Towards support for attributes in C++

(Revision 3)

Jens Maurer, Michael Wong
[ens.maurer@gmx.net
michaelw@ca.ibm.com

Document number: WG21/N2418=07-0278 (WG14/N1262)
Date: 2007-09-10

Project: Programming Language-€ Core Working Group
Reply-to: Michael Wong (michaelw@ca.ibm.com)
Revision: 3

General Attributesfor C++

1 Overview

The idea is to be able to annotate some entiti€s+ with additional information.
Currently, there is no means to do that short eéiming a new keyword and augmenting
the grammar accordingly, thereby reserving yetl@rname of the user's namespace.
This proposal will survey existing industry praetior extending the C++ syntax, and
presents a general means for such annotationsdingl its integration into the C++
grammar. Specific attributes are not introducethis proposal. It does not obviate the
ability to add or overload keywords where apprdpridut it does reduce such need and
add an ability to extend the language. This propesiallow many C++0x proposals to
move forward. A draft form of t his proposal waggented in Oxford and received
acceptance in EWG to proceed to wording stage. dfoigosal integrates suggestions
and comments from the Oxford presentation, and lasoaversations post-Oxford. It
addresses many of the controversial aspects frer@#fiord presentation and includes
comprehensive Standard wordings. Specificallydisa

Sept 10, Revision 3:
e Expand on C and C++ compatibility and simultaneppsiblish on WG14.

July 18, Revision 2:

e HTML cleanup

o allow empty attribute-lists

e renamed "attribute-parameter-clause” to "attritarggament-clause”, "attribute-
parameter-list" to "attribute-argument-list”, "ditrite-parameter” to "attribute-
argument”

« allow attribute on conversion-type-id's type-spieciteq

e Toronto: introduce attribute-specification (simitar'extern "C" { })

« Toronto: integrate attributes into all keyword-lhstatements (except "break”
and "continue"), plus "throw"

o Toronto: allow attributes on using-directives

e Toronto: add noreturn and final attributes

May 4, Revision 1:
e Empty attribute list
e Added Using for block scope attributes
e Added OpenMP control flow attribute syntax
e Removed support for the first attribute left class/m/struct-key and the function
return type

2 The Problem

In the pre-Oxford mailing, n2224 [n2224] makes sector extensible syntax without
overloading the keyword space. It referencesgelaumber of existing C++0x
proposals that would benefit from such a propoBais paper will examine the extensible
syntax mechanism through the authors’ experiente itgi implementation in an existing
C++ compiler.

3 The industry’s solution

Most compilers implement extensions on top of the- Standard [C++03]. In order to
not invade Standard namespace, compilers have nmeplied double underscore
keywords, _ attribute_ (()) [GNU], or __declspddf]syntax. C# [C#] implements a
single bracket system.

This paper will study the __ attribute__ and theeclspec syntax and make a
recommendation on a specific syntax.

The following C++ entities that could benefit fratiributes:
» functions

variables

names of variables or functions

types

blocks

translation units

control-flow statements

4 GNU'’s attribute syntax

Although the exact syntax is described in the GKBMNU] manuals, it is a verbal
description with no grammar rules attached. Thas agialifier on type, variable, or
function. It is assumed that the compiler knowseblasn the attribute as to which of
those it belongs to and parse accordingly. Thistfanality has been implemented by
GCC since 2.9.3 and various compilers which needamtain GCC source-

compatibility. IBM compiler is one of those and hamplementation experience since
2001. Other compiler experience includes EDG.

The description in the GCC manual is neither sigfily specific nor complete to clearly
avoid ambiguity. It is also meant to bind to C-onlfere are also somewhat incorrect
implementations in existing GCC compilers. But skatement described in the GCC
manual does describe an intended future directia.suggest that we follow this future
direction. In this paper, | will try to highlighhtse intended directions, describe any
deviations and omissions from the manual descnptiavhile giving sufficient feel for
the syntax.

The general syntax is:
__attribute__ ((attribute-list))

and:
attribute-list

The format is able to apply to structures, uni@msms, variables, or functions. An
undocumented keyword __attribute is equivalent tattribute_ and is used in GCC
system headers. The user can also use the __ qurefixhe attribute name instead of the
general syntax above. For C++ classes, here is saamaple of usage. First, an attribute
can only be applied to fully defined type declaratiith declarators and declarator-id.

__attribute__ ((aligned(16))) class Z{inti;} ;
___attribute__ ((aligned(16))) class Y ;

An attribute list placed at the beginning of a udefined type applies to the variable of
that type and not the type. This behavior is sintba__Declspec’s behavior.

__attribute__ ((aligned(16))) class A {int i;} d/;a has alignment of 16
class A al; // al has alignment of 4

An attribute list placed after the class keywordl apply to the user-defined type. This is
also _ Declspec’s behavior.

class __attribute__ ((aligned(16))) B {int i;} b/;Class B has alignment of 16
class B b1; // bl also has alignment of 16

Similarly, an attribute list placed before the deator will apply to the user-defined type:

class C{inti;} __ attribute__ ((aligned(16))) & Class C has alignment 16
class C c1; //cl also has alignment 16

But an attribute list placed after the declaratdrapply to the declarator-id:

class D {inti;} d __ attribute_ ((aligned(16))) //d has alignment 16

class D d1;// d1 has alignment 4

When all these attributes are present, the last@an for the class will dominate, but it
could be overridden individually:

__attribute__ ((aligned(16))) class __attribute_lidted(32))) E {inti;} __ attribute_
((aligned(64))) e __ attribute__ ((aligned(128)))XClass E has alignment 64

class E el; // el also has alignment 64

class E e2 __ attribute__ ((aligned(128))); // e dggnment 128

class E __attribute__ ((aligned(128))) e3 ; //e3dl@gment 64

class __ attribute ((aligned(128))) E e4 ; //ed danment 64

__attribute__ ((aligned(128))) class E €5 ; //e5dl@gpament 128

While an attribute list is not allowed incompletecthration without a declarator-id, it is
allowed on a complete type declaration withoueelarator-id. An attribute that is
acceptable as a class attribute will be allowedafore declaration:

class __attribute__ ((aligned(16))) X {int i; };¢lass X has alignment 16
class X x; // x has alignment 16

class V {inti;} _ attribute_ ((aligned(16))) ;¢lass V has alignment 16
class V v; /Iv has alignment 16

An attribute specifier list is silently ignoredtife content of the union, struct, or
enumerated type is not defined in the specifiavhinch the attribute specifier list is used.

struct __attribute__ ((alias("_foo"))) __attribut¢(weak)) stl;
union __ attribute__ ((unused)) __ attribute__ ((wiak;
enum __ attribute__ ((unused)) __ attribute__ ((weak)ym1,;

When an attribute does not apply to types, it agdosed. Where attribute specifiers
follow the closing brace, they are considered tateeto the structure, union, or
enumerated type defined, not to any enclosing da&tda the type specifier appears in,
and the type is not complete until after the attiebspecifiers.

struct {} __ attribute_ ((unused)) __ attribute __é@k)) st4;
struct {int i;} __ attribute__ ((unused)) __attrilsut ((weak)) st4a;
struct struct3 {int j;} __attribute__ ((alias("__ft)) __ attribute__((weak)) st5;

union {int i;} __attribute__ ((alias("_foo"))) _ taibute _((weak)) un4;
union union3 {int j;} __ attribute__ ((unused)) _ rdttute ((weak)) unb;

enum {} __ attribute__ ((alias("__foo"))) __ attrilrut ((weak));
enum {k};

enum {k1} attribute_ ((unused)) _ attribute__ (&kp;
enum enuma3 {I} __ attribute_ ((unused)) _attributgweak));
enum enum4 {m,};

enum enum5 {m1,} attribute __ ((alias("__foo")))attribute__ ((weak));

Any list of qualifiers and specifiers at the stafra declaration may contain attribute
specifiers, whether or not a list may in that caht®ntain storage class specifiers. An
attribute specifier list may appear immediatelydoefthe comma, =, or semicolon
terminating a declaration of an identifier otheartta function definition.

inti__ attribute__ ((unused));
static int __attribute__ ((weak)) const a5 __ attebu ((alias("__foo")))
__attribute__ ((unused));

/I functions

__attribute__ ((weak)) __ attribute__ ((unused)) foo(attribute ((alias("_foo")))
__attribute__ ((unused));

__attribute__ ((unused)) __ attribute__ ((weak)) ()t e

An attribute specifier can appear as part of aaslatibn counting declarations of
unnamed parameters and type names, and relatest tdetclaration (which may be
nested in another declaration, for example in dse®f a parameter declaration), or to a
particular declarator within a declaration. Whenea#tribute specifier is applied to a
parameter declared as a function or array, it shapply to the function or array rather
then to the pointer to which the parameter is ioiyi converted.

void funcl(int __ attribute__((weak, alias("__foQ"mame);
void funcl(int __ attribute ((weak, alias("__fog"Wame) {
int i;

}

void func2(int __ attribute__ ((noreturn)) array());

void funcptr(void);
void func3(int __attribute__ ((noreturn)) funcptr())

An attribute specifier list may appear after thiondollowing a label, other that a case or
default label. The only attribute it makes senses® is unused.

int main() {
typedefint INT1; // INT1 is a <typedef name>
typedefint INT2; // INT2 is a <typedef name>

short i;

/I Syntactically an attribute specifier list caidav a label, but semantically the only
/[attribute it makes sense to use is "unused" vhve do not support (yet). So we will
/[emit a warning here

INT1: __ attribute__ ((alias("oxford"))) __attribute{(unused)) __ attribute__ ((weak))

i=3;

LABEL1: __ attribute_ ((unused)) _ attribute__ ((wpak
i=4;

// old behaviour still valid
INT2:
i=3;

LABEL2:
i=4;

/I attribute specifiers cannot appear after casedafault labels
switch(i) {
case O:
i++;
break;
case 1: __ attribute ((unused))
i++;
break;
default: __ attribute__ ((unused))
break;

}

return O;

}

4.1 Attribute specifiers as part of aggregate types, and
enumerations

* an attribute specifier list 8lently ignored if the content of the union, struct, or
enumerated type is not defined in the specifiavhinch the attribute specifier list
is used (same as GCCQC)

» adiagnostic message is emitted when attributefgrsahat do not apply to
types are used on aggregate types and enums.

4.2 Attribute specifiers in comma separated list of declarations

» the first attribute specifier list applies to dletdeclarators, any other attributes
specifier applies to the identifier declared, moall the subsequent identifiers
declared in the declaration. This is the intendgdré behaviour documented in
the GCC manual, which differs from the current GB®.1) behaviour:

Example:
int __attribute__ ((attrl)) fool __ attribute__ ((3j)

__attribute__ ((attr3)) foo2 __ attribute (14,
__attribute__ ((attr5)) foo3 __ attribute__ ((@Y};

attrl applies to fool, foo2, foo3 because & declaration specifier
attr2 applies to fool because it is part of t@lfdeclarator

attr3, attr4 apply to foo2 because they are giaitte foo2 declarator
attr5, attr6 apply to foo3 because they are giaitte foo3 declarator

4.3 Attribute specifiers immediately before a comma, = or
semicolon

» the attribute specifier list should apply to theesmost adjacent declarator, not to
the declared object or function. This is the ineshduture GCC behaviour, which
differs from the current GCC behaviour.

Example:
void (****f) (void) __attribute__ ((noreturn));

"noreturn” should apply to the function ****f, baurrently (for GCC) applies
to the identifier f.

4.4 Attribute specifiers at the start of a nested declarator
applies to the outermost adjacent declarator
» the GCC intended future semantics differs fromdineent behaviour.

Example:
void (__attribute__ ((noreturn)) ****f) (); // "oreturn" applies to the
function ****f, not to f
char* __attribute__ ((aligned(8))) *f; // "ahgd" applies to char*, so fis a
pointer to 8-byte aligned pointer to char

* when an attribute specifier follows the * of a geindeclarator it should be a type
attribute, and will be ignored with a silent infaational message if it is not

* when an attribute specifier follows the * of a geindeclarator, it must follow
any type qualifier present, and cannot be mixedt wiem.

void foo(int * const __ stdcall __ attrileut ((weak))i); // allowed
void foo (int * const __ attribute_ ((weak)) atli); //illegal
void foo (int * __ attribute__ ((weak)) const _dealli); //illega

4.5 Attribute specifiers list following a label

* an attribute specifier list following @se or default label will cause a syntax
(parse) error (same as GCC)

* because the only attribute it makes sense to tesealabel is "unused", an
attribute specifier list following a label (othdraincase or default) will always be
ignored

* A declaration starting with an attribute specitieat immediately follows a label
is will be considered to apply to the label becahseis consistent with what
GCC (3.0.1) does. The attribute specifier can liegh to the declaration by
inserting a semicolon between the colon that fadlake label and the declaration:

L1: _ attribute_ ((weak)) inti=0; /bak applies to L1
L1. ; _ attribute ((weak))inti=0; /kak applies to variable i

4.6 Problems with GNU __ attribute

There are some problems with this syntax througil@mentation experience. The
syntax is long and ugly. It generally makes detiang unreadable even if one attribute
is included. The attribute syntax is not manglealieg to possible type collision. This
causes problems when attributed types are usetniplates and overloading. In this
paper, attributed types could be mangled, althdbghis strictly not part of the C++
Standard specification. But mangling will help &solve the overloading problem.

The GNU syntax also does not distinguish betwetiibated types of a typeid reference.
The original GNU syntax does not cover class antptates, but extension to classes as
types is fairly straight forward. Templates willetesome amount of work.

The syntax as implemented differs from the mararad, is somewhat different from the
standard C++ syntax. This proposal intends to comest of these differences in favor
of the C++ standard syntax, but largely maintamsgatibility with GNU’s intended
future direction and therefore the large body oé@@ource software.

We will use this syntax as guidance, but will toyabtain syntax rule that we feel makes
more sense for readability.

5 Microsoft _ DeclSpec syntax
The Microsoft __ Declspec syntax [MS] is more pre@sd offers a grammar.

The__declspec keywords should be placed at the beginning ofrgpla declaration. The
compiler ignores, without warning, anydeclspec keywords placed after * or & and in
front of the variable identifier in a declaration.

A declspec attribute specified in the beginning of a userntkd type declaration
applies to the variable of that type. For example:

__declspec(dllimport) class X {} varX;

In this case, the attribute appliesvtex . A declspec attribute placed after thebass or
struct keyword applies to the user-defined type. For godlam

class __declspec(dllimport) X {};
In this case, the attribute appliesxto

This syntax is a subset of the more wild GNU atitighsyntax, and actually offers no
contradiction to the GNU syntax.

6 This Proposal

There are different designs on the syntactic cansof an attribute -- that is, the group
of tokens which specify an attribute. There havenm®nsiderablaliscussions on this
topic. We would like an approach which uses sorpecsf the GNU syntax, but
remove that which is deemed to be too controverédfal would also like to make it short
(small number of characters) to facilitate read@gbiSummarizing the different opinions,
we offer two suggestions in this paper. We willetedetailed discussion of them in
section 8. Since this feature is likely to be useldeader files which are shared between
C and C++, we would like to obtain acceptance iy lppogramming communities. We
will get consensus from WG14 and WG21.

With the exception of section 8, the discussiothia paper applies equally to both
syntacticproposals. Without lost of generality, we will use double-square bracket
construction from here on this paper.

For a general struct, class, union, enum declaratiovill not allow attribute placement
in a class head, between the class keyword, anypbadeclarator. Also, unlike GNU
attribute and MS Declspec, attribute at the begigpmvill not apply to the declared
variable, but to the type declarator. This will balie effect of losing GNU attribute’s
ability of declaring an attribute at the beginnofga declaration list, and having it apply
to the entire declaration. We feel that this loksamvenience in favor of clearer
understanding is desirable.

classC [[attr2]]{ } [[attr3]] c [[attr4]], d [[attr5]];
attr2 applies to the definition of class C

attr3 applies to type C

attr4 applies to declarator-id c

attr5 applies to declarator-id d

A general function declaration can be decoratddlmsvs. Only one attribute specifier is
allowed in a decl-specifier seq, and it appliethefunction return type.

int [[attr2]] * [[attr3]] (* [[attr4]] * [[attr5]] f [[attr6]]) () [[attr7]], €][attr8]];

attr2 applies to the return type of int

attr3 applies to the return type *

attr4 applies to the first *

attr5 applies to the second *

attr6 applies to the function variable f

attr7 applies to the function (**f)()

attr8 applies to e

A constructor can be named as such, ignoring ttperaents:
C:C[attrl]] (...) [[attr2]];

attrl applies to the name C
attr2 applies to the function C::C()

Parameter declaration can also apply through argktype declaration.
An array declaration will apply as follows:
int [[attr2]] a[10] [[attr3]];

attr2 applies to type int
attr3 applies to the array a

For a global decoration or a basic statement:

using [[attrl]];

attrl applies to the translation unit from thismganwards

For a block:

using [[attr1]]{ }

attrl applies to the block in braces.

For a control construct, annotation can be addéaeabeginning:

for [[attrl]] (int i=0; i<num_elem; i++) {proceddist_items[i]); }

attrl applies to the control flow statement for.

After the meeting in Toronto where the proposal wexy well accepted, additional

syntax was asked for other control flow statemsuath as do, and while in addition to
e Case

e Switch
e Default

If

Else
Labels
Return
Goto
Throw
Using
bitfields

This was added for this paper.

All other positions are disallowed for attributecdeations.

Although this syntax is meant to be used for stesh@atensions, it could also be used for
vendor-specific extensions. Vendor-specific ext@ensvill be required to use double-
underscores for their attribute names. A goodtaukellow may be to prefix the attribute
with the vendor name such as:

[[lom::align, noreturn, align(size_t), omp::for |]

6.1 Complex examples

Another issue is where to place the attribute whiemwish to associate an attribute with
the definition of a class or enum type. Currertthg placed after the class-key and the
declarator-id. Others have argued for its placerbetween the class-key and the
declarator-id. This is referring to the problemttbawrence Crowl brought up which
involves placing the [[]] between the struct-keyahe declarator-id, e.g.:

struct [[attr]] S s;

He argued that this would prevent having to clora& then apply that cloned S with the
attribute to s whereas a

struct S [[attr]] s;
would require cloning S with the attrbute.

This is a kind of implementer complication. We a¥dhat we already do that (cloning)
when we have const/vol qualifiers anyway. This \wélno worst.

A typedef will modify the cloned instance similara const
typedef struct foo [[attr]] foo;

Only in these two cases

struct S [[attr]] ;
struct S[[attr]] { ... };

does the attr modify S such that all instance mic$tS will have the attribute.
But
typdefef struct S [[attr]] { ... } S;

will modify the struct type S and the variable $laiot a copy of it.

7 Guidance on when to use/reuse a keyword and when
to use an attribute

So what should be an attribute and what shouldaiegh the language.

It was agreed that it would be something that hbigscan be ignorable with little serious
side-effects.

If you are proposing a new feature, the decisiowltén to use the attribute feature and

when to overload or invent a new keyword shoultbfela clear guideline. At the Oxford
presentation of this paper, we were asked to gfi@ance in order to prevent wholesale
dumping of extension keywords into the attributeeagion. The converse is no one will

use the attribute feature and all electing to ereatreuse keywords in the belief that this
elevates their feature in importance.

Certainly, we would advise anyone who propose taibate to consider comments on the
following area which will help guide them in makitige decision of whether to use
attributes or not:

e The feature is used in declarations or definitionly.

e |Isthe feature is of use to a limited audience ¢ely., alignment)?

e The feature does not modify the type system (thgead local) and hence does
not require new mangling?

e The feature is a "minor annotation"” to a declaratlwat does not alter its
semantics significantly. (Test: Take away the aatian. Does the remaining
declaration still make sense?

e |Is it a vendor-specific extension?

e |Isit alanguage Bindings on C++ that has no otveey of tying to a type or
scope(e.g. OpenMP)

e How does this change Overload resolution?

e What is the effect in typedefs, will it require nlng?

Some guidance for when not to use an attributeusefreuse a keyword
e The feature is used in expressions as opposeciaragons.

The feature is of use to a broad audience.

The feature is a central part of the declarati@t significantly affects its
requirements/semantics (e.g., constexpr).

The feature modifies the type system and/or ovdrfeaolution in a significant
way (e.g., rvalue references). (However, somethikegnear and far pointers
should probably still be handled by attributesh@ligh those do affect the type
system.)

The feature is used everywhere on every instancé@s$, or statements

Where each vendor wishes to create a vendor-spatifibute, the use is conditionally-
supported with implementation-defined behavior.

After the meeting in Toronto, we added specificdgunice on the choice of when to use an

attribute to avoid misuse. There was general ageeethat attributes should not affect
the type system, and not change the meaning adgrgan regardless of whether the
attribute is there or not. Attributes provide a wayive hint to the compiler, or can be

used to drive out additional compiler messagesateattached to the type, or statement.

They provide a more scoped way of relating to Ctatesnents then what pragmas can
do. As such, they can detect ODR violation mordyeas

We created a list of good and bad attributes thatbe used as guidelines.

Good choices in attributes include:

align(unsigned int)
pure (promise that a function always returnssdome value)
probably(unsigned int) (hint for if, switch,)...
- if [[probably(true)]] (i==42) { ... }
noreturn (the function never returns)
deprecated (functions)
noalias (promises no other path to the object)
unused (parameter name)
final on virtual function declaration and on assa
not_hiding (name of function does not hide sonmgthin a base class)
register (if we had a time machine)
owner (a pointer is owned and it is the owner’'sydatdelete it)

Bad choices in attributes include:

C99 restrict (affects the type system)
huge (really long long type, e.g. 256bits)
C++ const

For a particular interesting use of attributes, hiel Spertus has suggested an owner
attribute with the following syntax:

char * [[owner]] strdup(char *[[not_owner]]);

int pthread_mutex_lock(pthread_mutex_t *[[not_owher

Part of what makes memory management hard is thahwou get a ptr from someone,
you don’t know if you are responsible for freeingHor example, any user of strdup
needs to know that they are responsible for frethagpointer returned by strdup.
Similarly, the caller of pthread_mutex_lock is goting pthread_mutex_lock the
responsibility for managing the lifetime of the pthd_mutex_t to pthread_mutex_lock.

The owner attribute says that the user of thisteois responsible for managing the
object’s lifetime.

The not_owner attribute says that the user ofgbiater has no responsibility for
managing the object’s lifetime.

Assigning an [[not_owner]] pointer to an [[ownepfpinter is not allowed because you
can't give away something you don’t own.

Not all pointers are suitable for this annotatibar example, one sometimes calls a
function that may or may not save a pointer to @inies arguments. However, that does
not reduce the usefulness of being able to notattest function (e.g., a factory function)
is returning a pointer that the caller needs toagaror the value of calling a function and
knowing that it will not perturb the lifetime ofitpointer arguments.

What makes this a good candidate for attributélsascode that runs with these
attributes also runs identically if the attributae ignored, albeit with less type checking.

8 Alternative Syntax and controversial issues

Different syntax for specifying an attribute wersadissed on the reflector, during private
conversations and EWG presentations. For the parpbthis paper, we will summarize
these discussions into two representative syntExbeand present them asoposals

"Double-square" syntax

In this syntax, the specification of attributesyinswith the characters "[[" and ends with
"]". There are variations where the two bracketsteeated as one token or two tokens.

attribute-specifier :
[[attribute-list]]

The idea is to find a (one) character or charguaerwhich does not form the starting
tokens in the right hand of existing productioresulAn opening square bracket pair
satisfies this requirement.

This syntax is succinct, concise, and short. ThuUSNU attribute and MS declspec
syntax is long and makes declarations difficultdad. The MS square bracket syntax,
while even shorter can cause ambiguity for arragd, may lead to difficulty with some
parsers. So we have chosen to not duplicate it.

While reviewing this syntax, some WG14 members f@oirout that the following syntax
is preferable. We will call this the “function-likeyntax.

declarative_attribute(thread_local)

This allows it to be manipulated by the preprocesEBbis syntax is even longer then the
GNU syntax. We understand the desire to make siptesfor preprocess manipulation
such as to make the attribute disappear for conspiteat don’t understand this. But we
believe this is a different issue as every compiiast parse this as it is a standard-
compliant feature.

The double-square syntax can provide for potentaipatibility for GNU. It also
provides a path for WG14 to adapt a similar bugralite attribute keyword for C1x. If
this name is something like ATTRIBUTE(...), then aspible translation is:

#define ATTRIBUTE (...)[[__VA_ARGS__]]

Note: Alisdaire Meredith supplied the finding théd ARGS is supported in clause
16.3p5 of the current draft.

We thought about having [[as a single token. Webe it helps the parser to
disambiguate:

int a [10] [[thread_local]J;
int b[10];

where the parser only has to do a one-token loelalo distinguish the two cases.

Clark Nelson convinced us that there will alwaysadeok-ahead issue. The difference is

that in one case it is a one-character look-ahieidgsia token, or a one token look-ahead

if it is a double token. So we will not add [[ase@w token and leave it as two tokens. We

also do not want people to write:
int a [10][
/I here comes an attribute
[adfalfdfhl]

" Function-like" syntax

attribute-specifier :
std (attribute-list)

In this syntax, the attribute specification begiith the tokens "std(" and ends with ")".
Instead of "std", we can use other variations ellspy. Underscore prefix can also be
added. If () is ambiguous, then we can also u¥e ((

One key advantage of this syntax is that it folldte prior art in GCC. There are other
compiler vendors supporting the GCC syntax, angptbgramming community is
familiar with it. Existing code can readily adaptthis syntax.

Depending on what we choose as the "function nafuattion-like syntax can be short,
addressing a concern expressed in the previougalidnrs Also, square brackets are
traditionally associated with arrays in the C fanaf languages. Double-square syntax
can disappear in the middle of a complicated adexfaration, and can be mistaken as
part of a multidimensional array by a human reatieéherefore has its own share of
readability issues. Double-square syntax is noésgarily better than function-like
syntax in this regard.

One issue with function-like syntax is that thedtion name could collide with names in
existing programs. Adding underscore prefix woudtl completely solve the problem as
these names are reserved for the implementer. Howihe problem may not be as
severe as it seems. Given "std" is already usedvakse in the language, it is unlikely
that a compiler vendor would use names like "std" &td" in an existing
implementation. The same applies to the use of stdn existing program.
Furthermore, we can assume that C++ compiler vesnai@ paying attention to the
currentC++1xeffort. It should not be difficult to find a sulike underscore name if "std"
doesn't work.

Vendor-specific extensions

Currently, vendor-specific extensions are addedgugie vendor name as a prefix and
double colon followed by the attribute name. Thereontroversy on this as some
opinions prefer double underscore prefix and postfithe vendor name. The other
controversial issue is the potential need for ngneimmpiler vendor companies officially
with a registered name to prevent name collisidhss would involve directly naming
compiler vendors. This position remains controarsi

9 OpenMP binding to C++

One serendipitous benefit of a feature designitscéin be used to solve an unexpected
problem. This feature can be used to bind OpenMiei®P] syntax more closely to
C++. OpenMP is an industry specification for logyadlelism with a common binding

for Fortran, C and C++. It is popular with industrgsearch, and government. It
describes syntax using pragmas for C and C++ fareshmemory parallelism. One of the
author is a member of the OpenMP language commaét@bthe steering committee.

There are many problem with the pragma syntax thotyits inability to convey scope,
error and type information. This has limited Opendi&cceptance in C and C++. In
Fortran, the binding is more natural. An alterr@tetax that would work better with
C/C++ has been asked for by the OpenMP committee.

The attribute syntax while not perfect can be usenlap almost every syntax construct
in C++. After discussion with Christian TerbivenieE2r An Mey, and Bern Mohr shortly
after the Oxford meeting, they were very enthugast the potential of this proposal to
allow an augmented syntax for C++, and C if thesp adapt this syntax.

The [] here has the usual meaning as optionalesiand should not be confused with
the [[]] notation of the attribute syntax. It istrpart of the syntax.

According to the current OpenMP 2.5 [OpenMP] sheation, a parallel loop construct

looks as follows:
#pragma onmp for [clause[[,] clause] ...] new-line
for-loop

and is bound to a parallel region that looks alees:
#pragma onp paral |l el [clause[[, Jclause] ...] new-line
structured-block

while both constructs can be combined into thefoihg:
#pragma onmp parallel for [clause[[,] clause]...] new-line
for-loop

These three code snippets could be written usigtbposed attribute syntax as shown
below:
for [[omp::for(clause, clause), ...]] (loop-head)

loop-body

The enclosing parallel region would look like this:
using [[omp::parallel(clause,clause), ...]]

When there are several clauses or the clausesitaniat of variables, thior keyword
and the actual loop can get quite far apart bstithhormally the case when many
attributes are used.

In OpenMP, a barrier is written as follows:
#pragma omp barrier

In the attribute syntax, this might look as follows
using [[omp::barrier]]

{}
Everything in the structured blogk will get executed by all threads in parallel, no
worksharing constructs are allowed inside the hldioi& actual barrier is at the end of the
block.

All other OpenMP 2.5 constructs and directives ddad translated tomp::clause or
omp::directive in the attribute syntax.

Here is a motivating example showing a clear adaganbf the attribute syntax for
OpenMP: Reductions in orphaned worksharing consrissume the following
program where we have a parallel region callingl@auting containing a worksharing
construct:

#pragma omp parallel

double result = evaluate_my_function(...);

}

double evaluate_my_function(...)

double sum;
#pragma omp for reduction(+:sum)
for (inti = 0; i < something_large; i++)
{
sum += computation(i, ...);
}

return sum;

}

As a reduction variable cannot be a private vaeiatble current solution is to declare
sum static, which also alters the original program:
static double sum;

Using the attribute syntax with OpenMP, one cowdgibly write:
double sum [[omp::shared]];

The attribute syntax leaves several problems uhiexdiand open, as the parallelization is
still not reallyin the language. For example
* Itis not possible for a function to determinetiisi called inside of a worksharing
construct.
* Itis not possible to directly bind any informaticegarding the parallelization on
a template type to allow for specialization (andstloptimization).

We may address these issue in the next revisitmsopaper.

10 Proposed Grammar change

General drafting note: These words introduce the term "appertains’ for the syntactic
relationship between the placement of an attribute-specifier and the entity to which it
applies. In contragt, the term "applies’ is used to describe the semantic restrictions on an
attribute.

Modify 3.3.1 basic.scope.pdecl paragraph 6 as atdc:

The point of declaration of a class first declarednelaborated-type-specifier is
as follows:

o for a declaration of the formtass-key identifier attribute-
specifierqpy ;

the identifier is declared to be a class-nameaeansttope that contains the
declaration, otherwise

Modify 3.4.4 basic.lookup.elab paragraph 2 as midid:

If the elaborated-type-specifier has nanested-name-specifier, and unless the
elaborated-type-specifier appears in a declaration with the following form:

class-key identifier attribute-specifierqgy;

the identifier is looked up according to 3.4.1 igmoring any non-type names that
have been declared. ... If tHaborated-type-specifier is introduced by thelass-

key and this lookup does not find a previously deddype-name, or if the
elaborated-type-specifier appears in a declaration with the form:

class-key identifier attribute-specifierqgy;

the elaborated-type-specifier is a declaration that introduces thass-name as
described in 3.3.1 basic.scope.pdecl.

Modify 6 stmt.stmt paragraph 1 as indicated:

Except as indicated, statements are executed ueseq.

statement:

labeled-statement
attri but ed- st at enent

expression-statement
compound-statement
selection-statement
iteration-statement
jump-statement
declaration-statement
try-block

Modify 6.1 stmt.label paragraph 1 as indicated:

A statement can be labeled.
labeled-statement:

identifier attribute-specifiergy : statement

case attribute-specifiergyy constant-expression :
statement

default attribute-specifiergy : statement

The optional attribute-specifier appertainsto thelabel. An identifier label
declares the identifier. ...

Modify 6.3 stmt.block paragraph 1 as indicated:

So that several statements can be used where erpdsted, the compound
statement (also, and equivalently, called "blod¢&'provided.

compound-statement:
{ statement-seq opt }
using attribute-specifier { statenment-sedoy }
statement-seq:
statement
statement-seq statement

A compound statement defines a local scope (3!8)t¢: a declaration is a
statement (6.7). -- end notellhe optional attribute-specifier appertainsto the
block.

Modify 6.4 stmt.select paragraph 1 as indicated:

Selection statements choose one of several flowsmfol.

selection-statement:

if attribute-specifiergy (condition) statement
if attribute-specifiergy (condition) statement else
attribute-specifiergy statement
switch attribute-specifiergy (condition) statement
condition:
expression
type-specifier-seq attribute-specifiergy declarator =

assignment-expression
The optional attribute-specifier appertainsto the selection-statement. In clause
6, the term substatement refers to the contairsdraent or statement s that
appear in the syntax notation. ...

Modify 6.4.2 stmt.switch paragraph 2 as indicated:

... Integral promotions are performed. Any stateméthin the switch statement

can be labeled with one or more case labels asaell
case attribute-specifiergyy, constant-expression :

Modify 6.4.2 stmt.switch paragraph 3 as indicated:

There shall be at most one label of the form

default attribute-specifiergy,:
within a switch statement.
Modify 6.5 stmt.iter paragraph 1 as indicated:

Iteration statements specify looping.

while attribute-specifiergy (condition) statement

do attribute-specifierg, statement while (expression) ;

for attribute-specifiergy (for-init-statement condition opt
; expression opt) Statement

for-init-statement:
expression-statement
simple-declaration

Modify 6.5.1 stmt.while paragraph 1 as indicated:
In the while statement the substatement is exeaejgeatedly until the value of
the condition (6.4) becomes false. The test talesebefore each execution of
the substatement.he optional attribute-specifier appertainsto the while
statement.

Modify 6.5.2 stmt.while paragraph 2 as indicated:
In the do statement the substatement is execupeatedly until the value of the
expression becomes false. The test takes plageeaftl execution of the
statementT he optional attribute-specifier appertainsto the do statement.

Modify 6.5.3 stmt.for paragraph 1 as indicated:

The for statement
for attribute-specifierqy (for-init-statement condition opt s
expression oy) statement

is equivalent to ... [Note: ... TThe optional attribute-specifier appertainsto the
for statement.

[Note: a for-init-statement ends with a semicolerend note]
Modify 6.6 stmt.jump paragraph 1 as indicated:

Jump statements unconditionally transfer control.

jump-statement:

break ;

continue ;

return attribute-specifiergq expression gy ;
goto attribute-specifiergy identifier;

The optional attribute-specifier appertainsto the respective jump statement.

Modify clause 7 dcl.dcl paragraph 1 as indicated:

declaration:

block-declaration
function-definition
template-declaration
explicit-instantiation
explicit-specialization
linkage-specification
namespace-definition
attribute-declaration
attribute-specification

block-declaration:
simple-declaration
asm-definition
namespace-alias-definition
using-declaration
using-directive
static_assert-declaration

simple-declaration:
decl-specifier-seq opt Attribute-specifiergy init-declarator-
list opt ;

attribute-decl aration:
using attribute-specifier

attribute-specification:
using attribute-specifier { declaration-seqey: }

[Note: ...] Thesmple-declaration

decl-specifier-seq opt Attribute-specifiergy init-declarator-
list opt ;

is divided into three parts:decl-specifiers, the components ofdecl-specifier-
seq, are described in 7.1he optional attribute-specifier and declarators, the
components of amit-declarator-list, are described in clause 8.

Add a new paragraph after 7 dcl.dcl paragraph 4:

In an attribute-declaration, the attribute-specifier appertainsto itsinnermost
enclosing namespace; if that namespace isthe global namespace, the
attribute-specifier appertainsto the entire translation unit. In an attribute-
specification, the attribute-specifier appertainsto all entities declared or
named within the declaration-seq, if any. M ultiple attribute-specification nest.
When they nest, for each attribute, the innermost one determinesthe
attribute effective for all entitiesin the declaration-seq. An attribute-
specification does not establish a scope.

Modify 7 dcl.dcl paragraph 8 as indicated:

Only in function declarations for constructors, tdestors, and type conversions
can thedecl-specifier-seq be omitted. [Footnote: The "implicit int" rule 6fis no
longer supported.Iff it isomitted, no attribute-specifier may appear.

Modify 7.1.5.3 dcl.type.elab paragraph 1 as ingidat
If an elaborated-type-specifier is the sole constituent of a declaration, the

declaration is ill-formed unless it is an explisfiecialization (14.7.3), an explicit
instantiation (14.7.2) or it has one of the follogiforms:

class-key identifier attribute-specifierqgy;

friend class-key :: opt identifier ;

friend class-key :: opt Simple-template-id ;

friend class-key :: opt Nested-name-specifier identifier ;

friend class-key :: opt Nested-name-specifier template opt SIMple-
template-id ;

In these cases, the attribute-specifier, if any, appertainsto the classbeing
declared; the attributesin the attribute-specifier are henceforth considered
attributes of the classwhenever it isnamed.

Modify 7.2 dcl.enum paragraph 1 as indicated:

enum-specifier:
enum identifier opt Attribute-specifiergy {enumerator-list opt

}

enum identifier opt Attribute-specifiergy { enumerator-list,

The optional attribute-specifier appertainsto the enumeration; the attributes
in the attribute-specifier are henceforth considered attributes of the
enumeration whenever it isnamed.

Modify 7.3.4 namespace.udir paragraph 1 as indicate

using-directive:
using namespace attribute-specifiergy @ op Nested-
name-specifier opt NAMEspace-name ;

A using-directive shall not appear in class scdyoe may appear in namespace
scope or in block scope. [Note: when looking umenespace-name in a using-
directive, only namespace names are considere®.44e -- end note [The
optional attribute-specifier appertainsto the using-directive.

Add a new section 7.6 dcl.attr entitled "Attribdtes

Attributes specify additional information for typesriables, names, blocks, or
translation units.

attribute-specifier:
[[attribute-list]]

attribute-list:

attribute opt
attribute-list , attribute opt
attribute:
attribute-token attribute-argument-clause opt

attribute-token:
identifier
attribute-scoped-token

attribute-scoped-token:
attribute-namespace :: identifier

attribute-namespace:
identifier

attribute-argument-clause:
(attribute-argument-list)

attribute-argument-list:
attribute-argument
attribute-argument-list, attribute-argument

attribute-argument:
assignment-expression
type-id

An attribute-specifier that contains nattributes has no effect. The order in which
the attribute-tokens appear in aattribute-list is insignificant. A keyword (2.11
lex.key) contained in aattribute-token is considered an identifier. No name
lookup (3.4 basic.lookup) is performed on any efidentifiers contained in an
attribute-token. Theattribute-token determines additional requirements on the
attribute-arguments (if any), including their number and whether eschtype-id

or an expression. Eaetttribute-argument that is an expression is an unevaluated
operand (clause 5 expr). The use o&tribute-scoped-token is conditionally-
supported, with implementation-defined behavid¥ofe: Each implementation
should choose a distinctive name for #tiei bute-namespace in anattribute-
scoped-token. |

Eachattribute-specifier appertains to some entity, identified by the syntactic
context where it appears (clause 7 dcl.dcl, cl&udel.decl). If arattribute-
specifier that appertains to some entity containgginbute that does not apply to
that entity, the program is ill-formed. If attribute-specifier appertains to a
friend declaration (11.4 class.friend), that deatian shall be a definition. No

attribute-specifier shall appertain to an explicit instantiation (12.7
temp.explicit).

Two attributes are theame if their attribute-tokens are the same, either both have
no attribute-argument-clause or both have the same numbeutifibute-

arguments, each correspondiragtribute-argument is of the same kind

(expression otype-id), each correspondirggtribute-argument that is aype-id
refers to the same type, and each corresporatingute-argument that is an
expression satisfies the requirements for mulgi@enitions of an entity (3.2
basic.def.odr).

In 8 dcl.decl paragraph 4, modify the grammar:

direct-declarator:

declarator-id attribute-specifiergy

direct-declarator (parameter-declaration-claus e) attribute-
speci fi er o cv-qualifier-seq opt €Xception-specification opt

direct-declarator [constant-expression opt | attribute-

speci fiergp
(declarator)

ptr-operator:

* attribute-specifiergy cv-qualifier-seq opt

&

&&

: opt Nested-name-specifier * attribute-specifiergqy cv-
qualifier-seq opt

Drafting note: Attributes cannot appertain to references.

In 8.1 dcl.name paragraph 1, modify the grammar:

type-id:
type-specifier-seq attribute-specifiergy abstract-
declarator oy

direct-abstract-declarator:

direct-abstract-declarator opt (parameter-declaration-clause)
attribute-specifiergy cv-qualifier-seq opt €Xception-specification opt
direct-abstract-declarator opt | CONStant-expression opt]

attribute-specifiergy
(abstract-declarator)

Add at the end of 8.3 dcl.meaning paragraph 1:
... When thaleclarator-id is qualified, the declaration shall refer to aywasly

declared member of the class or namespace to whectualifier refers, and the
member shall not have been introduced lbigag-declaration in the scope of the

class or namespace nominated byrtésted-name-specifier of thedeclarator-id. [
Note: if the qualifier is the global :: scope resolutoperator, theleclarator-id
refers to a name declared in the global namespgag®es-- end noteThe
optional attribute-specifier following a declarator-id appertainsto the entity
that isdeclared.

Modify 8.3 dcl.meaning paragraph 3 and 5 as inéidtat
Thus, a declaration of a particular identifier Haes form

TD

where T is of the form decl-specifier-seq attribute-specifierqy: and D is a
declarator. ...

First, thedecl-specifier-seq determines a type. In a declaration

TD
the decl-specifier-seq T determines the type T. [Example: ...]

In a declaration Bttribute-specifierq,: D where D is an unadorned identifier the
type of this identifier isdttribute-specifier T." The optional attribute-specifier
appertainsto thetype T, but not to the class or enumeration declared in the
decl-specifier-seq, if any.

Modify 8.3.1 dcl.ptr paragraph 1 as indicated:

In a declaration T D where D has the form
* attribute-specifiergy cv-qualifier-seq opt D1

and the type of the identifier in the declaratioDT is "derived-declarator-type-
list T," then the type of the identifier of D isédved-declarator-type-list cv-
qualifier-seqattribute-specifier pointer to T." The cv-qualifiers apply to the
pointer and not to the object pointed $omilarly, the attribute-specifier (7.6
dcl.attr) appertainsto the pointer and not to the object pointed to.

Modify 8.3.3 dcl.mptr paragraph 1 as indicated:

In a declaration T D where D has the form

opt Nested-name-specifier * attribute-specifiergqy cv-
qualifier-seq opt D1

and thenested-name-specifier names a class, and the type of the identifiehén t
declaration T D1 is "derived-declarator-type-list then the type of the identifier

of D is "derived-declarator-type-list-qualifier-seq attribute-specifier pointer to
member of claseested-name-specifier of type T."The attribute-specifier (7.6
dcl.attr) appertainsto the pointer-to-member.

Modify 8.3.4 dcl.array paragraph 1 as indicated:

In a declaration T D where D has the form

D1 [constant-expression opt | attribute-specifiergy

and the type of the identifier in the declaratioDT is "derived-declarator-type-
list T," then the type of the identifier of D is amray type; if the type of the
identifier of D contains the auto type deductiopdyspecifier, the program is ill-
formed. ... If the value of the constant expressoN, the array has N elements
numbered O to N-1, and the type of the identifieD as "derived-declarator-type-
list attribute-specifier array of N T." ... If the constant expressionnsitbed, the
type of the identifier of D is "derived-declaratype-listattribute-specifier

array of unknown bound of T," an incomplete objgpe. ... The type "derived-
declarator-type-lisattribute-specifier array of N T" is a different type from the
type "derived-declarator-type-listtribute-specifier array of unknown bound of
T," see 3.9 basic.types. Any type of the form "oalifier-seqgattribute-specifier
array of N T" is adjusted taattribute-specifier array of N cv-qualifier-seq T,"
and similarly for "array of unknown bound of Trhe optional attribute-

specifier appertainsto thearray. ...

Modify 8.3.5 dcl.func paragraph 1 as indicated:

In a declaration T D where D has the form

D1 (parameter-declaration-clause) attribute-specifiergy
cv-qualifier-seq opt €XCeption-specification opt

and the type of the containddclarator-id in the declaration T D1 isierived-
declarator-type-list T," the type of theleclarator-id in D is "derived-declarator-
type-list attribute-specifier function of (parameter-declaration-clause) cv-
qualifier-seqoy returning T"; a type of this form is a functiorpgy[Footnote: ...].
The optional attribute-specifier appertainsto the function.

In clause 9 class paragraph 1, modify the grammar:

class-head:
class-key identifier opt Attribute-specifierg, base-clause o
class-key nested-name-specifier identifier attribute-
speci fierqp base-clause oy
class-key nested-name-specifier opt Simple-template-id

attribute-specifierg, base-clause g

Add to 9 class paragraph 2 as indicated:

... A class is considered defined after the closirage of its class-specifier has
been seen even though its member functions arenergl not yet defined.he
optional attribute-specifier appertainsto the class; the attributesin the
attribute-specifier are henceforth considered attributes of the class whenever
it isnamed.

In 9.2 class.mem paragraph 1, modify the grammar

member-declaration:

decl-specifier-seq opt Attribute-specifierq member-declarator-
list opt ;

function-definition ; opt

: opt Nested-name-specifier template opt Unqualified-id ;

using-declaration
static_assert-declaration
template-declaration

Modify 12.3.2 class.conv.fct paragraph 1 as indidat

A member function of a class X with a name of iarf
conversion-function-id:
operator conversion-type-id
conversion-type-id:
type-specifier-seq attribute-specifierg, conversion-
declarator oy
conversion-declarator:
ptr-operator conversion-declarator opt

specifies a conversion from X to the type specibgdheconversion-type-id. ...
Modify 13.3.1.1.2 over.call.object paragraph 2rakdated:

In addition, for each conversion function declaired of the form

operator conversion-type-id|() attribute-specifiergy cv-
qualifier;
wherecv-qualifier is the same cv-qualification as, or a greater watifjcation
than,cv, and ...

Modify clause 15 paragraph 1 as indicated:

throw-expression:
throw attribute-specifierg, assignment-expression opt

The optional attribute-specifier appertainsto the throw-expression.

Examples

The specific attributes are shown for expositiotyosince they do not form a part of this
proposal. In particular, N2165 does not specify #ignment be part of the type, it is
only an attribute of variables or class data mesber

struct S [[gnu::packed]]; // avoid padding int his

structure

class C [[wish::explicit_override]]
spublicB{... };

typedef struct [[ibm::align(16)]]{ ...} T;

int x [[ibm::library("hidden") J]; // the name " X" is not
DLL-exported
int [[ibm::align(16)]] * f [[ibm::library("expor t") 1]
(int, double);

/I exported function that returns a poin ter to
aligned int

[[ibm::align(16)]] inti; //ill-formed

11 Modifications for existing papers and introducti on of
new attributes

This section will standardize the use of three gaibdbutes and use the process to
identify the reason why they are good candidatesaald them to the C++ Standard.

e Align
o]

This feature adds alignment support that overrileshatural alignment of
the type. It gives more information to the compilealign types, or
functions more suitably for the optimizers. As sucimproves the
program, but its absence does not necessarily makense. While it is
true that incorrect alignment can cause bad behavie code presumably
can still make sense without it.

e Noreturn

void fatal(void) [[noreturn]];
void fatal(...)

{

exit(1):
}

This attribute is useful for a few library funct®such as abort and exit
which cannot return. The user can also define them functions that
never return using this attribute.

The noreturn keyword tells the compiler to assulnag tatal cannot return.
It can then optimize without regard to what wousbpen if fatal ever did
return. This makes slightly better code. More intantly, it helps avoid
spurious warnings of uninitialized variables. Ya@mngot assume that
registers saved by the calling function are resttwefore calling the

noreturn function. It does not make sense for atoon function to have a
return type other than void.

This is a good attribute because it gives additiorfarmation that can be
used by the optimizer, but does not alter the séinsaof the program if
removed.

e Final

0 The final attribute to a class declaration andvihiial function

declaration can prevent them from being furtheerited. A class with the
final attribute will not be allowed to be a basasd for another class. A
virtual function with the final attribute will ndie overridden in a
subclass. This is a good attribute because it alkine compiler to emit a
message if the class or function is extended.

11.1N2165 Adding Alignment Support to the C++ Programming
Language

Do not addalignas as a keyword to 2.11 lex.key.

Drop the change to 3.2 basic.def.odr (see N2258'tihng sizeof to apply to non-static
data members without an object (revision 1)").

Modify the added section 3.11 basic.align paragfhas indicated:

Fundamental alignments are
* Alignments of fundamental types
* Alignments of any type that is not affected by atignas—alighment
speeifieral i gn attribute [Note: A type can only be affected by the
alignas—alighmentspeeifieal i gn attribute by applying it to non-
staticclass data members-oef-class-types-or-members-of utypes
8-3-7dekalign) - end note |

* Alignments of any type that is affected byagnas—speecifieral i gn
attribute that sets the alignment requirements to any optbeiously

listed fundamental alignments

Drop the change to 5.19 expr.const (see N2235 "@épned Constant Expressions --
Revision 5").

Drop the change to 8 dcl.decl paragraph 4.
Drop the addition of 8.3.7 dcl.align, instead adtew section 7.6.2 dcl.attr.align:
7.6.2 Alignment

The attribute-token al i gn specifies alignment; the attribute-argument-list
shall consist of exactly one attribute-argument that iseither a type-id (8.1
dcl.name) or an integral constant expression (5.19 expr.const). The attribute

appliesto a classdata member and to a variable other than a function
parameter or avariabledeclared r egi st er.

If the attribute-argument is an integral constant expression, itsvalue, if
positive, specifiesthe alignment requirement of the declared object. If that
valueis zero, the attribute has no effect, if it isnegative the program isill-
formed. If the attribute-argument is a type-id, it is equivalent to the expression
al i gnof (type-id) (5.3.6 expr.alignof).

If morethan oneal i gn attributeis specified for an object, the alignment
requirement for the object isthe weakest alignment that meets all the
alignment requirements specified by each attribute. If no such alignment
exists, the program isill-formed.

The combined effect of all al i gn attributes shall not specify an alignment
that isless strict than the alignment that would otherwise be required for the
object being declared, or an alignment that is not compatible with the
declared type.

If an al i gn attribute appearsin a declaration of an entity, the same
attribute shall appear in all declarations of that same entity, except if a
declaration isnot adefinition and no al i gn attribute appearsin that
declaration; no diagnostic required.

[Examples:
void f [[align(double) 1] ();

[l error: alignnment applied to function

unsigned char ¢ [[align(double)]] [sizeof(double)];

/'l array of characters, suitably aligned for a
doubl e

extern unsigned char c[sizeof (double)];

/1 no "align" necessary

extern unsigned char ¢ [[align(float)]]
[si zeof (doubl e)] ;

[l error: different alignnment in declaration

]

(Add notes from the former 8.3.7 as desired.)
In 20.4.8 meta.trans.other paragraph 1, changexd@ple to use thaign attribute.

Drop all changes to appendix A, it's automaticgiyerated anyway.

11.2Adding noreturn attribute

Add a new section 7.6.3 dcl.attr.noreturn:
7.6.3 The noreturn attribute

Theattribute-token noreturn ~ specifies that a function does not return. ItIshgpear at
most once in eac#ttribute-list and noattribute-argument-clause shall be present. The
attribute applies to a function being declared.

If a function markeahoreturn is called and eventually executestarn statement
(6.6.3 stmt.return), the program is ill-formed;diagnostic required. [Note: The
function may terminate by throwing an exception. |

[Example:
void f [[noreturn]] () {
throw "error"; I/ ok
}
void g [[noreturn]] (int i) { // ill-formed i f called with i <=0

if (i > 0)
throw "positive™;
}
]

11.3Adding final attribute

Add a new section 7.6.4 dcl.attr.final:
7.6.4 The final attribute

Theattribute-token final ~ specifies overriding semantics for a virtual fuowt It shall
appear at most once in eaattribute-list and noattribute-argument-clause shall be
present. The attribute applies to class definitems to virtual member functions being
declared in a class definition. If the attributespecified for a class definition, it is
equivalent to being specified for each virtual memionction of that class, including
inherited member functions.

If a virtual member function f in some class B iarkedfinal and in a class D derived
from B, a function D::f overrides B::f, the programill-formed; no diagnostic required. [
Footnote: If an implementation does not emit a Kesgic, it is encouraged to execute the
program as ifinal were absent.]

[Example:

struct B {
virtual void f [[final]]);

étruct D:B{
void f(); //ill-formed

%
]

Acknowledgement

We would like to recognize the following people tbeir help in urging this work, their
extended discussions and recommendations: Alistiéaredith, Lawrence Crawl, Clarke
Nelson, Tom Plum, Attilla Feher, Ettore Tiotto, Ba¥asapinovic, Yan Liu, Jeff Heath,
Zbigniew Sarbinowski, Christopher Cambly, Sean yd&arry Hedquist, Francis
Glasborrow, Michael Spertus, Lois Goldthwaite, Bidymore, Walter Brown, Raymond
Mak, Edison Kwok, Howard Nasgaard, Christain Tedmg\Dieter An-Mey, Bern Mohr,
Raul Silvera, Paul Mckenney, Herb Sutter, Daveeddéaood, Bjarne Stroustrup.

Reference

[C++03] ISO C++ 2003 Standard

[GNU] Section 5.25: Attribute Syntakttp://gcc.gnu.org/onlinedocs/gcc-
4.1.2/gcc/Attribute-Syntax. html#Attribute-Syntax

[MS] http://msdn2.microsoft.com/en-us/library/dabb5z75(80).aspx
[C#] http://msdn2.microsoft.com/en-us/library/aa982(VS.71).aspx
[n2224]Seeking a Syntax for Attributesin C++09, http://www.open-
std.org/jtcl/sc22/wg21/docs/papers/2007/n2224.html

[OpenMP] http://www.openmp.org/drupal/node/view/8

