
ATOMIC PROPOSAL, N1476
BLAINE GARST

APPLE INC.

blaine@apple.com

M A Y 2 5 , 2 0 1 0
Draft 7

1 I n f i t n i t e L o o p D r i v e • C u p e r t i n o • C a l i f o r n i a • 9 5 0 1 4

mailto:blaine@apple.com
mailto:blaine@apple.com

Introduction

The C language community has for decades explored concurrency in the form of threads, mutexes and condition
variables to describe all grain sizes of parallelism, and these are now reflected in the proposed N1425 C1x Standard.
Also reflected is a new formalism for describing the memory model and in particular a new atomics library for de-
scribing operations on designated atomic memory objects.

The vast majority of modern multi-cpu architectures provide atomic compare-and-swap, test-and-set, or other forms
of atomic operations on memory. These individual instructions coordinate with the caches to do correct behavior to
the backing memory. Across processors, however, memory read and memory store barriers must be used to see these
results reliably.

The atomics library of section 7.16 is intended to be an exact subset of the proposed C++0x N3092 Final Committee
Draft section 29. What is missing, however, is direct language treatment of sequentially-consistent atomic behavior
for C language objects, as does occur in C++0x via templates and operator overloading. As such C1x programmers
are forced to exclusively use the library directly and its limited set of types. Of particular concern, for example, is the
lack of ability to define atomic structures.

The proposal is to add an _Atomic type qualifier and to have it have the following effects:

1. all compound assignment operators (e.g. +=, /=, ^= , ...,) and all forms of ++ and -- are overloaded to provide
sequentially-consistent atomic behavior, whether achieved directly via hardware instructions , by small inline
compare-and-swap code sequences, or by support from compiler intrinsics, as the implementation decides. Thus,
even atomic float identifiers can make use of sequentially-consistent operators..

2. Ordinary read and write access to _Atomic identifiers is sequentially-consistent, requiring memory-load barriers as
necessary on the hardware before every read, and memory-store barriers after writes so that dependent data can be
properly provided.

3. A new ?= : ternary assignment operator is introduced to express an assign value if identifier has the specific value
operation. When used upon an atomic qualified identifier, a sequentially-consistent compare-and-swap operation
will be performed. This primitive can be used, for example, to implement a simple spin-lock that guards changes
to other objects.

_Atomic applies uniformly to scalars, arrays, and aggregates, yet has little to no meaning for function results and
parameters. An atomic structure would be read and written atomically using intrinsic helper functions, members not
marked _Atomic use unchanged access rules.

Modifications

The following are the more formal descriptions of changes necessary to the N1425 proposed draft standard to reflect
the preceding high level descriptions of atomic.

Section 5.1.2.4

para5: The _Atomic type qualifier designates objects as being atomic and as requiring
sequentially-consistent operations directly on these objects. Additionally, the library....
W G 1 4! N 1 4 5 1

1

1. Section 6.2.5 para 26

“and restrict qualifiers.” Further, there is the _Atomic qualifier which may combine
with volatile and restrict. [Note: A locking implementation of atomics may be required
on architectures where non-natural alignment precludes use of native atomic instruc-
tions]

2. Section 6.2.6.1

When a value is stored into an atomic object it must be done such that the store is done
via sequentially-consistent semantics, e.g. a memory-store-barrier is required. When an
atomic object is read it must also be done via a sequentially-consistent operation, e.g. a
memory-load-barrier must be issues as necessary on the hardware architecture.

3. Section 6.4.1,

Add _Atomic to the list of keywords.

4. Section 6.4.6

Add ?= to list of punctuators.

5. Section 6.5.2.4

Postfix ++ and -- operations on atomic objects are atomic read-modify with
sequentially-consistent memory order. [Note: where pointers to atomic objects can be
formed, these operations are equivalent, where T is the type of E1, to the code sequence

T result;
T expressionValue = E1;
do
 result = expected OP 1;
while (!atomic_compare_exchange_strong(&E1, & expressionValue, result);

where expressionValue is the result of the operation.]

W G 1 4! N 1 4 5 1

2

6. Section 6.5.3.1

Prefix ++ and -- operations on atomic objects are atomic read-modify with sequentially-
consistent memory order. [Note: where pointers to atomic objects can be formed, these
operations are equivalent, where T is the type of E1, to the code sequence

T result;
T expected = E1;
do
 result = expected OP 1;
while (!atomic_compare_exchange_strong(&E1, &expected, result);

where result is the result of the operation.]

7. Section 6.5.16.2 Compound Assignment, para 3, Semantics

If E1 is atomic, the operations are atomic read-modify with sequentially-consistent
memory order. [Note: where pointers to atomic objects can be formed, these operations
are equivalent, where T is the type of E1, to the code sequence

T result;
T expected = E1;
do
 result = expected OP E2;
while (!atomic_compare_exchange_strong(&E1, &expected, result);
where result is the result of the operation.]

8. Section 6.5.16.3 The ternary assignment operator ?= :

The ternary operator lvalue ?= candidateExpr : replacementExpr tests that the lvalue has
candidateExpr value and if so assigns the replacementExpr value, yielding a boolean value
affirming or denying that the assignment occurred. If lvalue is atomic, the test and as-
signment must be performed with sequentially-consistent behavior, e.g. the test-and-set
must be done atomically, with memory-load and memory-store barriers.

[Example: lazy initialization

_Atomic struct x *GlobalPX = NULL;

W G 1 4! N 1 4 5 1

3

struct x *getGlobalPX() {
 struct x *returnValue;
 // the read of GlobalPX synchronizes with assignment to member
 if (! (returnValue = GlobalPX)) {
 struct x *tmp = (struct x *)malloc(sizeof(struct x));
 tmp->member = value;
 if (GlobalPX ?= NULL : tmp)
 returnValue = tmp;
 else
	 free(tmp);
 }
 return returnValue;
}

9. Section 6.7.3 Type Qualifiers

Paragraph 1: Add _Atomic to the list.

Paragraph 2: (Constraints)

There shall not be atomic members (either direct or recursively) of unions.

Paragraph 5 If an attempt is made to refer to an object defined with an _Atomic-
qualified type through use of an lvalue with non-_Atomic-qualified type, the behavior
is undefined.

(new paragraph) The atomics library functions of 7.16.6 apply to pointers to _Atomic-
qualified types as they do to pointers to the atomic integral and pointer types defined in
7.16.5.

(new paragraph) The _Atomic qualifier when applied to a structure implies such quali-
fication to each member. [Note: A data-race may occur if access to the entire structure in
one thread conflicts with access to a member from another thread, where one or more of
such accesses is a modification, and such a data-race results in undefined behavior].

10 7.16.3 para 2, 3;

W G 1 4! N 1 4 5 1

4

spelling of "heed" is wrong.

W G 1 4! N 1 4 5 1

5

