
April 16, 2008
WG14 N1301: Dealing With Pointer Subterfuge
Arjun Bijanki

Issue: storing a function pointer represents a security risk.

Problem: A hacker exploiting a vulnerability in a program could potentially overwrite the function

pointer and thereby hijack the process when the function is called. Note that this attack can even occur

on systems where the stack is not executable.

Mitigation: Instead of storing a function pointer, store an encrypted version of the pointer. An attacker

would need to break the encryption in order to redirect the pointer to other code. This is similar to

what’s recommended when dealing with other sensitive data (e.g. passwords).

Microsoft Windows has a pair of APIs (EncodePointer / DecodePointer) that facilitate this, and are used

by Visual C++’s C runtime libraries.

Note that this does not prevent buffer overruns or arbitrary-memory-write attacks, but it does make

such attacks more difficult to exploit.

Example:

#include<windows.h>

#include<stdio.h>

typedef void(*PF)();

void myfunc()

{

 puts("myfunc called");

}

PF pf = NULL;

int main()

{

 PF pf_temp;

 /* suppose we need to store a function pointer; encode it for

 better security */

 pf = (PF)EncodePointer((void*)&myfunc);

 /* ... call out to other code ... */

 /* retrieve the function pointer */

 pf_temp = (PF)DecodePointer((void*)pf);

http://msdn2.microsoft.com/en-us/library/bb432254(VS.85).aspx
http://msdn2.microsoft.com/en-us/library/bb432242(VS.85).aspx

 /* call the function; if an attacker managed to overwrite 'pf',

 this call is likely to just cause a crash instead of execute

 the attacker's intended payload */

 pf_temp();

}

