4.2.2#8, insert “for type float” after “floating-
point addition”. Before the changes to F.2
recommended practice, insert: At the end of
F.2#1, insert “The value of FLT_ROUNDS applies
to all IEC 60559 types supported by the
implementation, but may not apply to non-IEC
60559 types.”.

GB Page 5
line 23

7.2 te “6.2.6.1 not withstanding” is erroneous as
nothing here conflicts with 6.2.6.1.

Remove ”, 6.2.6.1 not withstanding”.

GB Page 6
lines 5-7

8 te The description of operation binding fails to make
sufficiently clear that floating-point exceptions are

At the start of the changes to C11 in this
subclause, insert the following: Append to 6.5#5:

Template for comments and secretariat observations Date: Document: WG 14/N 1742 Project: 18661

MB/
NC

1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment

2

Comments Proposed change Observations of the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by
**)
2 Type of comment: ge = general te = technical ed = editorial

page 4 of 4
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

not exceptional conditions within the meaning of
6.5#5. (This is also an issue with C11 as it
stands and so could also be addressed through a
TC.)

For implementations defining
__STDC_IEC_60559_BFP__, this does not apply
to exceptional conditions where the behavior
(such as raising a floating-point exception and
returning a NaN) is defined by Annex F, directly or
by reference to IEC 60559.

GB Page 12
lines 21-
25

10.2 te The specification of the new strfrom* functions
seems unclear about the format string contents.
Taken literally, the string contains optionally ".",
".*" or ".<decimal-integer>", followed by one of
the given letters, but not a leading "%". However
the equivalence to snprintf rather suggests a
leading "%" should be included. And the
absence of any way to provide an "int" field for
".*" precision suggests that case should not be
allowed here.

Insert “an initial % character,” after “contains only”.
Insert “, not .*,” after “optional precision”.

GB Page 12
lines 28-
29

10.2 te The error condition given is "if an encoding error
occurred", but that condition doesn't seem
applicable to these numeric conversions.

Remove the word “encoding”.

GB Page 12
lines 13-
30

10.2 te A deficiency in the printf family functions is that
they have undefined behavior if the number of
characters that are written, or would be written,
exceeds INT_MAX, and no good way for
applications to detect that condition in advance
and avoid the undefined behavior. (POSIX adds
an error condition with errno set to EOVERFLOW
for this case.) The strfrom* functions are not
printf-family functions and so need not follow the
deficiencies of such functions; size_t is now the
standard type for C objects storing the size of
something in memory, so should be used for the
return type here.

Change “int” to “size_t” for all three functions. In
the comparison to snprintf, insert “the return type
is size_t and” between “except” and “the format
string”. Change “a negative value” to
“SIZE_MAX”. Change “error occurred” to “error
occurred or the number of characters required
would have exceeded SIZE_MAX”. Remove
“nonnegative and”.

GB Page 12
line 31

10 te C11 7.22.1.3#3 specifies input strings for strtod,
strtof and strtold representing infinities as “INF or

Page 12, after line 30, insert a new subclause
10.3 Conversions of character sequences

Template for comments and secretariat observations Date: Document: WG 14/N 1742 Project: 18661

MB/
NC

1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment

2

Comments Proposed change Observations of the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by
**)
2 Type of comment: ge = general te = technical ed = editorial

page 5 of 5
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

INFINITY, ignoring case”; 7.29.4.1.1#3 says “INF
or INFINITY, or any other wide string equivalent
except for case”. The IEC 60559:2011
requirement, however, refers to '”inf” and “infinity”
(regardless of case)'. But in a Turkish locale,
these descriptions are not equivalent; the
lowercase version of 'I' is a dotless 'i', and the
uppercase version of 'i' is a dotted 'I'. The
requirements should include that all strings
matching the description in IEC 60559:2011 (as
interpreted according to the current locale) are
properly interpreted, in addition to any other
locale-specific forms the implementation may
accept.

representing infinities and NaNs:
The following changes to C11 ensure that
character sequences for infinities and NaNs are
interpreted as required in IEC 60559:2011 even in
locales where the mapping between uppercase
and lowercase letters is not the same as in the C
locale.
Changes to C11:
In 7.22.1.3#3, change “INF or INFINITY, ignoring
case” to “INF, inf, INFINITY or infinity, ignoring
case”. Change “NAN or NAN(n-char-
sequence_opt), ignoring case in the NAN part” to
“NAN, nan, NAN(n-char-sequence_opt) or nan(n-
char-sequence_opt), ignoring case in the NAN or
nan part”. In 7.22.1.3#4, change “INF or
INFINITY” to “INF, inf, INFINITY or infinity”.
Change “NAN or NAN(n-char-sequence_opt)” to
“NAN, nan, NAN(n-char-sequence_opt) or nan(n-
char-sequence_opt).
In 7.29.4.1.1#3, change “INF or INFINITY” to “INF,
inf, INFINITY or infinity”. Change “NAN or NAN(n-
wchar-sequence_opt)” to “NAN, nan, NAN(n-
wchar-sequence_opt) or nan(n-wchar-
sequence_opt)”. Change “NAN part” to “NAN or
nan part”. In 7.29.4.1.1#4, change “INF or
INFINITY” to “INF, inf, INFINITY or infinity”.
Change “NAN or NAN(n-wchar-sequence_opt)” to
“NAN, nan, NAN(n-wchar-sequence_opt) or
nan(n-wchar-sequence_opt)”.

GB Page 12
lines 32-
37

11 te The description of the dynamic floating-point
environment in C11, as amended, fails to make
sufficiently clear what is or is not an object (C11
footnote 205 is not normative, and so cannot be
used to that effect). (This is also an issue with
C11 as it stands, and so could also be addressed

Line 37, at end of paragraph insert “The normative
text in C11 describes various properties of the
(dynamic) floating-point environment, but does not
state what parts of it might be an object or objects;
to clarify this regarding exceptions being raised
more than once in an expression, relevant text is

Template for comments and secretariat observations Date: Document: WG 14/N 1742 Project: 18661

MB/
NC

1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment

2

Comments Proposed change Observations of the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by
**)
2 Type of comment: ge = general te = technical ed = editorial

page 6 of 6
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

through a TC.) moved out of a footnote.”. At the start of the
changes to C11, insert: Move the contents of
footnote 205 (C11 subclause 7.6) to the end of
5.1.2.3#2.

GB Page 14
lines 3-9

11 ed “FP_DFL_ENV” is a typo. Change “FP_DFL_ENV” to “FE_DFL_ENV” in
both places.

GB Page 15
lines 1-
28

11 te The interaction of constant rounding modes with
inline functions should be explicitly specified.

On line 24, change “functions other than” to
“functions, including inline functions, other than”.
(If some other semantics are desired,
consideration would need to be given to the
handling of floating-point constants in inline
functions; the values for such constants can affect
whether there is a constraint violation, which
would cause its own problems if inline functions
were to be affected by constant rounding modes
from their callers.)

GB Page 15
lines 12-
18

11 te The new 7.6.1a paragraph 4 says "the mode
specified by the dynamic floating-point
environment, which is the dynamic rounding
mode that was established either at thread
creation or by a call to fesetround, fesetenv, or
feupdateenv". But the new function fesetmode
can also have the effect of changing the dynamic
rounding mode.

Insert “fesetmode, “ before “fesetround”.

GB Page 15 11 Table 2 te The definition of functions affected by constant
rounding modes should be more explicit that the
float and long double versions of functions listed
are also included.

Line 27, at end insert: “An entry for a function in
Table 2 includes the corresponding functions for
all supported types (for example, acosf and acosl
as well as acos).”.

GB Page 15 11 Table 2 te The table of function groups affected by constant
rounding modes should include hypot.

After “cbrt”, insert “, hypot”.

GB Page 15 11 Table 2 te For implementations of ISO 24747, the additional
functions defined there should, by analogy with
the C11 <math.h> functions, also be affected by

At end of table, insert an entry for <math.h>, “All
functions from ISO/IEC 24747, for
implementations of that International Standard”.

Template for comments and secretariat observations Date: Document: WG 14/N 1742 Project: 18661

MB/
NC

1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment

2

Comments Proposed change Observations of the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by
**)
2 Type of comment: ge = general te = technical ed = editorial

page 7 of 7
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

constant rounding modes. (This document
should consider interactions with all relevant ISO
C extensions.)

GB Page 15
lines 19-
21

11 te The reference to "all floating-point operators and
invocations of functions indicated in Table 2
below, for which macro replacement has not
been suppressed" isn't clear about implicit
conversions, which are neither operators nor
function invocations.

After “operators”, insert “, implicit conversions
(including the conversion of a value represented in
a format wider than its semantic type to its
semantic type, as done by classification macros),”.

GB Page 15
lines 19-
23

11 te The effects of the dynamic rounding mode on
many of the <math.h> functions are
implementation-defined (C11 F.10#10). It should
be made clear here that for such functions,
constant rounding modes place no more
requirements on the functions than setting the
dynamic rounding mode.

After “established by a call to fesetround”, insert “;
where the effect of the dynamic rounding mode on
a function is implementation-defined, the same
implementation definition applies to the constant
mode as to when that mode is established by a
call to fesetround”.

GB Page 15
lines 25-
26

11 te Referring to “only the dynamic mode” isn't
accurate since the called function might be in the
scope of its own constant rounding mode.

After “only the dynamic mode”, insert “ and any
constant mode in scope for the definition of the
called function”. Apply this also to the new text
from the following comment if both are accepted.

GB Page 15
lines
23-26

11 te The reference to “Invocations of functions for
which macro replacement has been suppressed”
doesn't strictly cover uses of a function name that
are not invocations (calls) of that function; in
particular, taking the address of a function for a
call somewhere else. It should be made clear
that the resulting pointer is not bound to a
constant rounding mode.

After “only the dynamic mode.”, insert “Where the
address of a function is taken in a context where
macro replacement has been suppressed, calls
using the resulting function pointer are affected by
only the dynamic mode.”. (Strictly this implies the
previous sentence, since all function calls in C are
through function pointers, but it seems less
confusing to make both statements explicitly.)

GB Page 19
line 12

12 ed The macro is called “isunordered”, not
“unordered”.

Change "The unordered macro" to "The
isunordered macro".

GB Page 23
lines 14-
17

13 te The width macros should not be required to have
the same type as the type whose width they
describe.

At the start of the changes to C11, insert: In
5.2.4.2.1#1, insert “the *_WIDTH macros, “ before
CHAR_BIT and MB_LEN_MAX”. Before the

Template for comments and secretariat observations Date: Document: WG 14/N 1742 Project: 18661

MB/
NC

1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment

2

Comments Proposed change Observations of the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by
**)
2 Type of comment: ge = general te = technical ed = editorial

page 8 of 8
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

additions of macros to <stdint.h>, insers: In
7.20.2#2, insert “, except for the *_WIDTH
macros, “ before “this expression shall have the
same type”.

GB Page 23
lines 42-
45

13 te The width macros for intmax_t and uintmax_t
should go in <stdint.h> (7.20.2.5), not <limits.h>.

Between lines 41 and 42, insert: In 7.20.2.5, insert
the following bullets, each after the corresponding
bullet for the same type:

GB Page 24
lines 1-
11

13 te For consistency, width macros should be
provided for all the types for which limit macros
are provided in <stdint.h>, including the exact-
width types (given that limit macros are defined
for them).

At start of page, insert: In 7.20.2.1, append
− width of exact-width signed integer types

INTN_WIDTH N
− width of exact-width unsigned integer

types
UINTN_WIDTH N
After line 11, insert: In 7.20.2.4, append

− width of pointer-holding signed integer
type

INTPTR_WIDTH 16
− width of pointer-holding unsigned integer

type
UINTPTR_WIDTH 16
In 7.20.3#2, insert the following bullets, each after
the corresponding bullet for the same type:

− width of ptrdiff_t
PTRDIFF_WIDTH 17

− width of sig_atomic_t
SIG_ATOMIC_WIDTH 8

− width of size_t
SIZE_WIDTH 16

− width of wchar_t
WCHAR_WIDTH 8

Template for comments and secretariat observations Date: Document: WG 14/N 1742 Project: 18661

MB/
NC

1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment

2

Comments Proposed change Observations of the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by
**)
2 Type of comment: ge = general te = technical ed = editorial

page 9 of 9
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

− width of wint_t
WINT_WIDTH 16

GB Page 27
lines 1-
12

14.1.2 te The new FP_INT_* macros should expand to
integer constant expressions of type int and
distinct values. (Once this is specified, generic
C11 requirements mean they must also be
usable in #if without that needing mentioning
separately.)

At end of line 12, append: “They expand to integer
constant expressions with type int and distinct
values.”.

GB Page 27
lines 33-
34

14.1.2 te "outside the range of integers of the specified
width" assumes there is a single range for integer
types of that width, which is not otherwise
required by ISO C

Append “for any integer representation supported
by the implementation" to that wording, with a
footnote "For signed types, 6.2.6.2 permits three
representations, which differ in whether a value of
-(2^M) can be represented.".

GB Page 28
lines 26-
33

14.1.2 te The previous issue applies twice here as well. Append the same text (without the footnote) in
both places.

GB Page 30
lines 1-
28

14.3 te The generic specification of fmaxmag and
fminmag does not specify the result when the
arguments have equal magnitudes but opposite
signs. This should follow the specification of
minNumMag / maxNumMag to which these
functions are, for Annex F implementations,
bound.

Line 15, append: “If the arguments have equal
magnitudes, the fmaxmag functions return the
numeric value of their argument of maximum
value.”. Line 28, append: “If the arguments have
equal magnitudes, the fminmag functions return
the numeric value of their argument of minimum
value.”. Page 31, line 11 insert “fabs(x) == fabs(y)
? fmax(x, y) : “ after “r = “.

GB Page 33 14.5 te The functions that round once to a narrower type
will have efficiency varying widely depending on
hardware support.. There should be macros to
indicate whether these functions are efficiently
supported, similar to FP_FAST_FMA.

Page 33, add at the start of the changes to C11:
After 7.12#7, insert: The macros
FP_FAST_FADD
FP_FAST_FADDL
FP_FAST_DADDL
FP_FAST_FSUB
FP_FAST_FSUBL

Template for comments and secretariat observations Date: Document: WG 14/N 1742 Project: 18661

MB/
NC

1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment

2

Comments Proposed change Observations of the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by
**)
2 Type of comment: ge = general te = technical ed = editorial

page 10 of 10
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

FP_FAST_DSUBL
FP_FAST_FMUL
FP_FAST_FMULL
FP_FAST_DMULL
FP_FAST_FDIV
FP_FAST_FDIVL
FP_FAST_DDIVL
FP_FAST_FFMA
FP_FAST_FFMAL
FP_FAST_DFMAL
FP_FAST_FSQRT
FP_FAST_FSQRTL
FP_FAST_DSQRTL
are optionally defined. If defined, they indicate
that the corresponding function generally executes
about as fast as, or faster than, the corresponding
operation for the argument type (with result type
the same as the argument type) followed by a
separate conversion to the narrower type. (For
FP_FAST_FFMA, FP_FAST_FFMAL and
FP_FAST_DFMAL, the comparison is to a call to
fma or fmal followed by a conversion, not to
separate multiply, add and conversion.) If defined,
these macros expand to the integer constant 1.

GB Page 41
lines 4-
33

14.10 te It seems unclear if the setpayload / setpayloadsig
functions are permitted to raise the "invalid"
exception if the specified payload value is a
signaling NaN.

At ends of lines 15 and 30, insert “These functions
raise no floating-point exceptions, even if pl is a
signaling NaN.”.

Template for comments and secretariat observations Date: Document: WG 14/N 1742 Project: 18661

MB/
NC

1

Line
number
(e.g. 17)

Clause/
Subclause
(e.g. 3.1)

Paragraph/
Figure/
Table/

(e.g. Table 1)

Type of
comment

2

Comments Proposed change Observations of the secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by
**)
2 Type of comment: ge = general te = technical ed = editorial

page 11 of 11
ISO/IEC/CEN/CENELEC electronic balloting commenting template/version 2012-03

