Closure-Based Syntax for Contracts

Document #: P2461R0

Date: 2021-10-14

Project: Programming Language C++
Audience: WG21 SG21 (Contracts)
Reply-to: Gasper AZman

<gasper.azman@gmail.com>
Caleb Sunstrum
<calebs@edg.com>

Bronek Kozicki
<brok@spamcop.net>

Contents
1 Introduction 2
1.1 On Extensions and Viability L 2
2 Proposal 2
2.1 Example e e 2
2.2 Proposed syntax L e e e 3
2.2.1 MVP Restrictions e e e 3
3 Future Extensions (not a proposal) 4
3.1 Example e e 4
4 Semantics 4
4.1 Evaluation order e e 4
411 ASSertionso e e 4
4.1.2 pre- and post-conditions 5
4.2 post-condition reference-capture limitations in the MVP L. 5
4.3 Side-effect elision L 6
5 New good stuff if we pick closure-based semantics 6
5.1 Stateful contracts (extension) L 6
5.2 Destructuring the return value L Lo 6
5.3 We can have attributes appertaining to contract annotations 7
6 Challenges with the attribute-derived syntax 7
6.1 Place for annotations like “axiom”, “new”, etc.o oL 7
6.2 Referencing function arguments in postconditions oo 7
6.3 Introducing the return variable L 8
6.4 Preconditions and assertions that need copies L. 9
6.5 Postconditions that need destructuring [when lambda-captures get it] 9
6.6 Multithreaded Usage e 9
6.7 SUMINATY ot e e e e e e 10
7 Mutation and Static Analyzers 10
8 What about abbreviated lambdas? 10

mailto:gasper.azman@gmail.com
mailto:calebs@edg.com
mailto:brok@spamcop.net

9 C-compatibility 10

10 Proposed Wording 11
11 Acknowledgements 11
12 References 11

1 Introduction

The attribute-derived syntax for contracts is limiting and steps on the shared space between C and C++4. This
paper explores an alternative syntax that should hopefully be more powerul while being able to express the same
semantics.

This paper proposes almost the same semantics as [P2388R2].

The only significant change from [P2388R2] is the semantics of effect elision - this paper specifies it as all-or-
nothing, per correctness-annotation.

Due to the way this paper models annotations, it may leave fewer things undefined compared to [P2388R2],
despite the fact that that it does not propose explicit closures yet.

Note: this paper is an exploration. The authors do not object to the currently agreed-upon syntax; but it does
seem to present certain challenges that this paper tries to address.

Note: WG14 has communicated that their vendors don’t have a blocking problem with the attribute-like syntax,
though they have reservations; in addition, WG21 members have expressed difficulties with teaching the : means
it’s not an attribute intricacies.

1.1 On Extensions and Viability

The authors believe that any MVP must clearly show plausible syntax for all known extensions. This
does not mean propose. It means show. Specifying precise semantics for the entire extension space is not in the
spirit of a minimum viable product, but viability implies that all desired features can at some point be supported.
This means there must be syntax, so syntax we show.

2 Proposal

2.1 Example

We introduce three context-sensitive keywords: pre, post, and assert. pre and post are only keywords in the
toplevel context of a function declarator. In the future, we can put other keywords between the keyword and
the colon (see example).

pre and post can appear in function declarations after the place for the optional trailing requires clause.
Example:

auto plus(auto const x, auto const y) -> decltype(x + y)
pre { x > 0 }
pre {
/* check for overflow - badly */
(x >0 && y > 0 7 as_unsigned(x) + as_unsigned(y) > as_unsigned(x) : true) &&
// since these are conditional-expressions, use '€&4' to combine them
(x <0 && y < 0 ? as_unsigned(x) + as_unsigned(y) < as_unsigned(x) : true)

}
// ret is as-if autofss

post (ret) { ret == (x +y) }
{
assert { x > 0 }; // this is currently "valid" syntaz,
// but we should reclaim it.
auto cx = Xx;
return cx += y;
}

One may note that this is strikingly similar to the syntax proposed in [N1962], way back in 2006. Our thanks
to Andrzej Krzeminski for digging this up.

2.2 Proposed syntax

Let’s take a look at the generic syntax of a correctness-annotation (to use the term from [P2388R2]):

correctness-specifier:
correctness-specifier-keyword correctness-specifier-introducer,,,, correctness-specifier-body

correctess-specifier-keyword:
pre | post | assert

correctness-specifier-introducer:
lambda-introducer,,,, return-value-id,,,

return-value-decl:
(identifier)

correctness-specifier-body:
{ conditional _expression }

For the MVP, the lambda-introducer is required to be omitted.
If the lambda-introducer is omitted, the correctness-specifier-body behaves as-if the lambda-introducer was [&].

If the correctness-specifier-keyword of the correctness-specifier is post, the return-value-decl must be present,
and introduces the name for the prvalue or the glvalue result object of the function. This identifier is valid
within the correctness-specifier-body.

2.2.1 MVP Restrictions

Naming a non-const value parameter in a post-condition is ill-formed for now. This can be lifted by allowing
copy-capture later, when we allow the lambda-introducer to appear. This is to both prevent referencing moved-
from objects, and to allow the calling code to reason about the properties of the result object, such as in
the example:

int min(int x, int y)
post (r) { r<=x&& r <=y };

The lambda-closure definition works with this - the function arguments are captured by reference, which happens
to be reference-to-const, given that they are const, which gives the exact semantics of [P2388R2].

3 Future Extensions (not a proposal)

3.1 Example

The above really just assumes the default capture is [&], which we can introduce later.

Modeling using lambda-captures allows us to explain why post-conditions can’t refer to rvalue-reference argu-
ments, and all the other possible implementation-limitations as well.

Example: (extensions not proposed here)

auto plus(auto x, auto y) -> decltype(x + y) // no const
requires(requires(O{ {x + y} -> std::integral; }) // annotations after requires clause
pre { x > 0 } // proposed here
pre audit("slow for numeric code") new [&] { // (audit, new) are potential eztensions
(x>0 & y > 0 7 as_unsigned(x) + as_unsigned(y) > as_unsigned(x) : true) &&
(x <0 && y < 0 7 as_unsigned(x) + as_unsigned(y) < as_unsigned(x) : true)
}
pre [&y, x, z=x] {
// capture y by reference, = by value and copy z into z
// check that += does the same thing as +
(z+=y) == (x+y)

}

post [x, yl (ret) { // capture z, y by value, *explicitly*
ret == (x + y)

}

post [&x, y] (ret) {
// ill-formed, by-ref postconditions on wvalue-params are meaningless for caller
ret == (x + y)
X
{ // just to show where try-blocks go

assert { x > 0 };
return x += y;

4 Semantics

We specify the future in a somewhat more general manner than strictly required for the MVP, to indicate the
inner workings of the future extensions.

4.1 Evaluation order

This section describes the order of evaluation if contract checking is enabled. If it’s disabled, there is no evaluation.

4.1.1 Assertions

Assertions (any assert-based correctness-specifier) are executed as if they were immediately-invoked lambda
expressions, and are therefore not a problem.

4.1.2 pre- and post-conditions
We need to make preceding pre-conditions protect both the lambda-introducer and the correctness-specifier-body
of any subsequent correctness-specifier.

Therefore, pre-conditions are executed as is obvious: first the correctness-specifier-introducer (if any), and then
immediately their correctness-specifier-body.

post-conditions are evaluated slightly differently; their correctness-specifier-introducer is evaluated in-sequence
along with pre-conditions; their bodies are, obviously, evaluated after the function exits.

If a pre-condition B follows a pre-condition A in a function’s declaration, then no part of B shall be executed
before A has been proven;

If a post-condition P follows a pre-condition A in a function’s declaration, then not even P’s correctness-
specifier-introducer shall be executed before A is proven. This is to protect initialization from out-of-contract
behavior.

No postcondition closure is executed before all preconditions are proven.
This means that the following execution orders are all OK:

— A, B, P

Y

. B, P
B, P

) ’

B e

A
B
B

oo W

prove A at compile time), B, P
inherit proof of A from caller precondition), B, P

o~ o~

4.2 post-condition reference-capture limitations in the MVP

Capturing function parameters by mutable-reference in postconditions may cause difficulties for static analysis,
as some expressions containing these will require interprocedural /inter-TU analysis, which may be beyond the
capabilities of a compiler. Dedicated static analysis tools should still be able to handle these, however. [P2388R2]
forbids mutating function arguments.

Example (courtesy of Tomasz Kaminski):

int pickRandom(int beg, int end)
post [&] (r) {
ret >= beg &&
ret <= end

};

Given that we don’t know the function body, and we could have changed beg and end, this conveys no information
for static analysis (you’d have to mark beg and end const).

We therefore have a choice of how to start out with this proposal:

— forbid capturing parameters by mutable reference

— forbid capturing parameters by reference altogether

— do nothing and just expect degraded static analysis performance (capture-by-mutable-reference is not a
problem for runtime checking)

The stated goal of feature-bijection with [P2388R2] for this paper says we should forbid reference-capture for
parameters in post-conditions and only allow capture-by-value in the MVP.

4.3 Side-effect elision

This MVP presupposes that for the purposes of optimization, the compiler is allowed to either execute, or not,
entire correctness specifiers, together with their closures. Subexpression elimination is only permitted under the
(stricter) as-if rule.

This is because, while it should not be lippincott-discernible to the program whether a specifier was actually
executed, this might only actually be true if the specifier gets to clean up after itself. In other words, the sum
of the parts is assumed “pure”; the parts are not.

5 New good stuff if we pick closure-based semantics

— We get improvements in lambda-capture grammar “for free”. Once lambda-introducers get destructuring
support, so do contracts, instead of inventing yet another minilanguage.

— We don’t have to re-specify anything regarding pack expansions, etc; lambda-introducers get us that, too.

— We can check time/environment-based contracts (see example below).

— Proper support for using the return-value in initializer expressions, and the ability to copy the return value
so it’s not consumed.

— It’s consistent with the rest of the language, instead of inventing a yet-another minilanguage.

5.1 Stateful contracts (extension)

A yet-unserved use-case is checking whether a realtime function actually runs in the time promised; this syntax
makes it easy:

int runs_in_under_10us()
post [start=gettime()] { gettime() - start <= 10us };

Or, perhaps check we didn’t leak any memory:

int does_not_leak(allocator auto alloc)
post [usage=alloc.usage(), &alloc] { usage == alloc.usage() };

Or, that sort actually returns a permutation:
void sort(auto first, auto last)

post audit [&, input=to<vector>(first, last)]
{ is_permutation(input, {first, lastl}) I};

The attribute-derived syntax does not suggest an obvious way to do this, since it doesn’t have an obvious closure.

5.2 Destructuring the return value

We need to reach for an immediately-evaluated lambda expression because we don’t have destructuring support
in lambda-introducers, but that’ll change, hopefully, and when it does, we should inherit the fixes.

auto returns_triple()

post (r) { [&] { auto [a, b, ¢c] = r; return ¢ > 0; (O }
{

struct __private { int __a; int __b; int __c; };

return __private{l, 2, 3};

5.3 We can have attributes appertaining to contract annotations

This one also courtesy of Andrzej Krzeminski.

int f£(int * n)
pre{n '= nullptr}
[[acme::audit]] pre{n >= 0};

A vendor of compiler extensions can always ship their own features as attributes - but this would not go quite
as smoothly with almost-attributes.

6 Challenges with the attribute-derived syntax
This section explores future extensions as envisaged by [P2388R2] and previous papers.

6.1 Place for annotations like “axiom”, “new”, etc.

The best idea for where to put such markers is at the end, after a semicolon; from [P2388R2]/8:

This proposal [P2388R2]
int f(int* p) // after ; at end
pre {p} int f(int* p)
pre new {xp > 0} [[pre: pl] // stable annotation

[[pre: *p > 0; newl] // new annotation

int f(int* p) // after : at end
pre audit("allows messages") {p} [[post r: r > 0: new]]
pre new("2021-09-27") {*p > 0};

// in braces at start
[[post{new} r: r > 0]]

6.2 Referencing function arguments in postconditions

There are issues with arguments that change value during function evaluation and postconditions. They are
described in [P2388R2]/6.4 and 8.1. [P2388R2] side-steps this issue by attempting to prevent referencing modified
arguments, requiring that referenced arguments should be const-qualified (in definitions).

The ideas using the [P2388R2] syntax look like this (all from [P2388R2]/8.1):

// This proposal // p2388r2 1)

int f(int& i, array<int, 8>& arr) int f(int& i, array<int, 8>& arr)
post [i] (xr) { r >= 1 } [[post r, 0old_i = i: r >= old_i]]
post [old_7=arr[7]] (r) [[post r, 01d_7 = arr[7]: r >= old_71];

{r > 01d.7 }

// p2388r2 3) // p2388r2 2)

int f(int& i, array<int, 8>& arr) int f(int& i, array<int, 8>& arr)
[[post r: r >= oldof(i)]] [[post r: r >= oldof(i)]]
[[post r: r >= oldof(arr[7]1)]1]; [[post r: r >= oldof(arr[7]1)]1];

Table 3: Another oldof example:

This proposal P2388R2
template<class ForwardIt, class T> template<class ForwardIt, class T>
ForwardIt find(ForwardIt first, ForwardIt find(ForwardIt first,

ForwardIt last, ForwardIt last,

const T& value) const T& value)

post [first] (r) [[post r: distance(oldof(first), r) >= Oul]
{ distance(first, r) >= Ou }
post [&last] (r) [[post r: distance(r, last) >= Oull
{ distance(r, last) >= Ou }
{ {
for (; first !'= last; ++first) { for (; first !'= last; ++first) {
if (xfirst == value) { if (xfirst == value) {
return first; return first;
} }
+ }
return last; return last;
¥ }

6.3 Introducing the return variable

This proposal P2388R2
int f(int* i, array<int, 8>& arr) int f(int& i, array<int, 8>& arr)
post [&i] (x) { r >=1 3}; [[post r: r >= il];

// alternative
int f(int& i, array<int, 8>& arr)
[[post(x): r >= 0]]

6.4 Preconditions and assertions that need copies

Table 5: [P2388R2] has no answer for preconditions that need to
mutate a copy:

This proposal [P2388R2] Does not work
int f(forward_iterator auto first, int f(forward_iterator auto first,
forward_iterator auto last) forward_iterator auto last)
pre { first != last } [[pre: first != last]l] // ok
pre [first] { std::advance(first, 1), [[pre: std::advance(first, 1), // nope
first != last }; first != last]]l];

6.5 Postconditions that need destructuring [when lambda-captures get it]

Table 6: Functions could concievably have destructure-only APIs:

This proposal [P2388R2]
auto returns_triple() auto returns_triple()
post (r) { match(r) { [[post r: match(r) {
[x, y, 2] => x>y && y > z; [x, y, z] => x>y &&y > z;
_ => false; _ => false;
1} 17;

This syntax kind-of works, but is not proposed, and there is nowhere to specify the binding type (reference or
copy?) We haven’t even solved this for lambda captures, but we will, and we want to inherit the language once
we do.

6.6 Multithreaded Usage

Issue courtesy of Aaron Ballman:

A potential issue with P2388R2 that is carried over into D2/61R0 is with side effect operations. Given that
they 're unspecified, does this mean there’s no safe way to write a portable contract which accesses an object shared
between threads? e.g., multithreaded program where a function is passed a mutex and a pointer to a shared object;
can the contract lock the mutex, access the pointee, then unlock the mutex?

With closure-based semantics, we can avoid this:

void frobnicate_concurrently(auto&& x)
// closures-are-a-future-extension.disclaimer
pre [g=std::lock_guard(x)] { is_uniquely_owned(x); };

In this MVP, we allow the compiler to assume there are no side-effects to an expression for the purposes of
optimisation, but they can either all be omitted, or none may, for a given statement, including the closure.

We therefore have a plausible RAII-based metaphor that people already understand.

6.7 Summary

— The closure-based syntax makes it obvious when values are captured, and even suggests an implementation
- just put the closures on the stack before the function arguments.

— It doesn’t invent another language for capturing values, which means the syntax will grow together with
lambda captures.

— It makes it obvious how to do stateful postconditions that check before/after: the closure runs with
pre, the body runs after return. This is far from obvious with the [P2388R2] syntax.

7 Mutation and Static Analyzers

Static analyzers should be able to handle limited mutation in order to analyze C++, and many contracts that
describe function behaviour will require some mutation of a copy. Allowing copies to be made is therefore
immensly useful in a contract facility.

We have assurances from at least some analyzer vendors they see no issue with allowing copies and mutation in
contract annotations in the future.

8 What about abbreviated lambdas?

The post-condition syntax naturally looks like a shorthand lambda:

post [closure] (identifier) { conditional-exzpression

This topic was explored in [P0573R2] by Barry Revzin, who proposed this syntax as point 2.3.
Alternative from the paper:

post [closure 1 (<dentifier) => conditional-expression

However, this doesn’t work in function declarations because terminating expressions is difficult, so we like the
earlier syntax better.

In this case, the default closure is [&], the parameter-type is auto&& and we don’t need to take a stance on the
noexcept specifier or the return type.

However, given the above, EWG should take a stance on whether that looks like a plausible set of semantics for
shorthand lambdas, because we shouldn’t have a yet another set of semantics for those.

9 C-compatibility

C and C++ implementations often share a set of system headers, and there will naturally be a desire to add
contracts to entities in those headers.

One of the motivating reasons behind the attribute-like syntax in [P2388R2] is that a C compiler can be reason-
ably updated to ignore the contracts unless/until C gets Contracts as well. It’s worth noting that the proposed
syntax in [P2388R2] is still ill-formed for attributes, and a properly conforming C compiler that has not been
updated to handle (ignore) the contracts would still issue diagnostics.

There is some debate as to whether it’d be a good thing if a C compiler were to still accept code that has
Contracts in it when the C compiler is unaware of Contracts, and it has been noted that some implementations
may simply consume all tokens in an unrecognized attribute until reaching the closing 1], regardless of whether
the internal structure of the attribute is properly conforming.

The syntax proposed in this paper, however, cannot be ignored by a C compiler that is unaware of Contracts -
it is unarguably ill-formed C code.

10

This syntax lends itself easily to conditional compilation, especially with a feature-test macro:

int my_func(int x)

#if

__cpp_contracts /* Perhaps just __contracts to allow C to easily opt-in? */

pre { x > 0; }
#endif /* __cpp_contracts */

{

VL

}

*/

This is not a motivating difference from [P2388R2] - conditional compilation can just as easily be used to guard
Contracts there; the main difference in C-compatibility between these two proposals is that [P2388R2| has a
greater potential of a Contracts-unaware C compiler ignoring any contracts without a meaningful diagnostic or
programmer opt-in.

10

Proposed Wording

TODO. Writing it will be an exercise, and the authors want to see if there is any enthusiasm for this at all before
spending the time.

11

12

Acknowledgements

The entire WG21. This is a huge effort, and since contracts were pulled from C++20, the group has been
showing an extraordinary level of determination to get to consensus.

Andrzej Krzemienski, who has been a steadfast integrator of opinion in P2338 - the MVP paper sequence.
T’ve helped a bit, but he’s been extraordinary, and also dug up more prior art and contributed examples.
I thrice presented him co-authorship, which he did thrice refuse.

Tom Honermann, who saw the interplay with function try-blocks.

Phil Nash, for quite a few insightful comments, and the function-parameter syntax for return values
Peter Brett, for encouraging me to drop the complex sequence of ;-separated conditions and stick to a
single condition (subconditions separated by &&).

The BSI for reviewing this paper early.

Lisa Lippincott, for her study of stateful function contracts and all the hours she’s spent explaining the
point and their shape to Gasper.

Tomasz Kaminski, for also pointing out the function parameter syntax for return values, and reminding
the authors that reference-captures for non-const parameters render postconditions less useful for static
analysis in the absence of the function body.

Ville Voutilainen, for always connecting all of the weird bits of impact everything has on everything else.

References

[N1962] L. Crowl, T. Ottosen. 2006-02-25. Proposal to add Contract Programming to C++ (revision 4).
https://wg21.link/n1962

[P0573R2] Barry Revzin, Tomasz Kamiriski. 2017-10-08. Abbreviated Lambdas for Fun and Profit.
https://wg21.link /p0573r2

[P2388R2] Andrzej Krzemienski, Gasper Azman. 2021-09-10. Minimum Contract Support: either Ignore or
Check_and_ abort.
https://wg21.link/p2388r2

11

https://wg21.link/n1962
https://wg21.link/p0573r2
https://wg21.link/p2388r2

	Introduction
	On Extensions and Viability

	Proposal
	Example
	Proposed syntax
	MVP Restrictions

	Future Extensions (not a proposal)
	Example

	Semantics
	Evaluation order
	Assertions
	pre- and post-conditions

	post-condition reference-capture limitations in the MVP
	Side-effect elision

	New good stuff if we pick closure-based semantics
	Stateful contracts (extension)
	Destructuring the return value
	We can have attributes appertaining to contract annotations

	Challenges with the attribute-derived syntax
	Place for annotations like ``axiom'', ``new'', etc.
	Referencing function arguments in postconditions
	Introducing the return variable
	Preconditions and assertions that need copies
	Postconditions that need destructuring [when lambda-captures get it]
	Multithreaded Usage
	Summary

	Mutation and Static Analyzers
	What about abbreviated lambdas?
	C-compatibility
	Proposed Wording
	Acknowledgements
	References

