ISO/IEC JTC 1/SC 22/OWGV N 0207

Proposed new vulnerability description, QVT
	Date
	15 July 2009

	Contributed by
	Dan Nagle

	Original file name
	NewLibraryNames.txt

	Notes
	

6.XX New Library Names [QVT]

6.XX.0 Status and history

6.XX.1 Description of application vulnerability

Most languages allow software to be defined in libraries,

which may be distributed as products. If a supplier of a library

upgrades the library, new names may appear or old names may disappear.

The change of names may interact with the names used by an application.

6.XX.2 Cross reference

6.XX.3 Mechanism of failure

When products are distributed as libraries, the supplier may

upgrade the library, and encourage users to use the latest version.

The vendor may not document all the names supplied by the library,

as some of the names may supply low-level service not intended for use

by users of the library. If a new undocumented name appears in a library,

depending upon linking details, it may be chosen ahead

of an application routine of the same signature.

If a new undocumented name disappears

from a library that was inadvertently used, the program behavior

may unexpectedly and subtly change. An attacker might take advantage

of this problem to change program behavior where dynamic libraries

are used.

For example, if a library provides an undocumented low-level routine

to translate error messages into the local language, and an applications

programmer doesn't like the vendor-supplied version, a custom version

might be used by learning the names supplied in the library.

The functionality of the two routines may not be identical,

the difference may be benign or malicious.

For another example, if a library upgrade introduces a new function name

to perform some utility task, the name might unexpectedly collide

with an application-supplied routine. In an unlucky case,

the signatures may match, thus defeating language-defined features

designed to prevent inappropriate usage. Depending upon linking details,

the library routine may be used ahead of the application routine.

For another example, if a library upgrade removes an old function name

that performed some utility task, the name might unexpectedly collide

with an application-supplied routine. If the functionality is different,

the application behavior may change. In an unlucky case,

the signatures may match, thus defeating language-defined features

designed to prevent inappropriate usage. If the application

was "debugged" with the wrong routine in use, it may no longer

work correctly with the original application routine in place.

6.XX.4 Applicable language characteristics

This vulnerability description is intended to be applicable

to any language that allows routines to be packaged

in libraries that might be distributed independently

of the application using the library. Whether a language

specifically defines a mechanism for making libraries, most languages

do not prohibit use of libraries.

6.XX.5 Avoiding the vulnerability or mitigating its effects

Software developers can avoid the vulnerability

or mitigate its ill effects in the following ways:

- Use whatever language features are available to mark

 that a procedure originates in a library.

- Use tools to discover names collisions between application-defined

 routines and library-defined routines.

6.XX.6 Implications for standardization

Language standards should:

- provide a mechanism to specify that a routine originates

 in a named library or originates with an application

- provide that a warning is issued when an application procedure

 matches the signature of a library procedure

6.XX.7 Bibliography
