© ISO 2006 — All rights reserved

ISO/IEC JTC1 SC22 WG14 N1201

Date: 2006-11-10

Reference number of documel80O/IEC TR 24732

Committee identification: ISO/IEC JTC1 SC22 WG14

SC22 Secretariat: ANSI

Information Technology —
Programming languages, their environments and syste software interfaces —

Extension for the programming language C to supportlecimal floating-point arithmetic —

Warning

This document is an ISO/IEC draft Technical Repibit not an ISO/IEC International Technica
Report. It is distributed for review and commenisisubject to change without notice and sha
not be referred to as an International Technicgd®eor International Standard.

Recipients of this draft are invited to submit,iwtheir comments, notification of any relevant
patent rights of which they are aware and to p@wdpporting documentation.

Document type: Technical Report Type 2

Document subtype: n/a

Document stage: (3) Proposed Draft Technical Report
Document language: E

ISO/IEC DTR 24732

WG14 N1201

This ISO document is a working draft or committeaftdand is copyright-protected by I1SO.

Requests for permission to reproduce this docufoerthe purpose of selling it should be
addressed as shown below or to ISO’s member botheigountry of the requester:

ISO copyright office
Case postale 56
CH-1211 Geneva 20

Tel. +41 22 74901 11
Fax +41 22 749 09 47
E-mail copyright@iso.org
Webwww.iso.org

Reproduction for sales purposes may be subjecytty payments or a licensing agreement.

Violators may be prosecuted.

Copyright notice

ISO/IEC DTR 24732 WG14 N1201

Contents
N |11 70T 0o o o PP 1
1.1 [T Tod (o [£ 0101 T H PSPPI 1
1.2 The Arithmetic MOdElo e 2
I S I o =T = To Yo 11 o 1P 3
2 GBNEIAL e ————— e 3
21 Y oT0] o[PS PT PP 3
2.2 Sy (= (=] o = PP 4
3 Predefined MaCIO NAIMEiiii i et e e e e e e e et e e et e eae e e e ean e e eanaas 5
4 Decimal floating LYPES .. ceuiieeii e e 5
5 Characteristics of decimal floating types <float.h>..............cooiiiiiiii 6
I 001 01 V7=T 6] (o] 1S SR 9
6.1 Conversions between decimal floating and iImMege...........ccoovviiiiiiiiiiinieeii s 9
6.2 Conversions among decimal floating types, ativéen decimal floating types and
0ENETNIC fIOALING LYPES ..evnieeiii et ettt et e et e e e et e e eaa e e e et eaeet e eeeanaaeees 10
6.3 Conversions between decimal floating and corple..........ccccoooviiiiiiiiiiiiiinnecee. 11
6.4 Usual arithmetiC CONVEISIONScouiicceco e e e eaas 11
6.5 Default argument PromMOtiONiiiuie i ee e 12
A O 0 15 = U g | PP 12
7.1 Unsuffixed floating CONSEANTuu e 13
7.1.1 Translation time data tYPeooeeei e 14
8 ArthMEtiIC OPEIAtiONS ... ciiieiiiiiiii ettt e et e et e e et e e e eaa e eeeees 16
8.1 L@ 01T =1 (0] £ TP PUPPRRPIN 16
8.2 LT T 10 PP 17
8.3 (701177 =] £ (0 o 1P 17
S T I o] o PSP 17
9.1 Standard NEAUEIS........oou i e 17
9.2 Floating-point environment <fenV.N>......o oo 17
9.3 Decimal mathematics <math.h>........ ... 19
9.4 New <math. N> fUNCLIONS.......... e 27
9.5 Formatted input/OULPUL SPECITIEIS cceee e 28
9.6 strtod32, strtod64, and strtod128 functionslfsh> ..o 29
9.7 wecstod32, westod64, and westod128 functionshamb>............coooeiiiinn. 1.3
9.8 Type-generic macros <tgmath.n>..........cccciiiii 33
I X e ——————— e e e e e e e a e 34

ISO/IEC DTR 24732 WG14 N1201

1 Introduction
1.1 Background

Most of today's general purpose computing architestprovide binary floating-point arithmetic

in hardware. Binary floating-point is an efficiafpresentation which minimizes memory use, and
is simpler to implement than floating-point arithroaising other bases. It has therefore become
the norm for scientific computations, with almobt@plementations following the IEEE-754
standard for binary floating-point arithmetic.

However, human computation and communication ofencrvalues almost always uses decimal
arithmetic and decimal notations. Laboratory nosegntific papers, legal documents, business
reports and financial statements all record numeziges in decimal form. When numeric data are
given to a program or are displayed to a userpitteand-from decimal conversion is required.
There are inherent rounding errors involved in stmiversions; decimal fractions cannot, in
general, be represented exactly by binary floapomi values. These errors often cause usability
and efficiency problems, depending on the appbeati

These problems are minor when the application domecepts, or requires results to have,
associated error estimates (as is the case wehtga applications). However, in business and
financial applications, computations are eithemunesg to be exact (with no rounding errors)
unless explicitly rounded, or be supported by diedaanalyses that are auditable to be correct.
Such applications therefore have to take specral icahandling any rounding errors introduced by
the computations.

The most efficient way to avoid conversion erraoisise decimal arithmetic. Currently, the IBM
zArchitecture (and its predecessors since Systéi8& widely used system that supports built-
in decimal arithmetic. This, however, provides gaearithmetic only, meaning that every number
and computation has to have separate scale infamateserved and computed in order to
maintain the required precision and value rangehSaaling is difficult to code and is error-
prone; it affects execution time significantly, ahe resulting program is often difficult to
maintain and enhance.

Even though the hardware may not provide decimtdraetic operations, the support can still be
emulated by software. Programming languages usduli&iness applications either have native
decimal types (such as PL/I, COBOL, C#, or Visuasi8) or provide decimal arithmetic libraries
(such as the BigDecimal class in Java). The aritltnused, nowadays, is almost invariably
decimal floating-point; the COBOL 2002 I1SO standdod example, requires that all standard
decimal arithmetic calculations use 32-digit dediftating-point.

At present, most implementations use software ézirdal arithmetic. Even the best packages are
slow, and can be 100 times slower than a correspgidhrdware implementation, and in some
cases much slower. At least one processor manuéactherefore, is adding decimal floating-
point in hardware.

ISO/IEC DTR 24732 WG14 N1201

Arguably, the C language hits a sweet spot withenwide range of programming languages
available today — it strikes an optimal balanceveen usability and performance. Its simple and
expressive syntax makes it easy to program; ardoige-to-the-hardware semantics makes it
efficient. Despite the advent of newer programniangguages, C is still often used together with
other languages to code the computationally intengart of an application. In many cases, entire
business applications are written in C/C++. To namthe vitality of C, the need for decimal
arithmetic by the business and financial commucatynot be ignored.

The importance of this has been recognized byEE&| The IEEE 754 standard is currently being
revised, and the major change in that revisiohasaddition of decimal floating-point formats and
arithmetic. These decimal data types are almosffagent as the binary types, and are especially
suitable for hardware implementation; it is possithlat they will become the most widely used
primitive data types once hardware implementatanesavailable.

Historically there has been a close tie betweerEHZB4 and C with respect to floating-point
specification. This Technical Report proposes t @ecimal floating types and arithmetic to the C
programming language specification.

1.2 The Arithmetic Model

The proposal of this Technical Report is based odel of decimal arithmetiavhich is a
formalization of the decimal system of numeratigig6rism) as further defined and constrained
by the relevant standards, IEEE-854, ANSI X3.27T4 e proposed revision of IEEE-754. The
latter is also known as IEEE-754R.

There are three components to the model:

¢ numbers which represent the values which can be manipdlby, or be the results of, the
core operations defined in the model

e oOperations- the core operations (such as addition, muli@ion, etc.) which can be carried
out on numbers

e context- which represents the user-selectable parameierstatus of the operations (for
example, any exceptions they caused), and rulestwgavern the results of arithmetic
operations (for example, the rounding mode to leelus

The model defines these components in the absttagither defines the way in which operations
are expressed (which might vary depending on thepater language or other interface being
used), nor does it define the concrete representé&pecific layout in storage, or in a processor's
register, for example) of numbers or context.

From the perspective of the C languag@mnbersare represented by data typegerationsare
defined within expressions, acdntextis the floating environment specified<dh env. h>. This
Technical Report specifies how the C language implgs these components.

1 A description of the arithmetic model can be foumbttp://www2.hursley.ibm.com/decimal/decarith.html

ISO/IEC DTR 24732 WG14 N1201

1.3 The Encodings

Based on the arithmetic model, encodings have pesposed to support the general purpose
floating-point decimal arithmetic described in thecimal Arithmetic Specificatich The
encodings are the product of discussions by a suabsitee of the IEEE committee IEEE-754R
which is currently revising the IEEE 754-1985 stz

C99 specifies floating-point arithmetic using a tlager organization. The first layer provides a
specification using an abstract model. The reptesien of floating-point number is specified in

an abstract form where the constituent compondriteeaepresentation is defined (sign, exponent,
significand) but not the internals of these compigieln particular, the exponent range,
significand size and the base (or radix), are imeletation defined. This allows flexibility for an
implementation to take advantage of its underlyiagdware architecture. Furthermore, certain
behaviors of operations are also implementatiomddf for example in the area of handling of
special numbers and in exceptions.

The reason for this approach is historical. Atttiree when C was first standardized, there were

already various hardware implementations of flaggpoeint arithmetic in common use. Specifying
the exact details of a representation would makst withe existing implementations at the time
not conforming.

C99 provides a binding to IEEE-754 by specifyingfammex F,IEC 60559 floating point
arithmetic and adopting that standard by reference. An implgation may choose not to
conform to IEEE-754 and indicates that by not defirthe macro __ STDC_IEC_559 .This
means not all implementations need to support IEE&-and the floating-point arithmetic need
not be binary.

This Technical Report specifies decimal floatingap@rithmetic according to the IEEE-754R,
with the constituent components of the represematefined. This is more stringent than the
existing C99 approach for the floating types. Sihdg expected that all decimal floating-point
hardware implementations will conform to the regi$€EE 754, binding to this standard directly
benefits both implementers and programmers.

2 General
2.1 Scope

This Technical Report specifies an extension tgtiogramming language C, specified by the
international standard ISO/IEC 9899:1999. The esitanprovides support for decimal floating-
point arithmetic that is intended to be consisteitlh the specification in IEEE-754R. However, as
of October 4, 2006, the referenced standard Isrstdraft review stage. Any conflict between the
requirements described here and the referencedasthrs unintentional. This Technical Report
defers to IEEE-754R.

2 A description of the encodings can be founttip://www2.hursley.ibm.com/decimal/decbits.html

ISO/IEC DTR 24732 WG14 N1201

This Technical Report does not specify binary flagdpoint arithmetic.

2.2 References

The following standards contain provisions whidtrptigh reference in this text, constitute
provisions of this Technical Report. For dated ie&fiees, subsequent amendment to, or revisions
of, any of these publications do not apply. Howeyarties to agreements based on this Technical
Report are encouraged to investigate the posgibiliapplying the most recent editions of the
normative documents indicated below. For undatéteaces, the latest edition of the normative
document referred applies. Members of IEC and |Shtain registers of current valid
International Standards.

ISO/IEC 9899:1999nformation technology - Programming languagesijrteavironments and
system software interfaces - Programming Language C

ISO/IEC 9899:1999/Cor 1:200Mformation technology - Programming languagesijrthe
environments and system software interfaces - Rrgring Language C — Technical
Corrigendum 1

ISO/IEC 9899:1999/Cor 2:200hformation technology - Programming languagesjrthe
environments and system software interfaces - Rrgring Language C — Technical
Corrigendum 2

ISO/IEC TR 18037Information technology - Programming languagesijrteavironments and
system software interfaces — Extensions for thgraraming language C to support embedded
processors.

ISO/IEC 1989:2002nformation technology - Programming languages -BTib.

IEC 60559:1989Binary floating-point arithmetic for microprocessosystemgpreviously
designated IEC 559:1989).

ANSI X3.274,Information Technology - Programming Language REXX.

ANSI/IEEE 754-1985 IEEE Standard for Binary Floating-Point Arithmeti€he Institute of
Electrical and Electronic Engineers, Inc., New Y,dtR85.

ANSI/IEEE 854-1987 IEEE Standard for Radix-Independent Floating-Pd&nthmetic The
Institute of Electrical and Electronic Engineers;.| New York, 1987.

The IEEE 754 revision working group is currentlyising the specification for floating-point
arithmetic:

ISO/IEC DTR 24732 WG14 N1201

ANSI/IEEE 754R 1EEE Standard for Floating-Point Arithmeti€he Institute of Electrical and
Electronic Engineers, Inc. Dratft.

A Decimal Floating-Point Specificatipchwarz, Cowlishaw, Smith, and Webb, in the
Proceedings of the 15th IEEE Symposium on Computttrmetic (Arith 15) EEE, June 2001.

Note: Reference materials relating to IEEE-754Rlmafound in
http://grouper.ieee.org/groups/7sHdhttp://www.validlab.com/754R/

3 Predefined macro name

The following macro name is conditionally definedthe implementation:

__STDC DEC FP__ The integer constant 1, intended to indicate aomémce to this
technical report.

4 Decimal floating types

This Technical Report introduces three decimaltitaptypes, designated a®eci mal 32,

_Deci mal 64 and_Deci mal 128. The set of values of typeDeci mal 32 is a subset of the set
of values of the typeDeci nal 64; the set of values of the typ®eci mal 64 is a subset of the
set of values of the typeDeci mal 128.

Within the type hierarchy, decimal floating types &ase types, real types and arithmetic types.

The typed | oat , doubl e, andl ong doubl e are also called generic floating types for the
purpose of this Technical Report.

Note: C does not specify a radix folr oat , doubl e andl ong doubl e. An implementation
can choose the representatiori bbat , doubl e andl ong doubl e to be the same as the
decimal floating types. In any case, the decinwtfhg types are distinct frofrl oat , doubl e
andl ong doubl e regardless of the representation.

Note: This Technical Report does not define decroahplex types or decimal imaginary types.
The three complex types remainfdsoat _Conpl ex, doubl e _Conpl ex andl ong

doubl e _Conpl ex, and the three imaginary types remairi beat _| magi nary, doubl e
_lI magi nary andl ong doubl e _Inagi nary.

Suggested changes to C99:

Change the first sentence of 6.2.5#10.

ISO/IEC DTR 24732 WG14 N1201

[10] There are thregeneric floating typesdesignated asl oat , doubl e andl ong doubl e.
Add the following paragraphs after 6.2.5#10.

[10a] There are thresecimal floating typesdesignated asDeci mal 32, Deci mal 64 and

_Deci mal 128. The set of values of the typ®eci nal 32 is a subset of the set of values of the
type_Deci mal 64; the set of values of the typ®eci mal 64 is a subset of the set of values of
the type_Deci mal 128. Decimal floating types are real floating types.

[10b] Together, the generic floating types anddeeimal floating types comprise theal floating
types

Add the following to 6.7.2 Type specifiers:
type-specifier
_Deci mal 32

_Deci mal 64
_Decimal 128

5 Characteristics of decimal floating types <float.k

The characteristics of decimal floating types aBn@d in terms of a model specifying general
decimal arithmeticX.2). The encodings are specified in IEEE-754B3)

The three decimal encoding formats defined in IEESER correspond to the three decimal
floating types as follows:

e Deci mal 32 is adecimal32number, which is encoded in four consecutive s({&?

bits)

e Deci nmal 64 is adecimal64number, which is encoded in eight consecutivets ¢}
bits)

e Decimal 128 is adecimall28umber, which is encoded in 16 consecutive o¢i&i8
bits)

The value of a finite number is given by €4)x coefficient x 16*°"*" Refer to IEEE-754R for
details of the format.

These formats are characterized by the lengtheottlefficient, and the maximum and minimum
exponent. The coefficient is not normalized, sditig zeros are significant; i.e., 1.0 is equabtd
can be distinguished from 1.00. The table belownshitvese characteristics by format:

Format _Deci mal 32 _Deci mal 64 _Decimal 128

Coefficient length in digits 7 16 34

ISO/IEC DTR 24732 WG14 N1201

Maximum Exponent (. 96 384 6144

Minimum Exponent (Ein) -95 -383 -6143

If the macro__ STDC_WANT_DEC FP__ is defined at the point in the source file whére t
headexf | oat . h> is included, the headef | oat . h> shall define several macros that expand
to various limits and parameters of the decimadtilay types. The names and meaning of these
macros are similar to the corresponding macrogdoeric floating types.

Suggested change to C99:
Add the following after 5.2.4.2.2:
5.2.4.2.2a Characteristics of decimal floating type<f | oat . h>

[1] The characteristics of decimal floating types defined in terms of the format described in
IEEE-754R. The finite numbers are defined by a,sagnexponent (which is a power of ten), and a
decimal integer coefficient. The value of a finitember is given by (-1§" x coefficient x

107P°"*" The macros defined if | oat . h> provide the characteristics of these represemsitio
which is defined in the Decimal Arithmetic Encodifthe prefixeDEC32 , DEC64 , and

DEC128_ are used to denote the typddeci mal 32, Deci nal 64, and_Deci nal 128
respectively.

[2] Except for assignment and casts, the valuegpefations with decimal floating operands and
values subject to the usual arithmetic conversantsof decimal floating constants are evaluated
to a format whose range and precision may be grdae required by the type. The use of
evaluation formats is characterized by the impletietgon-defined value dDEC_EVAL_METHOD:

-1 indeterminable;

0 evaluate all operations and constants just taahge and precision of the type;

1 evaluate operations and constants of typeci mal 32 and_Deci nal 64 to the
range and precision of thddeci mal 64 type, evaluate Deci mal 128 operations
and constants to the range and precision of exi mal 128 type;

2 evaluate all operations and constants to the randerecision of theDeci mal 128

type.

All other negative values fddEC_EVAL__METHOD characterize implementation-defined behavior.

[3] The integer values given in the following lisisall be replaced by constant expressions
suitable for use i#i f preprocessing directives:

e number of digits in the coefficient

DEC32_MANT DI G 7
DEC64_MANT DI G 16

ISO/IEC DTR 24732 WG14 N1201

DEC128 MANT DI G 34

e minimum exponent

DEC32_M N_EXP - 95
DEC64_M N_EXP - 383
DEC128 M N_EXP - 6143

e maximum exponent

DEC32_MAX_EXP 96
DEC64_MAX_EXP 384
DEC128 MAX_EXP 6144

e maximum representable finite decimal floating num{bleere are 6, 15 and 33 9's after the
decimal points respectively)

DEC32_MAX 9. 999999E96DF
DEC64_MAX 9. 999999999999999E384DD
DEC128_MAX 9. 999999999999999999999999999999999E6144DL

o the difference between 1 and the least value gréada 1 that is representable in the given
floating point type

DEC32_EPSI LON 1E- 6DF

DEC64_EPSI LON 1E-15DD
DEC128_EPSI LON 1E- 33DL

e minimum normalized positive decimal floating number

DEC32_M N 1E- 95DF
DEC64_M N 1E- 383DD
DEC128 M N 1E- 6143DL

e minimum positive subnormal decimal floating number

DEC32_SUBNORVAL 0. O00001E- 95DF

DEC62_ SUBNORVAL 0. 000000000000001E- 383DD

DEC128_ SUBNORIVAL 0. 000000000000000000000000000000001 E-
6143DL

[4] An implementation shall define the following omas if and only if it supporfssubnormal (also
known as denormal) numbers of the respective typlesir value is the minimum positive
subnormal floating-point number:

3 Support means that they are not flushed to zeenwised as operands, nor, when an arithmetic apegroduces
them.

ISO/IEC DTR 24732 WG14 N1201

FLT_SUBNORMAL
DBL_ SUBNORVAL
LDBL_ SUBNORMAL

Their values are typically, but not alwayd,T_ M N * FLT_EPSI LON,DBL_M N *
DBL_EPSI LON, LDBL_M N* LDBL_EPSI LON, respectively.

[5] The number of base 10 digits required to enshaé floating-point numbers wighradixb
digits which differ by only one unit in the lastagke (ulp) are always differentiated,

plog:.b if bis powerof 10
[1+ plogwb] otherwise

FLT_MAXDI GLO
DBL_MAXDI GL0O
LDBL_MAXDI G10

6 Conversions
6.1 Conversions between decimal floating and integer

For conversions between real floating and integees, C99 6.3.1.4 leaves the behavior undefined
if the conversion result cannot be represented ¢&rin4 tightened up the behavior.) To help
writing portable code, this Technical Report pr@adiefined behavior for decimal floating type.
Furthermore, it is useful to allow program execatio continue without interruption unless the
program needs to check the condition.

Suggested changes to C99:

Change the first sentence of 6.3.1.4 paragraph 1:

[1] When a finite value of generic floating typecisnverted to an integer type ...

Add the follow paragraph after 6.3.1.4 paragraph 1:

[1a] When a finite value of decimal floating tygedonverted to an integer type other th&ool ,
the fractional part is discarded (i.e., the vakiruncated toward zero). If the value of the inaég
part cannot be represented by the integer typéjrialid” floating-point exception shall be raised
and the result of the conversion is unspecified.

Change the first sentence of 6.3.1.4 paragraph 2:

[2] When a value of integer type is converted tgeaeric floating type, ...

ISO/IEC DTR 24732 WG14 N1201

Add the following paragraph after 6.3.1.4 paragraph

[2a] When a value of integer type is converted tiea@mal floating type, if the value being
converted can be represented exactly in the neg tys unchanged. If the value being converted
is in the range of values that can be representedamnot be represented exactly, the result shall
be correctly rounded. If the value being converseautside the range of values that can be
represented, the result is dependent on the rogmdade and the “overflow” floating-point
exception shall be raised. If the rounding mode is:

near, if the value being converted is less than theimam representable value of the
target type plus 0.5 unit in the last place (ulpgre is no overflow and the result is the
maximum value of the target tyhetherwise the absolute value of the result is@he
HUGE_ VAL, HUGE_VALF, HUGE_VALL, HUGE_VAL_D64, HUGE VAL _D32 or
HUGE_VAL_D128 depending on the result type and the sign isdhgesas the value being
converted.

zerq the value is the most positive finite number esgntable if the value being converted
is positive, and the most negative finite numberesentable otherwise.

positive infinity the value is same as for rounding madeoif the value being converted is
negative; otherwise the result is one of positiué&E VAL, HUGE VALF, HUGE_VALL,
HUGE_VAL_D64, HUGE_VAL_D32 or HUGE_VAL_D128 depending on the result type.

negative infinity the value is same as for rounding madeoif the value being converted
is positive; otherwise the result is one of negatlUGE_VAL, HUGE_VALF,

HUGE_VALL, HUGE VAL_D64, HUGE VAL_D32 or HUGE_VAL_D128 depending on
the result type.

6.2 Conversions among decimal floating types, and betwa
decimal floating types and generic floating types

The specification is similar to the existing onesffl oat , doubl e andl ong doubl e, except
that when the result cannot be represented exdl#yehavior is tightened to become correctly
rounded.

Suggested change to C99:

Add after 6.3.1.5#2.

* That is, the values that are between MAX and MAGH*ulp/2

10

ISO/IEC DTR 24732 WG14 N1201

[3] When a_Deci nal 32 is promoted to Deci mal 64 or_Deci mal 128, or a_Deci mal 64
is promoted to Deci mal 128, the value is converted to the type being promadedll extra
precision and/or range (for the converted type)yamoved.

[4] When a_Deci nmal 64 is demoted to Deci nmal 32, a_Deci mal 128 is demoted to

_Deci mal 64 or_Deci mal 32, or conversion is performed among decimal and gefleating
types other than the above, if the value being eded can be represented exactly in the new type,
it is unchanged. If the value being converted harange of values that can be represented but
cannot be represented exactly, the result is cbynexinded. If the value being converted is
outside the range of values that can be represahiedesult is dependent on the rounding mode.
If the rounding mode is:

near, if the value being converted is less than theimam representable value of the
target type plus 0.5 ulp, there is no overflow #m& result is the maximum value of the
target typ&, otherwise the absolute value of the result is @tdUGE_VAL, HUGE_VALF,
HUGE_VALL, HUGE _VAL_D64, HUGE VAL_D32 or HUGE_VAL_D128 depending on
the result type and the sign is the same as the\@ding converted.

zerq the value is the most positive finite number espntable if the value being converted
is positive, and the most negative finite numb@resentable otherwise.

positive infinity the value is same as for rounding madeoif the value being converted is
negative; otherwise the result is one of positiué&E VAL, HUGE VALF, HUGE_VALL,
HUGE_VAL_D64, HUGE_VAL_D32 or HUGE_VAL_D128 depending on the result type.

negative infinity the value is same as for rounding madeoif the value being converted
is positive; otherwise the result is one of negatlUGE_VAL, HUGE_VALF,

HUGE_VALL, HUGE _VAL_D64, HUGE _VAL_D32 or HUGE_VAL_D128 depending on
the result type.

6.3 Conversions between decimal floating and complex

When a value of decimal floating type is conveitted complex type, the real part of the complex
result value is determined by the rules of coneeren 6.2 and the imaginary part of the complex
result value is a positive zero or an unsigned.zero

This is covered by C99 6.3.1.7.

6.4 Usual arithmetic conversions

® That is, the values that are between MAX and MAGH*ulp/2

11

ISO/IEC DTR 24732 WG14 N1201

In an application that is written using decimatlametic, mixed operations between decimal and
other real types are likely to occur only when iifgeing with other languages, calling existing
libraries written for binary floating point arithme, or accessing existing data. Determining the
common type for mixed operations is difficult besawanges overlap; therefore, mixed mode
operations are not allowed and the programmer maesexplicit casts. Implicit conversions are
allowed only for simple assignmenmtgt ur n statement, and in argument passing.

Following are suggested changes to C99:

Insert the following to 6.3.1.8#1, after "This patt is called the@sual arithmetic conversior's
6.3.1.8[1]

... This pattern is called thesual arithmetic conversions

If one operand is a decimal floating type, all eatbperands shall not be generic floating type,
complex type or imaginary type:

First if either operand isDeci mal 128, the other operand is converted to
_Deci mal 128.

Otherwise, if either operand ieci mal 64, the other operand is converted to
_Deci nmal 64.

Otherwise, if either operand ieci mal 32, the other operand is converted to
_Deci mal 32.

If there are no decimal floating types in the opesa

First, if the corresponding real type of either gmel isl ong doubl e, the other operand
is converted, without ... <the rest of 6.3.1.8#haes the same>

6.5 Default argument promotion

There is no default argument promotion specifieditie decimal floating types. Default argument
promotion covered in C99 6.5.2.2 [6] and [7] remsaumchanged, and applies to generic floating
types only.

7 Constants

12

ISO/IEC DTR 24732 WG14 N1201

New suffixes are added to denote decimal floatmgstantsDF for _Deci nal 32, DD for
_Deci mal 64, andDL for _Deci mal 128.

Suggested changes to C99:
Add the following to 6.4.4.2 floating-suffix.

floating-suffix one of
f dl FDL df dd dl DF DD DL

Add the following paragraph after 6.4.4.2#2:
6.4.4.2
[2a] Constraints

Thefloating-suffixdf , dd, dl , DF, DD andDL shall not be used inteexadecimal-floating-
constant

Change 6.4.4.2#4 to:

[4] An unsuffixed floating constant has tygeubl e. If suffixed by the lettef orF, it has type
f | oat . If suffixed by the letted or D, it has typedoubl e. If suffixed by the lettel orL, it has
typel ong doubl e.

Add the following paragraph after 6.4.4.2#4:
6.4.4.2

[4a] If a floating constant is suffixed loif or DF, it has type Deci mal 32. If suffixed bydd or
DD, it has type Deci mal 64. If suffixed bydl orDL, it has type Deci mal 128.

7.1 Unsuffixed floating constant

The above introduces new suffixes for the deciroating constants. It would help usability if
unsuffixed floating constant could be used. Thadassan be illustrated by the following example:

_Decimal64 rate = 0.1;
The constant 0.1 has typeubl e. In an implementation where binary representasarsed for
the floating types, the internal representatiof.@fcannot be exact. The variabdde will get a

value slightly different from 0.1. This defeats fh@pose of decimal floating types. On the other
hand, requiring programmers to write:

13

ISO/IEC DTR 24732 WG14 N1201

_Decimal64 rate = 0.1dd;

can be inconvenient and affect readability of thegpam.

7.1.1Translation time data type

The main idea is to introduce a translation timedgpe (TTDT) which the translator uses as the
type for unsuffixed floating constants. A floatiognstant is kept in this type and representation
until an operation requires it to be convertedri@etual type. The value of the constant remains
exact for as long as possible during the transigtimcess. The concept can be summarized as
follows:

1. The implementation is allowed to use a type difiéefeomdoubl e andl ong doubl e as
the type of unsuffixed floating constant. This isimplementation defined type. The intention
is that this type can represent the constant gxddtie number of decimal digits is within an
implementation specified limit. For an implemeraatthat supports decimal floating point, a
possible choice is the widest decimal floating type

2. The range and precision of this type are implentemtalefined and are fixed throughout the
program.

3. TTDT is an arithmetic type. All arithmetic operat®are defined for this type.

4. Usual arithmetic conversion is extended to handiedoperations between TTDT and other
types. If an operation involves both TTDT and atuaktype, the TTDT is converted to an
actual type before the operation. There is no dopn" parsing context information required
to process unsuffixed floating constants. Techhjicgleaking, there is no deferring in
determining the type of the constant.

Examples:

double f;
f=0.1;

Suppose the implementation usddci nmal 128 as the TTDT. 0.1 is represented exactly after
the constant is scanned. It is then convertetbiabl e with an internal representation following
the specification ofFLT_EVAL_METHOD for constant of typeoubl e in the assignment
operator.

f=0.1*0.3;

Here, both 0.1 and 0.3 are represented in TTDfhelicompiler evaluates the expression during
translation time, it would be done using TTDT, &he result would be TTDT. This is then
converted taloubl e with an internal representation following the speation of
FLT_EVAL_METHQOD for constant of typeoubl e before the assignment. If the compiler
generates code to evaluate the expression durgguaan time, both 0.1 and 0.3 would be
converted taloubl e with an internal representation following the speation of

14

ISO/IEC DTR 24732 WG14 N1201

FLT_EVAL_METHQOD for constant of typeoubl e before the multiply. The result of the former
would be different but more precise than the latter

float g = 0.3f;
f=0.1*g;

When one operand is a TTDT and the other is orfid oft , doubl e, orl ong doubl e, the
TTDT is converted taoubl e with an internal representation following the dfieation of
FLT_EVAL_METHQOD for constant of typeoubl e. Usual arithmetic conversion is then applied
to the resulting operands.

_Decimal32 h =0.1;

If one operand is a TTDT and the other a decinaatihg type, the TTDT is converted to
_Deci mal 64 with an internal representation specifieddsC EVAL_METHOD. Usual
arithmetic conversion is then applied.

If one operand is a TTDT and the other a fixed ptipe’, the TTDT is converted to the fixed
point type. If the implementation supports fixednpdype, it is a recommended practice that the
implementation chooses a representation for TTIT ¢an represent floating and fixed point
constants exactly, subjected to an implementatedfimeld limit on the number of decimal digits.
Suggested changes to C99

Below are suggested changes to C99. Fixed poiestgpe not considered in these changes.

In 6.2.5 after paragraph 28, add a paragraph:

[28a] There is an implementation defined data tgleed thetranslation time data typer TTDT.
TTDT is an arithmetic type and is used as the fgpeinsuffixed floating constants. It shall have
at least the range and precision ofdieeibl e type. There is no type specifier for TTDT.
Replace 6.4.4.2 paragraph 4 with the following:

[4] An unsuffixed floating constant has type TTDisuffixed by the lettef orF, it has type
f | oat . If suffixed by the letted or D, it has typedoubl e. If suffixed by the lettel orL, it has
typel ong doubl e.

Recommended practice

If the implementation supports decimal floatingagpTTDT should have at least the range and
precision of the Deci mal 128 type.

Add the following paragraphs after 6.3.1.7:

® As defined in ISO/IEC TR 18037.

15

ISO/IEC DTR 24732 WG14 N1201

6.3.1.7a Translation Time Data Type

When a TTDT is converted tboubl e, it is converted to the internal representatioecded by
FLT_EVAL_METHOD.

Recommended practice

The conversion of TTDT tdoubl e should match the execution-time conversion of atiar
strings by library functions, such asr t od, given matching inputs suitable for both convarsjo
the same format and default execution-time rounding

6.3.1.7b

Before theusual arithmetic conversiorege carried out, if one operand is TTDT and thepts
not, and is not a decimal floating type, the TTPEK@AN is converted thoubl e. Otherwise, the
behavior is implementation defined.

8 Arithmetic Operations
8.1 Operators

The operatoradd (C99 6.5.6) Subtract(C99 6.5.6) Multiply (C99 6.5.5)Divide (C99 6.5.5),
Relational operatorgC99 6.5.8)Equality operatordC99 6.5.9)Unary Arithmetic operators
(C99 6.5.3.3), an@ompound Assignment operat@@99 6.5.16.2) when applied to decimal
floating type operands shall follow the semantgslafined in IEEE 754R.

Suggested changes to C99:

Add the following after 6.5.5 paragraph 2:

[2a] If either operand has decimal floating tyges bther operand shall not have generic floating
type, complex type, or imaginary type.

Add the following after 6.5.6 paragraph 3:

[3a] If either operand has decimal floating tyges bther operand shall not have generic floating
type, complex type, or imaginary type.

Add the following after 6.5.8 paragraph 2:

[2a] If either operand has decimal floating tyges bther operand shall not have generic floating
type, complex type, or imaginary type.

16

ISO/IEC DTR 24732 WG14 N1201

Add the following after 6.5.9 paragraph 2:

[2a] If either operand has decimal floating tyges bther operand shall not have generic floating
type, complex type, or imaginary type.

Add the following after 6.5.16.2 paragraph 2:

[2a] If either operand has decimal floating tyges bther operand shall not have generic floating
type, complex type, or imaginary type.

8.2 Functions

The decimal floating point operations square rooh, max, fused multiply-add and remainder,
which are defined in IEEE 754R, are implementetibaary functions.

8.3 Conversions

Conversions between different formats and to/frotager formats are coveredsaction 6

9 Library
9.1 Standard headers

The functions, macros, and types declared or dgfim€lause 9 and its subclauses are only
declared or defined by their respective headdtseiimacro STDC WANT_DEC FP__ is
defined at the point in the source file where thprapriate header is included.

9.2 Floating-point environment <fenv.h

The floating point environment specified in C99 @plies to both generic floating types and
decimal floating types. This is to implement t@ntextdefined in IEEE 754R. The existing C99
specification gives flexibility to implementatiomavhich part of the environment is accessible to
programs. The decimal floating-point arithmeticapes a more stringent requirement. All the
rounding directions and flags are supported.

DEC Macros Existing C99 macros for IEEE 754

generic floating types
FE_DEC TOWARDZERO FE_TOWARDZERO Toward zero
FE_DEC_TONEAREST FE_TONEAREST To nearest, ties even
FE_DEC_UPWARD FE_UPWARD Toward plus infinity
FE_DEC_DONNWARD FE_DOWNWARD Toward minus infinity

17

ISO/IEC DTR 24732 WG14 N1201

FE_DEC_TONEARESTFROWZERO | n/a To nearest, ties away from
zero

Suggested changes to C99:
Add the following after 7.6 paragraph 7:
7.6
[7a] Each of the macros
FE_DEC_DOWNWARD
FE_DEC _TONEAREST
FE_DEC TONEARESTFROWZERO
FE_DEC TOWARDZERO
FE_DEC_UPWARD
is defined and used llye _dec _get r ound andf e_dec_set r ound functions for getting and
setting the rounding direction of decimal floatipgint operations. The default rounding direction
for decimal floating-point operations shall BE_DEC TONEAREST.
Add the following after 7.6.3.2:
7.6.3.3 The fe_dec_getround function
Synopsis
#define __ STDC_WANT_DEC_FP__
#include <fenv.h>
int fe_dec_getround(void);

Description

Thef e_dec_get r ound function gets the current rounding direction fecinal floating-point
operations.

Returns

Thef e_dec_get r ound function returns the value of the rounding direetmacro representing
the current rounding direction for decimal floatipgint operations, or a negative value if there is
no such rounding macro or the current roundingativa is not determinable.

7.6.3.4 The fe_dec_setround function

Synopsis

18

ISO/IEC DTR 24732 WG14 N1201

#define __ STDC_WANT_DEC_FP__
#include <fenv.h>
int fe_dec_setround(int round);

Description

Thef e_dec_set r ound function establishes the rounding direction focid®l floating-point
operations represented by its argument roundelatigument is not equal to the value of a
rounding direction macro, the rounding directiomad changed.

If FLT_RADI X is not 10, the rounding direction altered bytset r ound function is
independent of the rounding direction altered fta_dec_set r ound function; otherwise if
FLT_RADI Xis 10, whether theeset r ound andf e_dec_set r ound functions alter the
rounding direction of both generic floating typedadecimal floating type operations is
implementation defined.

Returns

Thef e_dec_set r ound function returns a zero value if and only if thhigament is equal to a
rounding direction macro (that is, if and onlyhetrequested rounding direction was established).

9.3 Decimal mathematics <math.h>

The list of elementary functions specified in thathematics library is extended to handle decimal
floating-point types. These include functions spediin 7.12.4, 7.12.5, 7.12.6, 7.12.7, 7.12.8,
7.12.9,7.12.10, 7.12.11, 7.12.12, and 7.12.13.maerosHUGE_VAL_D32, HUGE_VAL D64,
HUGE_VAL_D128, DEC | NFI NI TY andDEC_NAN are defined to help using these functions.
With the exception a$qr t , max, andm n, the accuracy of the decimal floating-point resist
implementation-defined. The implementation mayesthat the accuracy is unknown. All
classification macros specified in C99 7.12.3 dse axtended to handle decimal floating-point
types. The same applies to all comparison macresifegd in 7.12.14.

The names of the functions are derived by additfigxes d32, d64 and d128 to tkhdeubl e
version of the function name.

Suggested changes to C99:

Add after 7.12 paragraph 2.

7.12

[2a] The types

19

ISO/IEC DTR 24732 WG14 N1201

_Deci mal 32_t
_Decinmal 64_t

are decimal floating types at least as widelesci mal 32 and_Deci mal 64, respectively,
and such thatDeci mal 64_t is at least as wide a®eci mal 32_t. If DEC_EVAL_METHOD
equals 0, Deci mal 32_t and_Deci mal 64_t are Deci mal 32 and _Deci nmal 64,
respectively; iDEC EVAL_NMETHCD equals 1, they are botlbeci mal 64; if

DEC _EVAL_METHOD equals 2, they are bothDeci mal 128; and for other values of
DEC_EVAL_METHQOD, they are otherwise implementation-defined.

Add at the end of 7.12 paragraph 3 the followingros.
7.12
[3] The macro

HUGE_VAL_D64

expands to a constant expression of tyPeci mal 64 representing infinity. The macros

HUGE_VAL_D32
HUGE_VAL_ D128

are respectively Deci mal 32 and_Deci mal 128 analogs oHUGE_VAL _D64.
Add at the end of 7.12 paragraph 4 the followingma
7.12

[4] The macro
DEC | NFI NI TY
expands to a constant expression of tyPeci mal 32 representing infinity.
Add at the end of 7.12 paragraph 5 the followingma
7.12

[5] The macro
DEC_NAN

expands to quiet decimal floating NaN for the tyjizeci mal 32.

20

ISO/IEC DTR 24732 WG14 N1201

Add at the end of 7.12 paragraph 7 the followingma
7.12
[7] The macro

FP_FAST FMAD32
FP_FAST FMAD64
FP_FAST FMAD128

are, respectively, Deci mal 32, Deci mal 64 and_Deci mal 128 analogs oFP_FAST_FNA.

Suggested changes to C99:
Add the following list of function prototypes todtsynopsis of the respective subclauses:
7.12.4 Trigonometric functions

_Decimal64 acosd64(_Decimal64 x);
_Decimal32 acosd32(_Decimal32 x);
_Decimall28 acosd128(_Decimall28 x);

_Decimal64 asind64(_Decimal64 x);
_Decimal32 asind32(_Decimal32 x);
_Decimall28 asind128(_Decimall28 x);

_Decimal64 atand64(_Decimal64 x);
_Decimal32 atand32(_Decimal32 x);
_Decimall28 atand128(_Decimall28 x);

_Decimal64 atan2d64(_Decimal64 yecihal64 x);
_Decimal32 atan2d32(_Decimal32 yecihal32 x);
_Decimall28 atan2d128(_Decimall1283gcimall28 x);

_Decimal64 cosd64(_Decimal64 x);
_Decimal32 cosd32(_Decimal32 x);
_Decimall28 cosd128(_Decimall28 x);

_Decimal64 sind64(_Decimal64 x);
_Decimal32 sind32(_Decimal32 x);
_Decimall28 sind128(_Decimall28 x);

_Decimal64 tand64(_Decimal64 x);
_Decimal32 tand32(_Decimal32 x);

21

ISO/IEC DTR 24732 WG14 N1201

_Decimall28 tand128(_Decimall28 x);
7.12.5 Hyperbolic functions

_Decimal64 acoshd64(_Decimal64 x);
_Decimal32 acoshd32(_Decimal32 x);
_Decimal128 acoshd128(_Decimall28 x)

_Decimal64 asinhd64(_Decimal64 x);
_Decimal32 asinhd32(_Decimal32 x);
_Decimall28 asinhd128(_Decimall28 x)

_Decimal64 atanhd64(_Decimal64 x);
_Decimal32 atanhd32(_Decimal32 x);
_Decimall128 atanhd128(_Decimall28 x)

_Decimal64 coshd64(_Decimal64 x);
_Decimal32 coshd32(_Decimal32 x);
_Decimall28 coshd128(_Decimall28 x);

_Decimal64 sinhd64(_Decimal64 x);
_Decimal32 sinhd32(_Decimal32 x);
_Decimall28 sinhd128(_Decimall28 x);

_Decimal64 tanhd64(_Decimal64 x);
_Decimal32 tanhd32(_Decimal32 x);
_Decimal128 tanhd128(_Decimall28 x);

7.12.6 Exponential and logarithmicdtions

_Decimal64 expd64(_Decimal64 x);
_Decimal32 expd32(_Decimal32 x);
_Decimall28 expd128(_Decimall28 x);

_Decimal64 exp2d64(_Decimal64 x);
_Decimal32 exp2d32(_Decimal32 x);
_Decimall28 exp2d128(_Decimall28 x);

_Decimal64 expm1d64(_Decimal64 x);
_Decimal32 expm1d32(_Decimal32 x);
_Decimall28 expm1d128(_Decimall28 x)

_Decimal64 frexpd64(_Decimal64 valime *exp);’
_Decimal32 frexpd32(_Decimal32 valu *exp);
_Decimall28 frexpd128(_Decimall28ieaint *exp);

" See suggested changes to the frexp function gésarbelow.

22

ISO/IEC DTR 24732 WG14 N1201

int iloghd64(_Decimal64 x);
int ilogbd32(_Decimal32 x);
int iloghd128(_Decimall28 x);

_Decimal64 ldexpd64(_Decimal64 x,arp);
_Decimal32 ldexpd32(_Decimal32 x,arp);
_Decimall28 ldexpd128(_Decimall2&kexp);

_Decimal64 logd64(_Decimal64 x);
_Decimal32 logd32(_Decimal32 x);
_Decimall28 logd128(_Decimall28 x);

_Decimal64 log10d64(_Decimal64 x);
_Decimal32 log10d32(_Decimal32 x);
_Decimall28 log10d128(_Decimall28 x)

_Decimal64 loglpd64(_Decimal64 x);
_Decimal32 log1pd32(_Decimal32 x);
_Decimall28 log1lpd128(_Decimall28 x)

_Decimal64 log2d64(_Decimal64 x);
_Decimal32 log2d32(_Decimal32 x);
_Decimall28 log2d128(_Decimall28 x);

_Decimal64 loghd64(_Decimal64 x);
_Decimal32 loghd32(_Decimal32 x);
_Decimal128 loghd128(_Decimall28 x);

_Decimal64 modd64(_Decimal64 valueecimal64 *iptr);
_Decimal32 modfd32(_Decimal32 valuBecimal32 *iptr);
_Decimall128 modfd128(_Decimall28seal Decimall28 *iptr);

_Decimal64 scalbnd64(_Decimal64nk,ni;
_Decimal32 scalbnd32(_Decimal32k,ni);
_Decimall28 scalbnd128(_Decimall2Bixn);

_Decimal64 scalblnd64(_Decimal64oxg int n);
_Decimal32 scalblnd32(_Decimal3Zxg int n);
_Decimall128 scalblnd128(_Decimalk2®ng int n);

7.12.7 Power and absolute-value fondti
_Decimal64 cbrtd64(_Decimal64 x);

_Decimal32 cbrtd32(_Decimal32 x);
_Decimal128 cbrtd128(_Decimall28 x);

23

ISO/IEC DTR 24732 WG14 N1201

_Decimal64 fabsd64(_Decimal64 x);
_Decimal32 fabsd32(_Decimal32 x);
_Decimall28 fabsd128(_Decimall28 x);

_Decimal64 hypotd64(_Decimal64 x.ecibnalé4 y);
_Decimal32 hypotd32(_Decimal32 x.ecinal32 y);
_Decimall28 hypotd128(_Decimall28 Recimall28 vy);

_Decimal64 powd64(_Decimal64 x, Ded64 y);
_Decimal32 powd32(_Decimal32 x, Ded32 y);
_Decimal128 powd128(_Decimal128 Recimall28 vy);

_Decimal64 sqrtd64(_Decimal64 x);
_Decimal32 sqrtd32(_Decimal32 x);
_Decimal128 sqrtd128(_Decimall28 x);

7.12.8 Error and gamma functions

_Decimal64 erfd64(_Decimal64 x);
_Decimal32 erfd32(_Decimal32 x);
_Decimall28 erfd128(_Decimall28 x);

_Decimal64 erfcd64(_Decimal64 x);
_Decimal32 erfcd32(_Decimal32 x);
_Decimall128 erfcd128(_Decimall28 x);

_Decimal64 lgammad64(_Decimal64 x);
_Decimal32 lgammad32(_Decimal32 x);
_Decimal128 Igammad128(_Decimalll8 x

_Decimal64 tgammad64(_Decimal64 x);
_Decimal32 tgammad32(_Decimal32 x);
_Decimal128 tgammad128(_Decimallp8 x
7.12.9 Nearest integer functions
_Decimal64 ceild64(_Decimal64 x);
_Decimal32 ceild32(_Decimal32 x);
_Decimal128 ceild128(_Decimall28 x);
_Decimal64 floord64(_Decimal64 x);
_Decimal32 floord32(_Decimal32 x);
_Decimal128 floord128(_Decimall28 x)

_Decimal64 nearbyintd64(_Decimal§4 x

24

ISO/IEC DTR 24732 WG14 N1201

_Decimal32 nearbyintd32(_Decimal32 x
_Decimal128 nearbyintd128(_Decima8li},

_Decimal64 rintd64(_Decimal64 x);
_Decimal32 rintd32(_Decimal32 x);
_Decimall28 rintd128(_Decimall28 x);

long int Irintd64(_Decimal64 x);
long int Irintd32(_Decimal32 x);
long int Irintd128(_Decimall28 x);

long long int lirintd64(_Decimal64;x
long long int lirintd32(_Decimal32;x
long long int lirintd128(_Decimall®,

_Decimal64 roundd64(_Decimal64 x);
_Decimal32 roundd32(_Decimal32 x);
_Decimal128 roundd128(_Decimall28 x)

long int Iroundd64(_Decimal64 x);
long int Iroundd32(_Decimal32 x);
long int Iroundd128(_Decimall28 x);

long long int llroundd64(_Decimalgy
long long int llroundd32(_Decimalgp.
long long int llroundd128(_Decimagl®);

_Decimal64 truncd64(_Decimal64 x);
_Decimal32 truncd32(_Decimal32 x);
_Decimall128 truncd128(_Decimall28 x)

7.12.10 Remainder functions
_Decimal64 fmodd64(_Decimal64 x, cbeal64 vy);
_Decimal32 fmodd32(_Decimal32 x, cbeal32 y);
_Decimall28 fmodd128(_Decimall28 Recimall28 y);
_Decimal64 remainderd64(_Decimal64Recimal64 vy);
_Decimal32 remainderd32(_Decimal32Recimal32 y);
_Decimall128 remainderd128(_Decimalt2 Decimall28 y);
7.12.11 Manipulation functions
_Decimal64 copysignd64(_Decimal64 Recimal64 vy);

_Decimal32 copysignd32(_Decimal32 Recimal32 y);
_Decimal128 copysignd128(_Decimalk28Decimall28 y);

25

ISO/IEC DTR 24732 WG14 N1201

_Decimal64 nand64(const char *tagp);
_Decimal32 nand32(const char *tagp);
_Decimall28 nand128(const char *Jagp

_Decimal64 nextafterd64(_Decimal64 Recimal64 vy);
_Decimal32 nextafterd32(_Decimal32 Recimal32 y);
_Decimall28 nextafterd128(_Decim8lk2 Decimall28 vy);

_Decimal64 nexttowardd64(_Decimat64 Decimall28 vy);
_Decimal32 nexttowardd32(_Decimat32 Decimall28 vy);
_Decimall28 nexttowardd128(_Decir28lk, Decimall28 y);

7.12.12 Maximum, minimum, and positdiference functions

_Decimal64 fdimd64(_Decimal64 x, civeal64 y);
_Decimal32 fdimd32(_Decimal32 x, civeal32 y);
_Decimall28 fdimd128(_Decimall28 Becimall28 y);

_Decimal64 fmaxd64(_Decimal64 x, cb@al64 y);
_Decimal32 fmaxd32(_Decimal32 x, cb@al32 y);
_Decimall28 fmaxd128(_Decimall28 Recimall28 vy);

_Decimal64 fmind64(_Decimal64 x, civeal64 y);

_Decimal32 fmind32(_Decimal32 x, civeal32 y);

_Decimall128 fmind128(_Decimall28 kecimall28 y);

7.12.13 Floating multiply-add

_Decimal64 fmad64(_Decimal64 x, D64 y, Decimal64 z);

_Decimal32 fmad32(_Decimal32 x, Ded32 y, Decimal32 z);

_Decimall28 fmad128(_Decimall28Recimall28 y, Decimall28 z);
Add to the end of 7.12.14 paragraph 1:

[1] ... If either argument has decimal floating typee other argument shall have decimal floating
type as well.

Replace 7.12.6.4 paragraphs 2 and 3 with the fatigw

[2] Thef r exp functions break a floating-point number into amalized fraction and an integer
exponent. They store the integer in th@ object pointed to bgxp. If val ue is a decimal
floating-point number, the exponent is an integialer of 10; otherwise it is an integral power of
2.

26

ISO/IEC DTR 24732 WG14 N1201

[3] If val ue is not a floating-point number, the results arspatified. Otherwise, ther exp
functions return the value, such thak has a magnitude in the interval [1/2, 1) or zard

val ue equalsx * 10®* whenval ue is a decimal floating-point number, or* 2°¢*P when
val ue is a generic floating-point numberMal ue is zero, both parts of the result are zero.

9.4 New <math.h> functions

The following are new functions added<oat h. h>.

Suggested addition to C99:
7.12.11.5 The quantize functions
Synopsis

#define __ STDC_WANT_DEC_FP__

#include <math.h>

_Decimal32 quantized32 (_Decimal32 x, _Decimaig2
_Decimal64 quantized64 (_Decimal64 x, _Decima/g4
_Decimall28 quantized128(_Decimall28 x, _Decimah)28

Description

Thequant i ze functions set the exponent of argumertb the exponent of argument while
attempting to keep the value the sathéhe exponent is being increased, the value d=ll

correctly rounded according to the current roundmagle; if the result does not have the same
value as, the “inexact” floating-point exception shall keaged. If the exponent is being

decreased and the significand of the result hag migits than the type would allow, the result is
NaN and the “invalid” floating-point exception shbé raised. If one or both operands are NaN the
result is NaN. Otherwise if only one operand isnity, the result is NaN and the “invalid”
floating-point exception shall be raised. If bogpecands are infinity, the result is

DEC | NFI NI TY and the sign is the samexasThequant i ze functions do not signal

underflow. Whether thquant i ze functions signal overflow is implementation-define

Returns

Thequant i ze functions return the number which is equal in ealexcept for any rounding) and
sign tox, and which has an exponent set to be equal texghenent of .

7.12.11.6 The samequantum functions

Synopsis

27

ISO/IEC DTR 24732 WG14 N1201

#define _ STDC_WANT_DEC_FP__

#include <math.h>

_Bool samequantumd32 (_Decimal32 x, _Decima)32 y
_Bool samequantumd64 (_Decimal64 x, _Decima)64 y
_Bool samequantumd128 (_Decimall28 x, _Decimai)28

Description

Thesamequant umfunctions determine if the representation expasmehthex andy are the
same. If bothx andy are NaN, or infinity, they have the same repres@mn exponents; if exactly
one operand is infinity or exactly one operand &@\INthey do not have the same representation
exponents. Theanmequant umfunctions raise no exception.

Returns

Thesamequant umfunctions returr r ue whenx andy have the same representation
exponentsf al se otherwise.

9.5 Formatted input/output specifiers

Suggested changes to C99:

Add the following to 7.19.6.1 paragraph 7, to 761®.paragraph 11, to 7.24.2.1 paragraph 7, and
to 7.24.2.2 paragraph 11:

H Specifies that a following e, E, f, F, g, or G eersion specifier applies to d@eci mal 32
argument.

D Specifies that a following e, E, f, F, g, or G eersion specifier applies to &eci nal 64
argument.

DD Specifies that a following e, E, f, F, g, or G ¢ersion specifier applies to a
_Deci mal 128 argument.

Change all occurrences of:
A doubl e argument representing ...

in the descriptions for the, E, f , F, g, andG conversion specifiers in 7.19.6.1 paragraph 8 and
7.24.2.1 paragraph 8 to:

A doubl e or decimal floating type argument representing ...

28

ISO/IEC DTR 24732 WG14 N1201

9.6 strtod32, strtod64, and strtod128 functions <stdlith>

The specifications of these functions are simiethibse oSt rt od, strtof ,andstrtol d as
defined in C99 7.20.1.3. These functions are dedlar<st dl i b. h>.

Suggested addition to C99:

7.20.1.5 The strtod32, strtod64, and strtod128 fumtions
Synopsis

[#1] #define __ STDC_WANT_DEC_FP__
#include <stdlib.h>
_Decimal32 strtod32 (const char * restrict npharc** restrict endptr);
_Decimal64 strtod64 (const char * restrict nphrarc** restrict endptr);
_Decimall28 strtod128(const char * restrict nptigrc** restrict endptr);

Description

[#2] Thest rt 0d32, st rt 0d64, andst rt 0d128 functions convert the initial portion of the
string pointed to byipt r to_Deci mal 32, _Deci mal 64, and_Deci mal 128 representation,
respectively. First, they decompose the input gtimmo three parts: an initial, possibly empty,

sequence of white-space characters (as specifititelbys space function), a subject sequence
resembling a floating-point constant or represgnéin infinity or NaN; and a final string of one or
more unrecognized characters, including the termmganull character of the input string. Then,
they attempt to convert the subject sequence ltmatirig-point number, and return the result.

[#3] The expected form of the subject sequence ional plus or minus sign, then one of the
following:

e anonempty sequence of decimal digits optionallytaiming a decimal-point character,
then an optional exponent part as defined in 24.4.

e | NForl NFI NI TY, ignoring case

¢ NAN or NAN(n-char-sequenggy), ignoring case in thi®AN part, where:

n-char-sequence
digit
n-char-sequence digit

The subject sequence is defined as the longegtl imitbsequence of the input string, starting with

the first non-white-space character, that is ofdkgected form. The subject sequence contains no

characters if the input string is not of the expddorm.

29

ISO/IEC DTR 24732 WG14 N1201

[#4] If the subject sequence has the expected forma floating-point number, the sequence of
characters starting with the first digit or the idegl-point character (whichever occurs first) is
interpreted as a floating constant according tatikes of 6.4.4.2, except that it is not a
hexadecimal floating number, that the decimal-poldracter is used in place of a period, and that
if neither an exponent part nor a decimal-pointrabger appears in a decimal floating point
number, an exponent part of the appropriate typle value zero is assumed to follow the last digit
in the string. If the subject sequence begins withinus sign, the sequence is interpreted as
negated. A character sequendd~ or | NFI NI TY is interpreted as an infinity. A character
sequenc®AN or NAN(n-char-sequencgy), is interpreted as a quiet NaN; the meaning efrtithar
sequences is implementation-defiffetl pointer to the final string is stored in the edj pointed to
by endpt r, provided thaendpt r is not a null pointer.

[#5] The converted value keeps the precision asnput if possible, and the value may be
denormalized. Otherwise, rounding may occur and/éhee is converted according to F.5 [#3].
Rounding happens after any negation.

[#6] In other than th& C" locale, additional locale-specific subject seqeefocms may be
accepted.

[#7] If the subject sequence is empty or does agtlihe expected form, no conversion is
performed; the value aipt r is stored in the object pointed to égdpt r , provided that
endpt r is not a null pointer.

Recommended practice

[#8] If the subject sequence has the decimal fanchat mosDEC128 MANT DI G(defined in

<f | oat . h>) significant digits, the result should be corngctunded. If the subject sequerize
has more thaDEC128 MANT_DI Gsignificant digits, consider the two bounding,aadjnt

decimal strings. andU, both havingPEC128 MANT _DI G significant digits, such that the values
of L, D, andU satisfyL <= D <= U . The result should be one of the (equal or adjfdcetues

that would be obtained by correctly roundlngndU according to the current rounding direction,
with the extra stipulation that the error with resptoD should have a correct sign for the current
rounding direction.

Returns

[#9] The functions return the converted valugny. If no conversion could be performed, the
value +0.E0dd is returned. If the correct valueusside the range of representable values, plus or
minusHUGE_VAL_ D64, HUGE_VAL_D32, orHUGE_VAL_D128 is returned (according to the
return type and sign of the value), and the vafud® macroERANGE is stored irer r no. If the

result underflows (7.12.1), the functions retunvalue whose magnitude is no greater than the
smallest normalized positive number in the retypet whetheer r no acquires the value

ERANGE is implementation-defined.

& An implementation may use the n-char sequencetermine extra information to be represented irthN's
significand.

30

ISO/IEC DTR 24732 WG14 N1201

9.7 wcstod32, westod64, and westod128 functions <wchhp.

The specifications of these functions are simiathbse ofacst od, west of , andwest ol d as
defined in C99 7.24.4.1.1. They are declaredvnhar . h>.

Suggested addition to C99:

7.24.4.1.3 The wcstod32, westod64, and wcstod128dtions
Synopsis

[#1] #define _ STDC_WANT_DEC_FP__
#include <wchar.h>
_Decimal32 wcstod32 (const wchar_t * restrict ppichar_t ** restrict endptr);
_Decimal64 wcstod64 (const wchar_t * restrict ppichar_t ** restrict endptr);
_Decimall28 wcstod128(const wchar_t * restrict npirhar_t ** restrict endptr);

Description

[#2] Thewcst 0d32, wcst 0d64, andwest 0d128 functions convert the initial portion of the
wide string pointed to bgpt r to_Deci mal 32, _Deci mal 64, and_Deci mal 128
representation, respectively. First, they decomplosenput string into three parts: an initial,
possibly empty, sequence of white-space wide cheraas specified by theswspace

function), a subject sequence resembling a flgabioint constant or representing an infinity or
NaN; and a final wide string of one or more unreungd wide characters, including the
terminating null wide character of the input wideng). Then, they attempt to convert the subject
sequence to a floating-point number, and returniebkalt.

[#3] The expected form of the subject sequence ional plus or minus sign, then one of the
following:

e anonempty sequence of decimal digits optionallytaming a decimal-point wide
character, then an optional exponent part as d&fmé.4.4.2;

e | NForl NFI NI TY, ignoring case

¢ NAN or NAN(n-wchar-sequengg), ignoring case in thi®AN part, where:

n-wchar-sequence
digit
n-wchar-sequence digit

31

ISO/IEC DTR 24732 WG14 N1201

The subject sequence is defined as the longegtl mitbsequence of the input wide string, starting
with the first non-white-space wide character, thatf the expected form. The subject sequence
contains no wide characters if the input wide gtiginot of the expected form.

[#4] If the subject sequence has the expected forra floating-point number, the sequence of
wide characters starting with the first digit oe tthecimal-point wide character (whichever occurs
first) is interpreted as a floating constant aceaydo the rules of 6.4.4.2, except that it is aot
hexadecimal floating number, that the decimal-puwiicte character is used in place of a period,
and that if neither an exponent part nor a decjpaatt wide character appears in a decimal
floating point number, an exponent part of the appate type with value zero is assumed to
follow the last digit in the string. If the subjestquence begins with a minus sign, the sequence is
interpreted as negated. A wide character sequelNEer | NFI NI TY is interpreted as an infinity.
A wide character sequenBN or NAN(n-wchar-sequenggy), is interpreted as a quiet NaN; the
meaning of the n-wchar sequences is implementatigimed® A pointer to the final wide string is
stored in the object pointed to bydpt r, provided thaendpt r is not a null pointer.

[#5] The converted value keeps the precision asnput if possible, and the value may be
denormalized. Otherwise, rounding may occur and/éhee is converted according to F.5 [#3].
Rounding happens after any negation.

[#6] In other than the C" locale, additional locale-specific subject seqeefocms may be
accepted.

[#7] If the subject sequence is empty or does agelihe expected form, no conversion is
performed; the value aipt r is stored in the object pointed to égdpt r , provided that
endpt r is not a null pointer.

Recommended practice

[#8] If the subject sequence has the decimal fanchat mosDEC128 MANT DI G(defined in

<f | oat . h>) significant digits, the result should be corngectunded. If the subject sequerize
has more thaDEC128_ MANT_DI Gsignificant digits, consider the two bounding,aadjnt

decimal strings. andU, both havingPEC128 MANT _DI G significant digits, such that the values
of L, D, andU satisfyL <= D <= U . The result should be one of the (equal or adjacetues

that would be obtained by correctly roundlngndU according to the current rounding direction,
with the extra stipulation that the error with resptoD should have a correct sign for the current
rounding direction.

Returns
[#9] The functions return the converted valugny. If no conversion could be performed, the

value +0.E0dd is returned. If the correct valueusside the range of representable values, plus or
minusHUGE_VAL_ D64, HUGE_VAL_D32, orHUGE_VAL_D128 is returned (according to the

° An implementation may use the n-char sequencetermine extra information to be represented ir\thN's
significand.

32

ISO/IEC DTR 24732 WG14 N1201

return type and sign of the value), and the vafud® macroERANGE is stored irer r no. If the
result underflows (7.12.1), the functions retunalue whose magnitude is no greater than the
smallest normalized positive number in the retypet whetheer r no acquires the value
ERANGE is implementation-defined.

9.8 Type-generic macros <tgmath.h>

All new functions added tgmat h. h> are subjected to the same requirement as spetifi€d9
7.22 to provide support fdype-generianacro expansion. When one of the arguments isiandé
floating type, use of the type-generic macro inwadunction whose parameters have the types
determined as follows:

If there is more than one real floating type argotseusual arithmetic conversions are applied to
the real floating type arguments so that they lerapatible types. Then,

e Ifany argument has typeDeci mal 128, the type determined isDeci mal 128.

e Otherwise, if any argument has typBeci nal 64, the type determined isDeci nmal 64.
e Otherwise, if any argument has typBeci mal 32, the type determined isDeci mal 32.
e Otherwise, the specification in C99 7.22 paragr@gipplies.

EXAMPLE

pow(2,3.) I/l expands to pow(2.f,3.1), the doubdesion of pow
pow(2,3DF) // expands to powd32(2DF,3DF), the iDeat32 version of pow

33

ISO/IEC DTR 24732

Index

__STDC_DEC_FP__ macro, 5
_ STDC_WANT_DEC_FP__ macro, 7, 17
_Decimal128 type specifier, 6
_Decimal32 type specifier, 6
_Decimal32_t type, 20
_Decimal64 type specifier, 6
_Decimal64_t type, 20
<fenv.h> header, 17
<float.h> header, 6
<math.h> header, 19
<tgmath.h> header, 33
arithmetic operations, 16
constants, 12
suffixed, 13
unsuffixed, 13
conversions, 9
decimal and generic floating, 10
decimal floating and complex, 11
decimal floating and integer, 9
usual arithmetic conversions, 12
DBL_MAXDIG10 macro, 9
DBL_SUBNORMAL macro, 9
DEC_EVAL_METHOD, 7
DEC_INFINITY macro, 20
DEC_NAN macro, 20
DEC128 EPSILON macro, 8
DEC128_MANT_DIG macro, 8
DEC128 MAX macro, 8
DEC128_ MAX_EXP macro, 8
DEC128 MIN macro, 8
DEC128_MIN_EXP macro, 8
DEC128_SUBNORMAL macro, 8
DEC32_EPSILON macro, 8
DEC32_MANT_DIG macro, 7
DEC32_MAX macro, 8
DEC32_MAX_EXP macro, 8
DEC32_MIN macro, 8
DEC32_MIN_EXP macro, 8
DEC32_SUBNORMAL macro, 8
DEC62_SUBNORMAL macro, 8
DEC64_EPSILON macro, 8
DEC64_MANT_DIG macro, 7

WG14 N1201

DEC64_MAX macro, 8
DEC64_MAX_EXP macro, 8
DEC64_MIN macro, 8
DEC64_MIN_EXP macro, 8
default argument promotion, 12
error and gamma functions, 24
exponential and logarithmic functions, 22
FE_DEC_DOWNWARD macro, 18
fe_dec_getround function, 18
fe_dec_setround function, 18
FE_DEC_TONEAREST macro, 18

FE_DEC_TONEARESTFROMZERO macro, 18

FE_DEC_TOWARDZERO macro, 18
FE_DEC_UPWARD macro, 18
floating multiply-add functions, 26
FLT_MAXDIG10 macro, 9
FLT_SUBNORMAL macro, 9
formatted I/O specifiers, 28
FP_FAST_FMAD128 macro, 21
FP_FAST_FMAD32 macro, 21
FP_FAST_FMAD64 macro, 21
HUGE_VAL_D128 macro, 20
HUGE_VAL_D32 macro, 20
HUGE_VAL_D64 macro, 20
hyperbolic functions, 22
LDBL_MAXDIG10 macro, 9
LDBL_SUBNORMAL macro, 9
manipulation functions, 25
maximum, minimum, and positive difference
functions, 26
nearest integer functions, 24
power and absolute-value functions, 23
guantize functions, 27
remainder functions, 25
samequantum functions, 27
strto* functions, 29
translation time data type, 14
trigonometric functions, 21
TTDT. Seetranslation time data type
type-generic macros, 33
wcsto* functions, 31

34

