N. Josuttis: P2432R1: Fix istream_view

Project:

Doc No: WG21 P2432R1

Date: 2021-09-24

Reply to: Nicolai Josuttis (nico@josuttis.de)
Audience: LEWG, LWG

Issues:

Fix istream_view, Rev 1

ISO JTC1/SC22/WG21: Programming Language C++

This paper fixes a fundamental design problem with the current helper function
std: :ranges: : istream_view<>() that cause multiple inconsistences and unnecessary code

overhead when declaring istream_view objects.

Tony Table:
Before After
std: :ranges::istream_view<int> v{mystream} | std::ranges::istream _view<int> v{mystream}
/l ERROR /I OK

std: :ranges::istream_view<int>(mystream)
11 OK

std: :ranges::istream_view<int>(mystream)
/1 still OK

/I using input stream for wchar _t:
std: :ranges: :istream_view<int>{mywstream}

/I using input stream for wchar _t:

std: :ranges: :wistream_view<int>{mywstream}
Il or:

std: :views: istream<int>(mywstream)

/l using input stream for other char type:
std: :ranges::istream_view<int>{u8stream}

/l using input stream for other char type:
std::views: istream<int>(u8stream)

Rev1:

Small fixes on examples and wording.

RevO:

First initial version.

Motivation

The current definition of std: :ranges: : istream_view() breaks several basic conventions:
e This would be the first type called basic_xyz that has a corresponding symbol xyz that is not a

type.

e This would be the only symbol xyz_view that is not a view type, but a function (usually, we have
corresponding adaptors in namespace std: :views as functions).

It hinders to declare an istream_vieuw just as follows:
std::istringstream mystream{"0 1 2 3 4"};

std: :ranges::istream_view<int> v{mystream};

Instead, the programmer has to implement:

/ ERROR

std::istringstream mystream{"0 1 2 3 4"};
std: :ranges: :basic_istream_view<int, char> v{mystream};

It also confuses programmers because using {} to create a temporary istream view does not compile (and

yields an even more confusing error message):
for (int val

> std::ranges::istream_view<int>{mystream}) {

/ ERROR




N. Josuttis: P2432R1: Fix istream_view

Instead, the programmer has to implement
for (int val : std::ranges::istream_view<int>(mystream)) {
or:
for (int val : std::ranges::basic_istream_view<int, char>{mystream}) {

.

Therefore, this paper proposes to fix this design mistake so that we follow the usual conventions.
The fix should be a defect against C++20.

In addition, this view is the only type xyz_view without a adaptor in namespace std: :view. So |
propose to add it.

wistream_view

We have to decide whether also to support other char types with a corresponding convenience function:
wistream_view, u8istream_view, u16istream_view, u32istream_view

In C++20, currently, We have full support for char, wchar_t, char8_t, char16_t, and char32_t only for:

e basic_string
e basic_string_view
e streampos

We only have support for char and wchar_t for

basic_istream, basic_ostream, basic_iostream
basic_istringstream, basic_ostringstream, basic_stringstream
basic_stringbuf

basic_filebuf

basic_streambuf

basic_format

As this feature belongs to the stream area, | propose only to standardize types istream_view and
wistream_view.

Backward Compatibility

With the proposed fix, code using
for (int val : std::ranges::istream_view<int>(mywstream)) {

-

will still compile and work.

Code using this view for wide strings:
for (int val : std::ranges::istream_ view<int>(mywstream)) {

-

will no longer compile, but can easily be converted to:
for (int val : std::ranges::wistream view<int>(mywstream)) {



N. Josuttis: P2432R1: Fix istream_view

}

for (int val : std::views::istream<int>(mywstream)) {

.

or to:

Code using this view for UTF strings:
for (int val : std::ranges::istream_view<int>(ustream)) {

-

will no longer compile, but can easily be converted to:
for (int val : std::ranges::basic_istream_view<int, char8_t>(ustream)) {
}

for (int val : std::views::istream<int>(ustream)) {

.

or to:

| don’t assume that much code like that is written yet. And the way to perform the fix is easy.

Overall consistency is far more worth because otherwise programmers using char streams have to pay a
significant price (plus confusion due to inconsistent design).

Proposed Solution

In 24.2 Header <ranges> synopsis [ranges.syn]
replace

by

template<class Val>

using istream view = basic_istream view<Val, char>;
template<class Vval>

using wistream view = basic_istream_view<Val, wchar_t>;

namespace views { template<class T>
inline constexpr unspecified istream = unspecified ; }

In 24.6.5.1 Overview [range.istream.overview]

insert after paragraph 1 before the example:
The name views: - istream<T> denotes a customization point object (16.3.3.3.6). Given a type T and
a subexpression E of type U, if U models derived_from<basic_istream<typename
U::char_type, typename U::traits_type>>, then the expression
views: i istream<T>(E) is expression-equivalent to
basic_istream _view<T, typename U::char_type, typename
U::traits_type>(E); otherwise, views: : istream<T>(E) is ill-formed.

In 24.6.5.2 Class template basic_istream_view [range.istream.view]

strike:




N. Josuttis: P2432R1: Fix istream_view

Feature Test Macro

This should be a defect against C++20.
No feature test macro as basic_istream_view can be used with the old and new version.

Acknowledgements

Thanks to a lot of people who discussed the issue, proposed information and possible wording.
Especially: Barry Revzin, Tomasz Kaminski, Tim Song, Jonathan Wakely, Christopher Di Bella, Casey
Carter.

Forgive me if | forgot anybody.



