

Pattern matching using is and as
Document Number: P2392 R0

Date: 2021-06-13

Reply-to: Herb Sutter (hsutter@microsoft.com)

Audience: EWG

Abstract

This paper aims to build on the strong foundation of existing pattern matching papers, and to contribute:

 a clean and regular syntax for expressing match alternatives without name introduction ambiguities,

 in a generalizable way that could be used consistently throughout the language, because matching a pattern

is a broadly useful feature that ideally should not be limited to inspect statements only.

Contents

1 Key goal: Avoid divergent sub-language with special syntax 2

1.1 Nutshell overview of this approach ..2

1.2 Design principles ...3

1.3 Acknowledgments ..4

2 Posit for the sake of discussion: is and as expressions .. 5

2.1 General constraint expression: is ..5

2.2 General casting expression: as ...9

2.3 is/as and dynamic types: Customization and std ... 12

3 Pattern matching using is and as ... 19

3.1 Core approach: Expressing alternatives using is and as .. 19

3.2 Advanced patterns: is/as combinations, dereference .. 20

3.3 Conveniences: ||, &&, {} ... 21

3.4 Examples .. 25

3.5 Tony tables: Side by side with other proposals/languages ... 32

4 Appendix: Notes on implementation, optimization, and syntax 50

4.1 Implementation notes: Grammar, avoiding ambiguities .. 50

4.2 Optimization notes: Static matches, integers, strings, and more ... 56

4.3 Syntax notes: inspect, =>, () .. 59

4.4 Extension notes ... 67

4.5 History and related work ... 69

5 Bibliography .. 70

mailto:hsutter@microsoft.com

P2392 R0 Pattern matching using is and as — Sutter 2

1 Key goal: Avoid divergent sub-language with special syntax
“I want an integrated set of language features and libraries for C++ …

Don’t try to define ‘isolated’ mini-languages within C++” — B. Stroustrup in [Solodkyy 2014b]

This paper agrees with the existing pattern matching proposals’ motivation and implementation “bones.” This

paper tries to regularize the user interface “skin,” to avoid inventing a divergent sub-language with special-pur-

pose one-off syntaxes that end up different from elsewhere in the language, and to embrace the power of pat-

tern matching and make it useful throughout the language and not just inside inspect. In particular:

• Avoid special syntax for match alternatives. Instead, use a syntax that can be used also outside in-

spect (e.g., with if).

• Avoid special syntax to distinguish introduced names from uses of existing names. Instead, put the

two in unambiguously separate grammar positions.

• Keep simple things simple. Give common cases the nice syntax that is a subset of the general syntax, by

allowing “advanced” options to be well defaulted and syntactically omitted when not used..

Other syntax choices like inspect/switch or =>/: are also important, but I try to follow the previous papers for

those to avoid distracting from this key goal. See §4 Appendix for discussion of some alternatives.

1.1 Nutshell overview of this approach
In this approach, throughout the language:

[] structured bindings syntax is used uniformly for all decomposition. It is generalized to allow nest-

ing and wildcards (e.g., [a,[b,_]]), and used for patterns (e.g., [0,[_,even]]).

x is C can be used uniformly for all constraints. C can be a type predicate, specific type, value predicate,

or specific value.

x as T can be used uniformly to invoke all casting (conversions and coercions). T is a type predicate or

specific type.

and all pattern matching alternatives are expressed using is C, as T, or if Cond. New names are always intro-

duced to the left of is/as/if, and so never ambiguous with existing names to the right. For example:

constexpr auto even (auto const& x) { return x%2 == 0; } // given this example predicate

// x can be anything suitable, incl. variant, any, optional<int>, future<string>, etc.

void f(auto const& x) {

 inspect (x) {

 i as int => cout << "int " << i;

 is std::integral => cout << "non-int integral " << x;

 [a,b] is [int,int] => cout << "2-int tuple " << a << " " << b;

 [_,y] is [0,even] => cout << "point on x-axis and even y " << y;
 s as string => cout << "string \"" + s + "\"";

 is _ => cout << "((no matching value))";

 }

}

The same matching is allowed consistently throughout the language. For example, in if conditions:

P2392 R0 Pattern matching using is and as — Sutter 3

void f(auto const& x) {

 if (auto i as int = x) { cout << "int " << x; }

 else if (x is std::integral) { cout << "non-int integral " << x; }
 else if (auto [a,b] is [int,int] = x) { cout << "2-int tuple " << a << " " << b; }

 else if (auto [_,y] is [0,even] = x) { cout << "point on x-axis and even y " << y; }

 else if (auto s as string = x) { cout << "string \"" + s + "\""; }

 else { cout << "((no matching value))"; }

}

… or in requires clauses, which do not currently support declaring new names so those go in the body:

void g(auto const& x) requires requires{x as int;}

 { auto i = x as int; cout << "int " << x; }

void g(auto const& x) requires (x is std::integral)

 { cout << "non-int integral " << x; }

void g(auto const& x) requires (x is [int,int])

 { auto [a,b] = x; "2-int tuple " << a << " " << b; }

void g(auto const& x) requires (x is [0,even])

 { auto [_,y] = x; "point on x-axis and even y " << y;

void g(auto const& x) requires requires{x as string;}

 { auto s = x as string; cout << "string \"" + s + "\""; }

void g(auto const& x) { cout << "((no matching value))"; }

1.2 Design principles
Note These principles apply to all design efforts and aren’t specific to this paper. Please reuse.

The primary design goal is conceptual integrity [Brooks 1975], which means that the design is coherent and relia-

bly does what the user expects it to do. Conceptual integrity’s major supporting principles are:

• Be consistent: Don’t make similar things different, including in spelling, behavior, or capability. Don’t

make different things appear similar when they have different behavior or capability. — For example, this

proposal uses the same decomposition syntax as structured bindings, and extends both for nesting.

• Be orthogonal: Avoid arbitrary coupling. Let features be used freely in combination. — For example, this

proposal enables freely using is for all matching (including type predicates, specific types, value predi-

cates, and specific values) and as for all casting (including directly supporting dynamic typing).

• Be general: Don’t restrict what is inherent. Don’t arbitrarily restrict a complete set of uses. Avoid special

cases and partial features. — This proposal uses is and as that can be allowed generally in the language

outside pattern matching (if we want to), and avoids inventing a one-off syntax for introducing names.

These also help satisfy the principles of least surprise and of including only what is essential, and result in features

that are additive and so directly minimize concept count (and therefore also redundancy and clutter).

Additional design principles include: Make important things and differences visible. Make unimportant things and

differences less visible. — This proposal makes declaring new names vs. using existing names clear by not putting

them in the same grammar location; new names always appear before is/as, existing names always after.

https://en.wikipedia.org/wiki/The_Mythical_Man-Month

P2392 R0 Pattern matching using is and as — Sutter 4

1.3 Acknowledgments
Thank you to the following for their feedback and contributions: Kevlin Henney, Bruno Cardoso Lopes, Sergei

Murzin, Michael Park, David Sankel, Dan Sarginson, Richard Smith, Yuriy Solodkyy, Bjarne Stroustrup, Andrew

Sutton, Mads Torgersen, Ville Voutilainen, Jarrad Waterloo.

P2392 R0 Pattern matching using is and as — Sutter 5

2 Posit for the sake of discussion: is and as expressions
The purpose of this section is to demonstrate that the pattern matching approach in the rest of the paper was

not designed in isolation for pattern matching, but that I considered syntax and semantics that could be general

and consistent across the whole language (if we want).

For the sake of discussion, say the language had is and as expressions described in this section, including a _

“don’t care” wildcard/placeholder (as mentioned in [P0144R2] §3.8, and see also [P1110R0] and [P1469R0]).

Let typeof(x) mean std::remove_cvref<decltype(x)>. Just so I don’t have to write that everywhere.

Let Pointer<P> be a concept that is true iff P is dereferenceable using unary * and ->.

2.1 General constraint expression: is
is expressions provide a consistent syntax for type and value match queries, that is also generalized to support

static and dynamic queries including customized queries.

A type or value constraint C can be a type predicate (supports C<x> where x is a type, such as a concept or _v

type trait; see also [P0144R2] §3.7), a specific type (see also [P0144R2] §3.6), a value predicate (supports C(x)

where x is an expression), a specific value, or the general _ placeholder to match anything.

Let an is-expression be of the form

x is C // x is an expression or a type

where is has precedence just below member selection (same as ++), the type of the expression is bool, and:

• If C is _, then x is C means true.

• Otherwise, if x is a valid value expression:

o If operator is(x,C) or x.operator is(C) is available, then use that. (See §2.3.3.)

o Otherwise, if operator is<C>(x) or x.operator is<C>() is available, then use that. (See

§2.3.3.)

o Otherwise, if x == C is valid, then x is C means x == C.

o Otherwise, if C is an expression and x is typeof(C) is valid and true, then x is C means x as

typeof(C) == C.

o Otherwise, if C(x) is valid and convertible to bool, then x is C means C(x).

o Otherwise, if x is Pointer and x as C is valid, then x is C means x as C is nullptr. (See §2.2

for as, and §2.3.3 for the operator is customization for Pointer null checking.)

o Otherwise, if x is Pointer and C is a &-qualified type, then x is C means x as C is valid and does

not throw.

o Otherwise, if C<X> is valid and convertible to bool or C is a specific type, then x is C means

typeof(x) is C.

o Otherwise, x is C is ill-formed.

• Otherwise, if x is a type:

o If C is a specific type, then x is C means std::is_same_v<C,x>.

o Otherwise, if C<X> is valid and convertible to bool, then x is C means C<x>.

o Otherwise, x is C is ill-formed.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1110r0.html
https://wg21.link/p1469r0
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf

P2392 R0 Pattern matching using is and as — Sutter 6

Notes There are five grammar productions for is-expressions: (1) type-id is type-id; (2) type-id is type-

constraint; (3) expression is expression; (4) expression is type-id; (5) expression is type-constraint.

Production 3 covers both “expression is value” and “expression is value-constraint.”

 Regarding dynamic_cast: We know statically which is cases are specified to mean dynamic_cast

(via as; see §2.2). If a compiler has a way to turn off RTTI, then for those is cases it would do the

same as if the user had tried to write dynamic_cast directly (typically, make it a warning or an er-

ror). However, in addition because a customized is is preferred to dynamic_cast, projects that disa-

ble RTTI now have the option of plugging something else in, and/or projects that have a more effi-

cient form of dynamic casting for their type hierarchy (e.g., tagged hierarchies) now have the option

of using those in portable code, and use them seamlessly under the common syntax is, whereas

today they have to resort to a different spelling (they cannot customize dynamic_cast).

If x is decomposable using structured bindings, then C may be a composite condition of the form

x is [C1, C2, ... Cn]

where this decomposition must be valid

auto&& [x1, x2, ... xn] = x;

and then the meaning is

x1 is C1 && x2 is C2 && ... && xn is Cn

 is in variable declarations, and structured bindings
For generality, both structured bindings and is patterns should permit nested decomposition.1 For example:

pair<int, pair<int,int> > data;

auto [a, [_, c]] = data; // A

if(data is [_, [1, _]]) {...} // B

In a variable declaration, an is constraint on the declared name(s) requires the is to be true.

• If the variable declaration is an if init-statement, then the init-statement is true if the is is true. For ex-

ample, the above two lines A and B could be combined as follows:

 if (auto&& [a, [_, c]] is [_, [1, _]] = data) {...} // checks that “is” is true

with the additional relaxation that this code is valid even if we know statically that data does not de-

compose to [_,[_,_]] (in which case the branch is not taken). And a non-decomposing example:

 if (auto a is std::integral = f()) {...} // checks that “is” is true

• Otherwise, the constraint is applied, and if false an exception is thrown. For example:

 auto&& [a, [_, c]] is [_, [1, _]] = data; // requires “is” to be true

And a non-decomposing example:

 auto a is std::integral = f(); // requires “is” to be true

1 As mentioned as a future direction for the structured bindings proposal [P0144R2] §3.9.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf

P2392 R0 Pattern matching using is and as — Sutter 7

Notes In an is-expression, attributes are not permitted following is, and so decomposition is not ambigu-

ous in examples like data is [[x,y]].

 When constraining to a specific type, the major difference between the two forms

 int a = f(); // C++20 explicit type/concept
 std::integral auto b = g();

 auto a is int = f(); // “is” constraint
 auto b is std::integral = g();

 is how the requirement is applied. The first C++20 form statically requires that f returns an int or

an object convertible to an int (and therefore might perform a conversion) and g returns something

that satisfies std::integral. The second is form could be a static or dynamic constraint (if the lat-

ter, it could throw an exception if it fails; e.g., if f returns a variant<int,string> and the returned

object does not currently hold an int) but if it succeeds it guarantees there is no conversion (it is

just applying a constraint).

 Similarly for these forms:

 if (int a = f()) {...} // C++20 explicit type/concept
 if (std::integral auto b = g()) {...}

 if (auto a is int = f()) {...} // “is” constraint

 if (auto b is std::integral = g()) {...}

 The first form statically requires that f returns an int or an object convertible to an int (and there-

fore might perform a conversion) and g returns something that satisfies std::integral, and the

branch is taken if the declared variable is not zero. The second is form could be a static or dynamic

constraint (e.g., if the returned type is a variant<int,string>) and if it fails (e.g., if the variant

does not currently hold an int) the branch is not taken.

 Example is uses (outside pattern matching)
In if branches:

// users can write predicate generators as desired like this:

constexpr auto in(auto min, auto max)

 { return [=](const auto& x){ return min<=x && x<=max; }; }

// and directly like this if all the information is static:
template<auto min, auto max>

constexpr bool in(const auto& x) { return min<=x && x<=max; }

// and use them like this:

void test(auto x) {

 if (x is std::integral) { ... } // std::integral<typeof(x)>

 if (x is in(1,2)) { ... } // 1<=x && x<=2
 if (x is in<1,2>) { ... } // (alternative equivalent)

 if (x is 3) { ... } // x==3

}

For type matches:

auto print(auto t) {

 if constexpr(x is Pointer) { // type predicate match

P2392 R0 Pattern matching using is and as — Sutter 8

 cout << *t;

 } else if (x is std::string) { // specific type match

 cout << "'" + t + "'";
 } else { // anything else

 cout << t;

 }

}

For type and value matches under the same general consistent syntax:

template< typename T, auto Size >

auto make_array() { ... }; // unconstrained template

template< typename T, auto Size > // (same as if “Number auto Size” here)

 requires Size is Number // type predicate constraint

auto make_array() { ... };

template< typename T, auto Size > // (same as if “int Size” here)

 requires (Size is int) // specific type constraint

auto make_array() { ... };

template< typename T, auto Size >

 requires Size is in(1,2) // value predicate constraint

auto make_array() { ... };

template< typename T, auto Size >

 requires Size is 3 // specific value constraint

auto make_array() { ... };

is is not a globally reserved keyword, so it can appear as an identifier:

int is = 42;

assert(is is int);

P2392 R0 Pattern matching using is and as — Sutter 9

2.2 General casting expression: as
as expressions provide a consistent syntax for casting (conversions and coercions), generalized to support static

and dynamic casting including customized conversions (useful for dynamic types where static converting con-

structors and static conversion operators are usually not appropriate, such as optional, variant, any, future;

see §2.3.2).

Let refto(T,x) be:

• If T is a reference type, then T.

• Otherwise, if x is an lvalue, then an lvalue reference T&.

• Otherwise (x is an rvalue), then an rvalue reference T&&.

Let a cast as-expression be of the form:

x as T // x is an expression

where as has the same precedence as is, P is a type predicate or specific type, the type of the expression is

refto(T,x) unless otherwise specified, and:

• If std::is_same_v<T,typeof(x)>, then x as T means a reference to x.

• Otherwise, if x can be bound to a refto(T,x), then x as T means a refto(T,x) bound to x.

• Otherwise, if operator as<T>(x) or x.operator as<T>() is available, then use that. (See §2.3.3.)

• Otherwise, if typeof(x) is implicitly convertible to T, then x as T means to convert x to an rvalue of type

T (e.g., including the case where both are Pointer types and this is a static upcast).

• Otherwise, if P(x) is valid and dereferenceable using unary *, then x as T means *C(x).

• Otherwise, if dynamic_cast<refto(T,x)>(x) is well-formed, then x as T means dy-

namic_cast<refto(T,x)>(x).

• Otherwise, if dynamic_cast<T>(x) is well-formed, then x as T means dynamic_cast<T>(x).

• Otherwise, if !(x is Pointer) and typeof(x) is explicitly convertible to T, then x as T means to convert

x to an rvalue of type T.

• Otherwise, if x as T is ill-formed.

Note There are two grammar productions for as-expressions: (1) expression as type-id; (2) expression as

expression.

If x is decomposable using structured bindings, then T may be a composite cast of the form

x as [C1, C2, ... Cn]

where this decomposition must be valid

auto&& [x1, x2, ... xn] = x;

and then the meaning is

make_tuple(x1 as C1, x2 as C2, ... xn as Cn)

P2392 R0 Pattern matching using is and as — Sutter 10

 as in variable declarations (including structured bindings)
As in §2.1.1, both nested structured bindings and as patterns can be used in a variable declaration. For example,

given

variant< pair<int,int>, string> v;

then this expresses a branch that is taken if the as is statically valid and dynamically succeeds, and any tempo-

raries created are lifetime-extended to the scope of the if:

if (auto&& [a, b] as pair<int,int> = v) {...} // checks “as” is valid and true

and this expresses a declaration that throws an exception if the cast is not valid or does not succeed at execu-

tion time:

auto&& [a, b] as pair<int,int> = v; // requires “as” to be true

Notes In an as-expression, attributes are not permitted following as, and so decomposition is not ambigu-

ous in examples like data as [[x,y]].

 When constraining to a specific type, the major difference between the two forms

 int a = f();

 auto a as int = f();

 is that the first form statically requires that the returned value is an int or convertible to an int

(and therefore might perform a conversion), whereas the second form always performs an explicit

cast (and could throw an exception if it fails; e.g., if the returned type is a variant<int,string>

and the returned object does not currently hold an int) but if it succeeds it guarantees there is no

further implicit conversion.

 Similarly, the major difference between the two forms

 if (int a = f()) {...}

 if (auto a as int = f()) {...}

 is that the first form statically requires that the returned value is an int or convertible to an int

(and therefore might perform a conversion) and the branch is taken if a is not zero, whereas the sec-

ond form always performs an explicit cast (e.g., if the returned type is a variant<int,string>) and

if it fails the branch is not taken, and if it succeeds it guarantees there is no further implicit conver-

sion.

 Finally, putting the as in the initializer has its usual expression meaning. For example, this

 auto [a, b] = v as pair<int,int>;

 has the same meaning as this C++20 version (see §2.3.5.1 for std::variant and as):

 auto [a, b] = std::get<0>(v);

P2392 R0 Pattern matching using is and as — Sutter 11

 Example as uses (outside pattern matching)
Let as be allowed in any expression context. For example, to perform an explicit argument conversion:

// Given: void f(std::string) { }

char a;

f(a); // error, constructor is explicit

// in C++20 we might try this:

f(string(a)); // error, function-style cast not allowed

f(string{a}); // ok, have to use { }

// with ‘as’ we could write:

f(a as string); // ok, can clearly see (and grep for) explicit conversions

For example, to select a base explicitly:

namespace NS {

 struct A { void f() {} };
 struct B : A { };

 struct C { B i; };

}

struct D : NS::C {

 void foo() {

 this->NS::C::i.NS::A::bar(); // using :: (today, a bit token-soupy)

 ((*this as NS::C).i as NS::A).f(); // using as (this section)

 }

};

as is not a globally reserved keyword, so it can appear as an identifier:

short as = 42;

assert(as as int == 42);

P2392 R0 Pattern matching using is and as — Sutter 12

2.3 is/as and dynamic types: Customization and std
is and as support general constraints and casts, including for both static and dynamic typing.

The C++ already includes language support for some dynamic typing via dynamic_cast and nullptr checking,

and library support for dynamic typing such as smart pointers and sum types. For example, a raw or smart

Pointer type such as T* or unique_ptr<T> can dynamically point to nothing (nullptr), to an object whose dy-

namic type is T, or to an object whose dynamic type is derived from T; and an optional<T> can dynamically con-

tain nothing (nullopt) or an object of type T.

 Binding and matching dynamic types
Decomposing a Pointer p that can point to an object of a type T (e.g., unique_ptr<T>, T*) is treated as a deref-

erence using unary *p, and is treated as a dynamic is-a that matches (is true) if not p is nullptr.

In general, for all dynamic as-a typing (including a Pointer dereference or a myvariantobj as int), a binding

that includes a dynamic pattern requires “is pattern” to be true, otherwise will throw an exception.

For example:

struct Node { unique_ptr<Node> left, right; int value; };

void f(Node& root) {

 auto const& [_,_,v] = root; // v binds to root.value

 auto const& [[_,_,v2],_,_] = root; // v2 binds to root.left->value if present,

 // throws an exception if root.left is_null

 if(root is [*_,_,_]) { // aka “if(root.left)”

 auto const& [*[_,_,v3],_,_] = root;// v3 binds to (*root.left).value

 Customizing operator is/as for dynamic types
Member or non-member operator is and operator as are customization points for types that have dynamic

type relationships and conversions, meaning that their effective type is a dynamic property.

Classes that use C++’s static typing and static type conversions never need to overload operator is or operator

as. Such types “just work” with is and as expressions, which already use C++’s existing static type relationships

(e.g., public derivation) and static conversions (implicit or explicit converting constructors/operators).

Note C++ library types tend not to support C++’s static conversion constructors and conversion operators

when their type is a dynamic property, because then those functions would have to be able to fail by

throwing an exception if the dynamic type conversion failed, and there is not a common spelling for

testing in advance that the conversion is valid and will succeed. Instead, C++ libraries tend to pro-

vide their own divergently named functions for type tests (e.g., holds_alternative<T>(x),

any_cast<T*>(&x)) and type conversions (e.g., get<T>(x), any_cast<T>(x)). The generalized op-

erator is/as customization points regularize these ad-hoc conventions under a common spelling,

and for existing types they are usually one-line passthroughs to the existing function. In the future,

new dynamic types can just add both operator is and operator as, which are naturally used to-

gether by callers to first query is and then use as knowing it will be dynamically valid (or else that

they can tolerate the exception).

P2392 R0 Pattern matching using is and as — Sutter 13

 Value query customization for null check
In namespace std, provide an “is null” customization to compare any Pointer value with is nullptr:

template<Pointer P>

constexpr bool operator is(P const& p, std::nullptr_t) requires requires{(bool)p==true;}

 { return (bool)p==false; }

template<Pointer P>
constexpr bool operator is(P const& p, std::nullptr_t) requires std::regular<P>

 { return p==P{}; }

Notes We use the contextual conversion to bool when that is available as an optimization to avoid creat-

ing a temporary P{} and relying on its being optimized away.

 This treats all indirection types (raw/smart pointer, or iterator) equivalently: All can be directly

tested to see if they hold a well-known null (default-constructed) value to prevent null-dereference

errors, which is useful even though in general none of them can be directly tested for pointing inside

a valid allocation to prevent out-of-bounds or use-after-free errors (see [P1179R1] for Pointer

types and using function-local static analysis to get lifetime safety in common cases).

 This formulations supports optional, which has a pointerlike contextual conversion to bool.

 Type query customization forms
A dynamic type can provide any of these type query customization forms. Only one is needed.

Type query
form

operator is operator as (if it cannot return the required type,
throws an exception or otherwise does not return)

Single-type Takes a static type T and an object x

Returns a value convertible to bool

Takes a static type T and an object x

Returns an object of type T by value or by reference

Indexed Takes an object x

Returns a std::integral type I that
contains the zero-based index of the
active type, or I(-1) if none is active

Takes a static value of I and an object x

Returns an object of the I-th type by value or by ref-
erence if I>=0 and the I-th type is active

type_info Takes an object x

Returns a std::type_info const&
for the active type 2

(Same as single-type)

2 Kevlin Henney, original author of [Boost.Any] and coauthor of the std::any proposal [N3804], reports: “I don’t recall if
performance over any_cast was a driver for including the type function: the primary motivation was for table lookup, e.g.,
being able to use type_info as a key to look up, say, a type-appropriate callback. If you squint at it just right, that fits the
pattern matching case nicely. That type comparison was also clearer in intent than using any_cast just to query whether
something was of a particular type would have been another motivation.”

http://wg21.link/p1179r1
https://www.boost.org/doc/libs/1_75_0/doc/html/any.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3804.html

P2392 R0 Pattern matching using is and as — Sutter 14

 operator is/as for dynamic types in the standard library
This section defines operator is and operator as for the following std:: types as one-line passthroughs:

std:: type operator is<>(x) passes through to operator as<>(x) passes through to

variant x.index() get<I>(x)

any x.type() any_cast<T>(x)

*any_cast<T&>(&x)

optional x.has_value() x.value()

future and
shared_future3

x.wait_for(chrono::seconds(0))
 == future_status::ready

x.get()

shared_ptr dynamic_pointer_cast<T>(x) dynamic_pointer_cast<T>(x)

For example, for a variant<int,string> v, this

if(v is int) { // this “is” check ensures that

 x = v as int; // this “as” won’t throw bad_variant_access

is equivalent to

if(std::holds_alternative<int>(v)) { // this “holds_alternative” check ensures that

 x = std::get<int>(v); // this “get” won’t throw bad_variant_access

2.3.5.1 std::variant
In namespace std, provide an indexed “is/as type” customization:

template<typename... Ts>

constexpr auto operator is(std::variant<Ts...> const& x) {

 return x.index();

}

template<size_t I, typename... Ts>

constexpr auto operator as(std::variant<Ts...> const& x) -> auto&& {

 return std::get<I>(x);

}

Note The auto&& return follows the design of std::get which returns effectively a reference. Note that

the programmer can explicitly request an lvalue reference:

 v as int // for std::get<int>(a)

 v as int& // for std::get<int&>(a)

3 See [Wakely 2020], including active optimizations in libstdc++.

https://stackoverflow.com/a/10917945

P2392 R0 Pattern matching using is and as — Sutter 15

2.3.5.2 std::any
In namespace std, provide a type_info “is/as type” customization:

constexpr auto operator is(std::any const& x) -> type_info const& {
 return x.type();

}

template<typename T> requires (!std::is_reference_v<T>)

constexpr auto operator as(std::any const& x) -> T {

 return std::any_cast<T>(x);

}

template<typename T> requires std::is_reference_v<T>

constexpr auto operator as(std::any& x) -> T& {

 if (auto p = std::any_cast<std::remove_reference_v<T>*>(&x); p) {

 return *p;

 }

 throw std::bad_any_cast;
}

Note These overloads, both returning T but for one of which that is a reference type, follows the design of

any_cast to support both the “by value” and “by pointer” forms:

 a as int // for any_cast<int>(a)

 a as int& // for *any_cast<int*>(&a)

 I think this is a simpler and clearer interface for any, and also lets variant, optional, and future

(see below) be used with the consistent interface of the two spellings

 x as T to get whichever of value or reference is the designed default for the type, to be

used if you don’t care; and

 x as T& to explicitly get an lvalue reference.

2.3.5.3 std::optional
In namespace std, provide a single-type “is/as type” customization:

template<typename T>

constexpr auto operator is(std::optional<T> const& x) -> bool {

 return x.has_value();

}

template<typename T>

constexpr auto operator as(std::optional<T> const& x) -> auto&& {

 return x.value();

}

Note The auto&& return follows the design of .value() which returns by & or && reference.

P2392 R0 Pattern matching using is and as — Sutter 16

2.3.5.4 std::future and std::shared_future
In namespace std, provide a single-type “is/as type” customization: (FUTURE is std::future or

std::shared_future)

template<typename T>

constexpr auto operator is(FUTURE<T> const& x) -> bool {

 return x.wait_for(std::chrono::seconds(0)) == std::future_status::ready;
}

template<typename T>

constexpr auto operator as(FUTURE<T> const& x) -> T {

 return x.get();

}

Notes The T returns follow the design of .get() which returns by & or && reference, to support both the

“by value” and “by reference” forms:

 f as int // for future<T>::get() -> T

 f as int& // for future<T&>::get() -> T&

 This is the wait_for pattern that is currently used to work around the absence of is_ready, which

was in the Concurrency TS but is not in the standard.

2.3.5.5 Smart pointers
In namespace std, provide “as type” customizations:

template<typename T, typename U> // for dynamic conversion to another shared_ptr

constexpr auto operator as(std::shared_ptr<U> const& x) -> auto&& {

 return dynamic_pointer_cast<T>(x);

}

template<typename T, Pointer P> // for dynamic conversion to a raw pointer

constexpr auto operator as(P const& x) -> T
 requires requires {x.get() == true;}

{

 return dynamic_cast<T>(x.get());

}

Notes We don’t need a customized operator is because for Pointer types is in defined in terms of as.

 The second form is for code like the following:

 inspect (smart_or_raw_ptr_to_widget_base) {
 p as Button* => handle_button (p);

 p as ComboBox* => handle_combobox(p);
 }

 or equivalently:

 if (Button* p = smart_or_raw_ptr_to_widget_base as Button*; p) {

 handle_button(p);

 } else if (ComboBox* p = smart_or_raw_ptr_to_widget_base as ComboBox*; p) {

P2392 R0 Pattern matching using is and as — Sutter 17

 handle_combobox(p);

 }

 Cleaner form for structured bindings’ “tuple-like” customization
The structured bindings proposal [P0144R2] added a tuple-like customization point in response to EWG direc-

tion. Using it has been cumbersome (e.g., [P1096R0], [P0326R0], [P0327R3]). Overloading operator as could let

us do better. Consider these two types (thanks to Ville Voutilainen for this example):

struct PlainRect {

 Point topLeft;

 int width;

 int height;

};

class EncapsulatedRect { // ...

 Point const& topLeft() const;

 int width () const;

 int height () const;

};

Structured bindings directly supports PlainRect, but not EncapsulatedRect:

auto [tl, w, h] = PlainRect(); // ok

auto [tl, w, h] = EncapsulatedRect(); // error, unless customized

To make the second line be not an error, today we must write the following customization ceremony (Godbolt):

// This is what we need to write today to make the above structured bindings work.

// Here highlighting the essential information payload, the rest is all ceremony:

namespace std {

 template<> struct tuple_size < EncapsulatedRect> { enum { value = 3 }; };
 template<> struct tuple_element<0, EncapsulatedRect> { using type = Point const&; };

 template<> struct tuple_element<1, EncapsulatedRect> { using type = int; };

 template<> struct tuple_element<2, EncapsulatedRect> { using type = int; };

}

template<int I>

auto get(EncapsulatedRect const& er)
 -> constexpr typename std::tuple_element<I, EncapsulatedRect>::type

{

 if constexpr(I == 0) return er.topLeft();

 else if constexpr(I == 1) return er.width();

 else if constexpr(I == 2) return er.height();
}

If we added a customization point for structured bindings to consider an operator as that returned a tuple or

struct if available, we could replace the above code with a single function, including as a member function pro-

vided by the type author and with access to privates as needed. For example:

class EncapsulatedRect { // ...

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1096r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0327r3.pdf
https://godbolt.org/z/PxffGcc3T

P2392 R0 Pattern matching using is and as — Sutter 18

 constexpr auto operator as() const -> std::tuple<Point const&, int, int>

 { return { topLeft(), width(), height() }; }

};

This carries exactly the same information payload, but more densely (with less ceremonial boilerplate). It can

also be provided as a non-member function.

Notes Of course this approach can work with any well-known name for the customization point, or even

just a conversion operator to a tuple. But if we have operator as, I think it’s the natural name, and

it enables other uses.

 We don’t have to use tuple, we can also return a struct:

 // Returning a struct

 class EncapsulatedRect {

 constexpr auto operator as() const {

 struct Ret { Point const& tl; int w; int h; };
 return Ret { topLeft(), width(), height() };

 }

 // ...

 };

 Both tuple and a struct work fine because they transform the type into something bindable. Using

std::tuple is a good choice for such a custom adaptation because its bindings never copy and it

works with existing libraries that understand and manipulate std::tuple.

 Note that the above is just a more straightforward way to write today’s customization point. As

Bjarne Stroustrup points out, the logical minimum is something like this, which can be viewed as a

jump table (similar to a vtbl) – the most general form, ideally provided by the class author:

 structure_map (EncapsulatedRect) { topLeft, width, height };

 The above operator as example approaches this in conciseness and that the class author can pro-

vide appropriate mapping of their type to a tuple.

 Looking forward, I think the right general future language feature that also naturally enables this

mapping is multiple return values, as suggested by Gor Nishanov and others. There are many moti-

vating use cases already including in the standard library (e.g., map::insert returns -> pair<iter-

ator,bool> because it cannot directly return iterator, bool). If future C++ gets multiple return

values, then we could write the conversion even more directly and with greatest efficiency by lever-

aging guaranteed copy elision (GCE) using the same rules as today and applying them individually to

each return value instead of just the current-singular return value:

 // If in the future C++ allowed multiple return values (strawman syntax)

 class EncapsulatedRect {

 constexpr auto operator as() const -> (Point const&, int, int)
 { return topLeft(), width(), height(); } // now with GCE efficiency

 // ...
 };

 So I am optimistic that the cleanup direction proposed in this section is on a straight-line path from

what we have today (where it expresses the same thing with less ceremony) to the ideal language

solution that has direct bindings and minimum copies.

P2392 R0 Pattern matching using is and as — Sutter 19

3 Pattern matching using is and as

3.1 Core approach: Expressing alternatives using is and as
Let pattern matching be written using an inspect statement or expression, with an optional explicit result type:

inspect (expr) -> Result opt {

}

where

expr is the expression to be inspected, and may be a comma-delimited list of subexpressions.

Result is the result type; if omitted, it is deduced from the alternatives using the same rules as return

type deduction, ignoring alternative results that are noreturn blocks or throw expression state-

ments.

The body comprises a series of one or more alternatives of one of the forms

namesopt is C => result

namesopt as T => result

namesopt if Cond => result

where the alternatives are considered successively until the first match is found, and:

names optionally introduces either a single identifier or a set of [decomposed-names]. Writing names

[is C | as T] introduces the names the same as auto&& names [is C | as T] = expr; (using struc-

tured bindings if decomposed). For any unused component, use the “don’t care” wildcard _ .

is C means the alternative is selected if expr is C is well-formed and evaluates to true, and any de-

composition in names is valid.

as T means the alternative is selected if expr is T is well-formed and evaluates to true, and any de-

composition in names is valid, and expr as T is well-formed, and in this alternative an introduced

name for expr binds to expr as T.

if Cond means the alternative is selected if the boolean condition Cond evaluates to true.

result defines the value of the inspect expression if that alternative is selected, and can be a block or

else a single-expression statement ending in ; where the expression is the value produced.

When inspect appears at the start of a statement, it is an inspect statement and must not specify a result-

type. Otherwise, it is an expression that has a deduced or explicit result-type; must not contain break, con-

tinue, or return; and must contain an is _ alternative.

Note To explicitly exhaustively enumerate all alternatives, make the final alternative

 is _ => noreturn { /* assert(false) or similar */ }

 or we could provide a direct explicit way to spell this, such as

 nodefault;

inspect constexpr requires expr and all alternative conditions to be compile time constant expressions. All

non-selected alternative results are discarded, and their return statements do not participate in function return

type deduction.

P2392 R0 Pattern matching using is and as — Sutter 20

3.2 Advanced patterns: is/as combinations, dereference

 is/as combinations
Recall that in inspect (x):

• is C does not change type or identity: introduced name(s) bind to all/components of x.

• as T does change type and/or identity: introduced name(s) bind to all/components of x as T.

In a sequence of is and as, each successively refers to the result of the previous (i.e., the most recent as, since

is does not modify the type/identity), including that bound names bind to the last as. For example:

inspect (e) {

 a is X as Y => ...

 // if e is X,

 // then if e as Y is valid do that,

 // then select this alternative, a binds to the Y

 b as V is W => ...
 // if e as V is valid do that,

 // then if the V (V or V&) is W,

 // then select this alternative, b binds to the V

}

For example, given:

tuple<optional<WidgetBase**>*, optional<WidgetBase**>*> v = ... ;

inspect (v) {

We can test whether v has two fields that are Label (a class that inherits from WidgetBase) widgets that have

the texts "Hello" and "world!" in them by writing a boolean condition that combines as and is:

[****a, ****b] if (a as Label) is "Hello" && (b as Label) is "world!" => ...

or by combining as and is in the pattern:

as [****Label is "Hello", ****Label is "world!"] => ...

 Dereference
Pointer types, including iterators, can be dereferenced in patterns using *, and match if the contextual conver-

sion to bool evaluates to true. For example:

pair< variant< unique_ptr<Node>, Node*, double*, string >, int > v = ... ;

inspect (v) {

 is [*Node,_] => ... // first element is either unique_ptr<Node> or Node*

 is [*,_] => ... // first element is dereferenceable (therefore double*)

 is _ => ... // first element is anything (therefore string)

}

P2392 R0 Pattern matching using is and as — Sutter 21

Note In this proposal, [] is used only for structural has-a decomposition, which is always lifetime-safe. It

is tempting, but I think wrong, to use [] also for points-to-a decomposition, aka dereferencing, be-

cause dereferencing a Pointer is inherently a more generous operation having failure modes that

are not checkable, notably use-after-free (e.g., a pointer or iterator that points to something that

has been deallocated, which must not be dereferenced) and out-of-bounds (e.g., a pointer or itera-

tor to one-past-the-end of an array, which can be formed but must not be dereferenced). In general

there is no way for an inspect alternative to check automatically whether a Pointer is safe to

dereference before attempting the deference, and so using a separate syntax, here *, makes the

dangerous “trust me” operation visible. (For a more general approach to statically ensuring a

Pointer is safely deferenceable, which also works for inspect uses but is not limited to inspect, see

[P1179R1].)

3.3 Conveniences: ||, &&, {}
The following options are syntactic conveniences. None increases the fundamental expressive power we already

saw, but each makes it more convenient to write common code patterns (and follow “don’t repeat yourself”) by

removing the need to redundantly repeat the same constraint or result. These can be combined to remove mul-

tiple forms of redundancy.

 Multiple alternatives that have the same result: ||
When multiple successive alternatives use the same result, the common result can be written by using the syn-

tactic sugar ||.

Note This is useful in two ways: (1) To save repeating the name of the expression being matched in top-

level is alternatives. For example, we can already write this without any sugar as an ordinary single

expression:

 inspect (x) { x is Foo || x is Bar => result; } // single expr, no sugar

 and this feature allows the don’t-repeat-yourself convenience of writing the same as:

 inspect (x) { is Foo || is Bar => result; } // top-level || sugar

 (2) To allow introducing the same set of names to refer to different components for a common re-

sult, as in the red/black tree rebalancing examples, which is rarely needed but when you need it is

useful to bind a common result to different names without repeating the common result body. For

example, we can already write this without any sugar:

 inspect (x) {

 [a,_] is [_,0] => result(a); // two alternatives, no sugar

 [_,a] is [0,_] => result(a);
 // ...

 }

 and this feature allows the don’t-repeat-yourself convenience of writing the same as:

 inspect (x) {

 [a,_] is [_,0] || // top-level || sugar

 [_,a] is [0,_] => result(a);

 // ...
 }

http://wg21.link/p1179r1

P2392 R0 Pattern matching using is and as — Sutter 22

The semantics are that when successive alternatives of the form is C or if Cond have common results, for ex-

ample:

names1 is Foo => result

names2 if Cond => result

 ... => result

namesN as Bar => result

where

result is identical in all three cases

names1, names2, and namesN introduce the same set of names with the same types

 (possibly with different decompositions, such as [a,_] vs [_,a])

Note The use cases we currently have for this are satisfied with each name having the same type in each

alternative. We could relax this requirement so that the semantics are the shared result is de-sug-

ared (as a rewrite rule) and the compiler spits the redundant result expression into each alternative

as if it had been written that way, and then do name lookup and binding appropriately. I think we

should start with the “same type” restriction for now until we find compelling use cases, and noth-

ing prevents relaxing this in the future.

then we can replace each non-last => result with ||, with the same meaning:

names1 is Foo ||

names2 if Cond ||

 ... ||

namesN as Bar => result

Notes An important observation is that the ability for non-first subexpressions to introduce additional

names can be viewed as “a logical-expression with the added power to introduce names.” Im-

portantly, that ability to introduce names inherently adds a fundamental restriction on how they can

be combined, because given predicates A and B each of which now has the power to introduce

names to be used in the result:

 for A || B, allowing B to introduce additional names naturally has the requirement that A and B

must introduce all the same names with the same types (as above, otherwise we can’t write the

common result sensibly)

 for A && B, allowing B to introduce additional names naturally has the requirement that A and B

must not introduce any of the same names more than once (otherwise they conflict)

 (future) for mixed chains of || and && that could introduce additional names inside the expres-

sion, the natural rule would be that all introduced names must be written together at the begin-

ning of the combined alternative, and not allow subparts to introduce names.

 We have motivating examples for chains of all-|| (alternatives) and all-&& (sequencing, see next sec-

tion). We don’t currently have compelling motivating examples for mixed chains of || and &&, so we

shouldn’t try to support those until we do have compelling examples, but there is nothing in the cur-

rent design that gets in the way of evolution in that direction later.

Earlier namesi are in scope in later parts of the same ||’d alternative, so if successive ||’d is alternatives specify

identical decompositions then all but the first are redundant.

P2392 R0 Pattern matching using is and as — Sutter 23

 Grouping common names and constraints: { }
When multiple successive alternatives share a common subset of constraints, the common subset can be writ-

ten once by using the syntactic sugar { } to group them, for example:

namesopt is C {

 // alternatives considered if “expr is C”
}

namesopt as T {
 // alternatives considered if “expr as T” is valid
}

namesopt if Cond {

 // alternatives considered if “Cond”

}

Groups can be nested, as in:

names1 is Foo {

 names2 if Cond {

 ... {

 namesN as Bar => result

 }

 }
}

where

names1, names2, and namesN introduce nonoverlapping names

 (possibly introducing multiple names for the same component)

Earlier namesi are in scope in nested groups, so if nested groups do not specify two names for the same compo-

nent, then they can equivalently be merged and written together in the outermost group.

Notes This is useful mainly to not repeat common prefixes by factoring them out. For example, we can al-

ready write this without any sugar:

 inspect (x) {

 // ...
 s is Shape && if s.value() > 42 => result1(s); // no sugar

 s is Shape && if fobnozz(s) => result2(s);

 // ... continue considering alternatives here if none of the above match
 }

 and this feature allows the don’t-repeat-yourself convenience of writing the same as:

 inspect (x) {

 // ...

 s is Shape { // grouping sugar

 if s.value() > 42 => result1(s); // equivalent to above

 if fobnozz(s) => result2(s);
 }

 // ... continue considering alternatives here if none of the above match
 }

P2392 R0 Pattern matching using is and as — Sutter 24

 Note this is different from a nested inspect within a result, such as:

 inspect (x) {

 // ...

 s is Shape => { // legal too, but NOT

 inspect(s) { // equivalent to above,
 if s.value() > 42 => result1(s); // expresses something

 if fobnozz(s) => result2(s); // different

 }

 }

 // ... continue considering alternatives here only if “is Shape” is false
 }

 because the latter would enter the is Shape alternative set always if is Shape is matched. Visually,

following a => is a “hard stop” for the current inspect, which is correct.

 Some reviewers expressed concern that this looks too much like a block, and suggested adding &&

before the { could be a visual reminder that these have “and” semantics.

 Multiple constraints required for a result: &&
When multiple successive is C and if Cond constraints are required for a result, they can be written using the

syntactic sugar &&.

The semantics are that when nested constraints lead to a single result:

names1 is Foo {

 names2 expr {

 ... {
 namesN as Bar => result

 }

 }

}

then we can replace each { } using &&, with the same meaning:

names1 is Foo &&

names2 expr &&

 ... &&

namesN as Bar => result

Note As already noted for nested { }, the names introduced by namesi must be nonoverlapping.

Earlier namesi are in scope in later parts of the same &&’d alternative, so if successive &&’d is alternatives do not

specify two names for the same component, then they can equivalently be merged and written together first.

P2392 R0 Pattern matching using is and as — Sutter 25

3.4 Examples

 Examples: C-style switch
This is equivalent to a C switch statement except the alternatives are scoped and do not have fallthrough:

inspect (x) {

 is 0 => cout << "none";

 is 1 => cout << "one";

 is 2 => cout << "two";

 is 3 => cout << "three";
 is _ => cout << "many";

}

This is the same written as a subexpression:

cout << inspect (x) {

 is 0 => "none";

 is 1 => "one";

 is 2 => "two";

 is 3 => "three";

 is _ => "many";

 };

 Examples: First match
The first match is selected:

auto count(int i) {

 cout << inspect (i) { // because the constraints are ordered

 is in(1,2) => "1 or 2"; // the value 2 will match here...

 is in(2,3) => "3"; // ... and not here
 is _ => "something else";

 };

}

 Examples: Consistency with §2.1.2
If we did have is and as elsewhere in the language, everything would behave consistently:

void test(auto x) {
 inspect (x) {

 is Integral => { ... }

 is in(1,2) => { ... }

 is 3 => { ... }

 }

}

Including that inspect alternatives can be constrained by compile-time type constraints and/or run-time value

constraints:

inspect (x) {
 is Number => { cout << "some type of number"; } // type predicate match

P2392 R0 Pattern matching using is and as — Sutter 26

 is string => { cout << "a string"; } // specific type match

 is in(1,2) => { cout << "1 or 2"; } // value predicate match

 is 3 => { cout << "3"; } // specific value match
 is x<10 => { cout << "<10, but not 1 2 3"; } // boolean condition match

 is _ => { cout << "something else"; } // match anything

}

 Examples: Decomposition
For example:

struct S { int i; double d; };

S s;

inspect (s) {

 [_,b] is [0,_] => cout << fmt("s.i is zero, s.j is {}", b);

 is _ => cout << fmt("s.i is {}, s.j is {}", s.i, s.j);

}

 Examples: Start of statement
When inspect appears at the start of a statement, it is a statement. No trailing ; is required. For example:

inspect (x) {

 is "xyzzy" => 0;

 is "plugh" => 1;

}

To use an inspect subexpression in the leftmost position of a more complex expression, enclose it in (). For

example:

(inspect (x) -> widget& { // assign 42 to one of two widgets

 is "xyzzy" => first_widget;

 is _ => some_other_one;

}) = 42;

 Examples: std:: dynamic types (variant, any, optional, future)
These all work via overloaded std::operator is/as (see §2.3.2).

void f1(variant<int,string> const& x) {

 inspect (x) {

 s as string => cout << "string \"" + s + "\"";

 is _ => cout << "not a string";

 }

}

void f2(any const& x) {

 inspect (x) {

 s as string => cout << "string \"" + s + "\"";
 is _ => cout << "not a string";

 }

}

P2392 R0 Pattern matching using is and as — Sutter 27

void f3(optional<string> const& x) {

 inspect (x) {

 s as string => cout << "has value \"" + s + "\"";
 is _ => cout << "((nullopt))";

 }

}

void f4(future<string> const& x) {

 inspect (x) {

 s as string => cout << "ready: \"" + s + "\"";
 is _ => cout << "Æthelred the Unready";

 }

}

One thing that makes a uniform interface powerful is that it enables writing generic code, including that it works

with concepts and other type predicates. For example:

// this generic function works uniformly when x is any type, including any

// of variant, any, optional<int>, optional<string>, future<int>, future<string>, ...

void f(auto const& x) {

 inspect (x) {
 i as int => cout << "int " << i;

 is std::integral => cout << "non-int integral " << x;

 s as string => cout << "string \"" + s + "\"";

 is _ => cout << "((no int or string value))";

 }

}

P2392 R0 Pattern matching using is and as — Sutter 28

 Ville’s customization example
Ville Voutilainen suggested the following problem as a test case for customizability: “Consider pattern-matching

a variant<X,Y,Z> [call this type V] where the types are classes in a polymorphic class hierarchy, and in some

cases it's possible to cross-cast between them with dynamic_cast. I might want to write a match that could con-

vert via static conversions, but not via dynamic_cast. What do I do?”

The first question is: How would you write that today? Presumably something like this:

template<typename W>

constexpr bool ville_convertible(variant<X,Y,Z>& v) {
 if constexpr(is_convertible_v<X,W>) { if (v.index() == 0) return true; }

 if constexpr(is_convertible_v<Y,W>) { if (v.index() == 1) return true; }

 if constexpr(is_convertible_v<Z,W>) { if (v.index() == 2) return true; }

 return false;

}

We can use this directly as a predicate:

inspect (x) {

 is ville_convertible<W> => cout << “yes, x passes Ville’s match test”;

}

Then if we want to use it “as” that type we can write a named conversion:

template<typename W>

constexpr auto ville_convert(variant<X,Y,Z>& v) -> W& {

 // as you wish
}

and use that in the result:

inspect (x) {

 is ville_convertible<W> => ville_convert<W>(x).some_w_function();

}

In this example, that may be all we want, so the match and conversion are explicit as shown.

But if did want to go further, and allow writing an implicit form as

inspect (x) {

 w as W => w.some_w_function(); // let’s say we wanted to allow this option

} // when our overloaded is/as are in scope

then we can overload is and as to enable that (while still allowing the explicit form above) as follows:

template<typename W>

constexpr bool operator is(variant<X,Y,Z> const& v) {

 return ville_is_convertible_to<W>(v);

}

template<typename W>

constexpr auto&& operator as(variant<X,Y,Z> const& v) {

 return ville_convert<W>(v);

}

P2392 R0 Pattern matching using is and as — Sutter 29

 David Sankel’s examples
This paper’s approach grammatically separates introduced names from uses of existing names as constraints.

For example, instead of introducing and using names in the same grammar position, such as

// P1371 example

[col, case Red] => ... // col is a new introduced name, Red is an existing name

this paper’s approach separates them grammatically, so all introduced names come first before is, as, or if,

and all existing names used as constraints come after:

// This paper’s equivalent
[col, _] is [_, Red] => ... // col is a new introduced name, Red is an existing name

This separation has several advantages.

(1) It is naturally unambiguous. Because the two can never appear in the same grammar position, we never

need a syntactic disambiguator to distinguish whether we want to introduce a name rather than refer to an ex-

isting one.

(2) It naturally allows naming and constraining the same component. This arises especially with predicate con-

straints. For example, consider inspecting a Point:

[x,y] is [even,_] => f(x, g(y));

Here, even though the first component is constrained by even, we still want to introduce a name x for the same

component so we can refer to it, because we do not know its exact value.

(3) It naturally allows naming and constraining to take different shapes. As always with decoupling, by separat-

ing two things we enable them to each independently take their own most natural shape for a given situation.

For example, again inspecting a Point:

[x,y] is inside_an_existing_shape => f(x, g(y));

Here, we are writing a constraint that applies to the whole value, but we are also decomposing it to refer to the

components so we can use them individually… not only in the result, but possibly later in the alternative pattern

itself, such as:

[x,y] is inside_an_existing_shape && if sin(x)>0.5 => f(x, g(y));

 Michael Park’s examples (patterns outside inspect)
I asked Michael Park about the usefulness of a general match facility along the lines of [P1260R0] section 4.5…

there, match is exposition-only, but what if it were a generally usable facility outside inspect, so we could use it

elsewhere such as if and requires? Park suggested the following examples.

Consider this use of such a match:

// Example 1: P1260-like syntax

if (match([let x, 0], point)) {

 // use x

}

In this paper’s syntax, that would be expressed using auto and structured bindings (including cv/ref-qualified as

desired):

https://wg21.link/p1260r0

P2392 R0 Pattern matching using is and as — Sutter 30

if (auto [x,_] is [_,0] = point) { // or auto&, etc.

 // use x

}

That is, this a structured binding augmented with an “is pattern” clause. (And the _ wildcard.) This way we can

get the goodness of patterns generally in the language.

Next, consider:

// Example 2: P1260-like syntax

if (cond || match([let x, 0], point)) {

 // we get here if cond is true, is x in scope?

}

In this paper’s syntax, that would be expressed as:

if (auto [x,_] is [_,0] = point; cond) {

 // we get here if the pattern matches and cond is true, x is in scope
}

Note This is similar to the following non-decomposition example:

 if (auto x is integral = f()) {

 // we get here if the pattern matches, x is in scope

 }

 which expresses something different from the C++20 code

 if (integral auto x = f()) { // compile-time error if f() is not integral

 // ...

 }

Finally, consider:

// Example 3: P1260-like syntax

if (!match([let x, 0], point)) {

 // this executes if the pattern does not match, but x is in scope?

}

In this paper’s syntax, that could be literally written as:

if (auto [x,_] is [_,0] = point) { // likely get “unused binding” warning here

 // intentionally left blank

} else {

 // this executes if the pattern does not match, x is naturally not mentioned

}

but it would be most naturally expressed as:

if (!(point is [_,0])) {

 // this executes if the pattern does not match, x is naturally not mentioned
}

P2392 R0 Pattern matching using is and as — Sutter 31

 Sergei Murzin’s example
Handling state transition maps:

using State = std::variant<PendingInit, Data, Deleted>;

State old = ...;

State new = ...;

inspect (old, new) {
 [_, initialState] is [PendingInit, _] => processInit(initialState);

 [oldData, _] is [Data, Deleted] => processDelete(oldData);

 [oldData, newData] is [Data, Data] => processDiff(oldData, newData);

 [_, newState] is [Deleted, _] => processFromDeleted(newState);

 _ => reportUnexpectedTransition(old, new);

};

 Customizing is and as for [LLVM Variant]
The following customization in namespace llvm::pdb would enable [LLVM Variant] to efficiently work with is

and as.

constexpr auto operator is(Variant const& x) -> std::underlying_type_t<PDB_VariantType> {

 return x.Type<2 ? -1 : x.Type-2 ;

}

template<std::underlying_type_t<PDB_VariantType> I>

constexpr auto operator as(Variant const& x) {

 if (I < 0 || I != x.type-2) throw bad_variant_access();

 return inspect constexpr (I) {

 is 0 => x.Int8;

 is 1 => x.Int16;
 is 2 => x.Int32;

 is 3 => x.Int64;

 is 4 => x.Single;

 is 5 => x.Double;

 is 6 => x.UInt8;
 is 7 => x.UInt16;

 is 8 => x.UInt32;

 is 9 => x.UInt64;

 is 10 => x.Bool;

 is 11 => x.String;

 };

}

https://llvm.org/doxygen/PDBTypes_8h_source.html#l00410
https://llvm.org/doxygen/PDBTypes_8h_source.html#l00410

P2392 R0 Pattern matching using is and as — Sutter 32

3.5 Tony tables: Side by side with other proposals/languages

 Michael Park’s EWG 2021-04-08 slide examples
Alternatives explored This paper (proposed)

// R0: Annotate id-expr with ^

inspect (e) {
 name => ...
 0 => ...
 ^value => ...

 [x, y] => ...
 [0, ^b] => ...
 [^a, ^b] => ...
 [x, y, z, ^a] => // more names
 [^a, ^b, ^c, x] => // more refs

 <Circle> circle => ...
 <Rectangle> [width, height] => ...
};

// Pin (^) operator in Elixir

// Weird looking simple uses
enum Color { Red, Blue };

inspect (color) {
 ^Red => ...
 ^Blue => ...
};

inspect (e) {
 name is _ => ...
 is 0 => ...
 is value => ...

 [x, y] is _ => ...
 is [0, b] => ...
 is [a, b] => ...
 [x, y, z, _] is [_, _, _, a] => // more names
 [_, _, _, x] is [a, b, c, _] => // more refs

 circle as Circle => ...
 [width, height] as Rectangle => ...
};

enum Color { Red, Blue };

inspect (color) {
 is Red => ...
 is Blue => ...
};

// R1/R2: let/case recursive, let default

inspect (e) {
 name => ...
 0 => ...
 case value => ...

 [x, y] => ...
 [0, case b] => ...
 case [a, b] => ...
 [x, y, z, case a] => // more names
 case [a, b, c, let x] => // more refs

 <Circle> circle => ...
 <Rectangle> [width, height] => ...
};

// let from Rust, Swift, many others
// + `switch` looking simple uses
enum Color { Red, Blue };

inspect (color) {
 case Red => ...
 case Blue => ...
};

// - Recursing gets complex with nesting

// (same as above, plus extra example at the end)

inspect (e) {
 name is _ => ...
 is 0 => ...
 is value => ...

 [x, y] is _ => ...
 is [0, b] => ...
 is [a, b] => ...
 [x, y, z, _] is [_, _, _, a] => // more names
 [_, _, _, x] is [a, b, c, _] => // more refs

 circle as Circle => ...
 [width, height] as Rectangle => ...
};

enum Color { Red, Blue };

inspect (color) {
 is Red => ...
 is Blue => ...
};

P2392 R0 Pattern matching using is and as — Sutter 33

inspect (e) {
 let [a, case [let b, c], [d]] => ...
};

inspect (e) {
 [a, [b, _], [d]] is [_, [_, c], _] => ...
};

// R3: Annotate id-expr with case

inspect (e) {
 name => ...
 0 => ...
 case value => ...

 [x, y] => ...
 [0, case b] => ...
 [case a, case b] => ...
 [x, y, z, case a] => // more names
 [case a, case b, case c, x] => // more refs

 <Circle> circle => ...
 <Rectangle> [width, height] => ...
};

// + `switch` looking simple uses
enum Color { Red, Blue };

inspect (color) {
 case Red => ...
 case Blue => ...
};

// + Easier to read in nested patterns
inspect (e) {
 [a, [b, case c], [d]] => ...
};

// + No need to introduce let.
// - Abusing case
// - Expressions should be expressions
// - Declaration of names should look
// more like a declaration
// (lambda captures were a mistake?)

inspect (e) {
 name is _ => ...
 is 0 => ...
 is value => ...

 [x, y] is _ => ...
 is [0, b] => ...
 is [a, b] => ...
 [x, y, z, _] is [_, _, _, a] => // more names
 [_, _, _, x] is [a, b, c, _] => // more refs

 circle as Circle => ...
 [width, height] as Rectangle => ...
};

enum Color { Red, Blue };

inspect (color) {
 is Red => ...
 is Blue => ...
};

inspect (e) {
 [a, [b, _], [d]] is [_, [_, c], _] => ...
};

// R4?: Annotate id-part instead?

inspect (e) {
 let name => ...
 0 => ...
 value => ...

 [let x, let y] => ...
 [0, b] => ...
 [a, b] => ...
 [let x, let y, let z, a] => // more names
 [a, b, c, let x] => // more refs

 <Circle> let circle => ...
 <Rectangle> [let width, let height] => ...
};

// Clean simple use cases
enum Color { Red, Blue };

inspect (e) {
 name is _ => ...
 is 0 => ...
 is value => ...

 [x, y] is _ => ...
 is [0, b] => ...
 is [a, b] => ...
 [x, y, z, _] is [_, _, _, a] => // more names
 [_, _, _, x] is [a, b, c, _] => // more refs

 circle as Circle => ...
 [width, height] as Rectangle => ...
};

enum Color { Red, Blue };

P2392 R0 Pattern matching using is and as — Sutter 34

inspect (color) {
 Red => ...
 Blue => ...
};

// Easier to read through deep nesting
inspect (e) {
 [let a, [let b, c], [let d]] => ...
};

// + No longer abusing case
// + Expressions are expressions
// + Declaration of names have
// an indication of a declaration.
// - Apparent inconsistency with
// structured bindings.
// * No longer optimizing for what
// some believe is more common.

inspect (color) {
 is Red => ...
 is Blue => ...
};

inspect (e) {
 [a, [b, _], [d]] is [_, [_, c], _] => ...
};

// auto

inspect (e) {
 auto name => ...
 0 => ...
 value => ...

 auto&& [x, y] => ...
 [0, b] => ...
 [a, b] => ...
 [auto x, auto const& y, auto&& z, a] => // ...
 [a, b, c, auto&& x] => // more refs

 <Circle> auto&& circle => ...
 <Rectangle> auto&& [width, height] => ...
};

// + familiar syntax, no new keyword
// - complexity, + finer lifetime control
// - potential unintentional copies
// - more verbose
// - bindings are all or nothing, tied to SB

inspect (e) {
 name is _ => ...
 is 0 => ...
 is value => ...

 [x, y] is _ => ...
 is [0, b] => ...
 is [a, b] => ...
 [x, y, z, _] is [_, _, _, a] => // more names
 [_, _, _, x] is [a, b, c, _] => // more refs

 circle as Circle => ...
 [width, height] as Rectangle => ...
};

P2392 R0 Pattern matching using is and as — Sutter 35

 Bruno Cardoso Lopes’ EWG 2021-02-26 slide examples
P1371R3 This paper (proposed)

int factorial(int n) {
 return inspect(n) -> int { // explicit type
 0 => 1;
 __ => n * factorial(n-1);
 };
}

int factorial(int n) {
 return inspect (n) -> int { // explicit type
 is 0 => 1;
 is _ => n * factorial(n-1);
 };
}

int factorial(int n) {
 return inspect(n) { // deduced equivalent
 0 => 1;
 __ => n * factorial(n-1);
 };
}

int factorial(int n) {
 return inspect (n) { // deduced equivalent
 is 0 => 1;
 is _ => n * factorial(n-1);
 };
}

int factorial(int n) {
 return inspect(n) {
 __ if (n==0) => 1; // expression equivalent
 __ => n * factorial(n-1);
 };
}

int factorial(int n) {
 return inspect (n) {
 if n==0 => 1; // expression equivalent
 is _ => n * factorial(n-1);
 };
}

int factorial(int n) {
 const int base_case = 0;
 return inspect(n) -> int {
 case base_case => 1; // non-literal equiv.
 __ => n * factorial(n-1);
 };
}

int factorial(int n) {
 const int base_case = 0;
 return inspect (n) -> int {
 is base_case => 1; // non-literal equiv.
 is _ => n * factorial(n-1);
 };
}

int factorial(int n) {
 return inspect(n) -> int {
 0 => 1;
 x => x * factorial(x-1); // identifier
 };
}

int factorial(int n) {
 return inspect (n) -> int {
 is 0 => 1;
 x is _ => x * factorial(x-1); // identifier
 };
}

int factorial(int n) {
 auto x = 42; // shadowed
 return inspect(n) -> int {
 0 => 1;
 x => x * factorial(x-1); // mistake?
 };
}

int factorial(int n) {
 auto x = 42; // shadowed
 return inspect (n) -> int {
 is 0 => 1;
 x is _ => x * factorial(x-1); // explicit
 };
}

int factorial(int n) {
 const auto x = 42; // add “const”
 return inspect(n) -> int {
 0 => 1;

int factorial(int n) {
 const auto x = 42;
 return inspect (n) -> int {
 is 0 => 1;

P2392 R0 Pattern matching using is and as — Sutter 36

 x => x * factorial(x-1); // different mistake?
 };
}

 is x => x * factorial(x-1); // a constraint
 is _ => n * factorial(n-1); // required
 };
}

enum Color { Red, Green, Blue };

struct ColorPack {
 Color c1, c2;
};

ColorPack cp{Red, Blue};
inspect (cp) {
 [col, case Red] => cout << col; // id, exp
 // ...
}

enum Color { Red, Green, Blue };

struct ColorPack {
 Color c1, c2;
};

ColorPack cp{Red, Blue};
inspect (cp) {
 [col,_] is [_,Red] => cout << col; // id, exp
 // ...
}

enum insn_type { Add, Sub, Unknown };

struct insn_fmt { unsigned opc : 16, imm : 16; };

insn_type decode_insn(insn_fmt &insn) {
 return inspect(insn) {
 [1, i] if (i != 0xffff) => Add;
 [2, __] => Sub
 __ => Unknown;
 };
}

enum insn_type { Add, Sub, Unknown };

struct insn_fmt { unsigned opc : 16, imm : 16; };

insn_type decode_insn(insn_fmt &insn) {
 return inspect (insn) {
 [_,i] is [1,_] && if i != 0xffff => Add;
 is [2, _] => Sub
 is _ => Unknown;
 };
}

void f(std::tuple<double, char, std::string> t) {
 inspect(t) {
 [3.8, 'A', "Lisa Simpson"] => ;
 // ...
 };
}

void f(std::tuple<double, char, std::string> t) {
 inspect (t) {
 is [3.8, 'A', "Lisa Simpson"] => ;
 // ...
 }
}

int f(int n) {
 int x = 0;
 inspect(n) {
 0 => { x += 2; }
 1 => { x *= 2; }
 2 => ;
 __ => !{}
 };
 return x;
}

int f(int n) {
 int x = 0;
 inspect (n) {
 is 0 => { x += 2; }
 is 1 => { x *= 2; }
 is 2 => ;
 is _ => { }
 }
 return x;
}

void h(bool b) {
 auto x = inspect(b) -> std::pair<int, int> {
 true => {1, 2};
 false => {2, 3};
 };
}

void h(bool b) {
 auto x = inspect (b) -> std::pair<int, int> {
 is true => {1, 2};
 is _ => {2, 3};
 }
}

P2392 R0 Pattern matching using is and as — Sutter 37

void r(int a) {
 for (int i = a; i < 10; i++) {
 inspect(i) {
 4 => { return; }
 5 => { break; }
 6 => { continue; }
 };
 }
}

void r(int a) {
 for (int i = a; i < 10; i++) {
 inspect (i) {
 is 4 => return;
 is 5 => break;
 is 6 => continue;
 }
 }
}

P2392 R0 Pattern matching using is and as — Sutter 38

 [P1371R3] examples
P1371 This paper (proposed)

inspect (x) {
 0 => { std::cout << "got zero"; }
 1 => { std::cout << "got one"; }
 __ => { std::cout << "don't care"; }
};

inspect (x) {
 is 0 => std::cout << "got zero";
 is 1 => std::cout << "got one";
 is _ => std::cout << "don't care";
}

inspect (s) {
 "foo" => { std::cout << "got foo"; }
 "bar" => { std::cout << "got bar"; }
 __ => { std::cout << "don't care"; }
};

inspect (s) {
 is "foo" => std::cout << "got foo";
 is "bar" => std::cout << "got bar";
 is _ => std::cout << "don't care";
}

inspect (p) {
 [0, 0] => { std::cout << "on origin"; }
 [0, y] => { std::cout << "on y-axis"; }
 [x, 0] => { std::cout << "on x-axis"; }
 [x, y] => { std::cout << x << ',' << y; }
};

inspect (p) {
 is [0, 0] => std::cout << "on origin";
 is [0, _] => std::cout << "on y-axis";
 is [_, 0] => std::cout << "on x-axis";
 [x,y] is _ => std::cout << x << ',' << y;
}

inspect (v) {
 <int> i => {
 strm << "got int: " << i;
 }
 <float> f => {
 strm << "got float: " << f;
 }
};

inspect (v) {
 i as int => strm << "got int: " << i;
 f as float => strm << "got float: " << f;
}

// assume Shape has an origin
struct Circle : Shape { int radius; };
struct Rectangle : Shape { int width, height; };

int get_area(const Shape& shape) {
 return inspect (shape) {
 <Circle> [r] => 3.14 * r * r;
 <Rectangle> [w, h] => w * h;
 };
}

// assume Shape has an origin
struct Circle : Shape { int radius; };
struct Rectangle : Shape { int width, height; };

int get_area(const Shape& shape) {
 return inspect (shape) {
 [r] as Circle => 3.14 * r * r;
 [w,h] as Rectangle => w * h;
 is _ => 0; // default case is required
 };
}

int eval(const Expr& expr) {
 return inspect (expr) {
 <int> i => i;
 <Neg> [(*?) e] => -eval(e);
 <Add> [(*?) l, (*?) r] => eval(l) + eval(r);

 // Optimize multiplication by 0.
 <Mul> [(*?) <int> 0, __] => 0;
 <Mul> [__, (*?) <int> 0] => 0;

int eval(const Expr& expr) {
 return inspect (expr) {
 i as int => i;
 [e] as Neg => -eval(e);
 [l,r] as Add => eval(l) + eval(r);
 [l,r] as Mul {
 // Optimize multiplication by 0.
 if (l as int == 0 || r as int == 0) => 0;
 is _ => eval(l) * eval(r);

https://wg21.link/p1371r3

P2392 R0 Pattern matching using is and as — Sutter 39

 <Mul> [(*?) l, (*?) r] => eval(l) * eval(r);

 };
}

 }
 is _ => 0; // default case is required
 };
}

enum class Op { Add, Sub, Mul, Div };

Op parseOp(Parser& parser) {
 return inspect (parser.consumeToken()) {
 '+' => Op::Add;
 '-' => Op::Sub;
 '*' => Op::Mul;
 '/' => Op::Div;
 token => !{
 std::cerr << "Unexpected: " << token;
 std::terminate();
 }
 };
}

enum class Op { Add, Sub, Mul, Div };

Op parseOp(Parser& parser) {
 return inspect (token = parser.consumeToken()) {
 is '+' => Op::Add;
 is '-' => Op::Sub;
 is '*' => Op::Mul;
 is '/' => Op::Div;
 token is _ => noreturn {
 std::cerr << "Unexpected: " << token;
 std::terminate();
 }
 };
}

enum Color { Red, Black };

template <typename T>
struct Node {
 void balance();
 Color color;
 shared_ptr<Node> lhs;
 T value;
 shared_ptr<Node> rhs;
};

template <typename T>
void Node<T>::balance() {
 *this = inspect (*this) {
 [case Black, (*?) [case Red, (*?) [case Red, a, x, b], y, c], z, d]
 => Node{Red, make_shared<Node>(Black, a, x, b),
 y, make_shared<Node>(Black, c, z, d)};

 [case Black, (*?) [case Red, a, x, (*?) [case Red, b, y, c]], z, d]
 => Node{Red, make_shared<Node>(Black, a, x, b),
 y, make_shared<Node>(Black, c, z, d)};

 [case Black, a, x, (*?) [case Red, (*?) [case Red, b, y, c], z, d]]
 => Node{Red, make_shared<Node>(Black, a, x, b),
 y, make_shared<Node>(Black, c, z, d)};

 [case Black, a, x, (*?) [case Red, b, y, (*?) [case Red, c, z, d]]]
 => Node{Red, make_shared<Node>(Black, a, x, b),
 y, make_shared<Node>(Black, c, z, d)};

 self => self; // do nothing
 };
}

enum Color { Red, Black };

template <typename T>
struct Node {
 void balance();
 Color color;
 shared_ptr<Node> lhs;
 T value;
 shared_ptr<Node> rhs;
};

template <typename T>
void Node<T>::balance() {
 *this = inspect (*this) {
 [_, *[_, *[_, a, x, b], y, c], z, d]
 is [Black, *[Red, *[Red, _, _, _], _, _], _, _] ||

 [_, *[_, a, x, *[_, b, y, c]], z, d]
 is [Black, *[Red, _, _, *[Red, _, _, _]], _, _] ||

 [_, a, x, *[_, *[_, b, y, c], z, d]]
 is [Black, _, _, *[Red, *[Red, _, _, _], _, _]] ||

 [_, a, x, *[_, b, y, *[_, c, z, d]]]
 is [Black, _, _, *[Red, _, _, *[Red, _, _, _]]]

 => Node{Red, make_shared<Node>(Black, a, x, b),
 y, make_shared<Node>(Black, c, z, d)};

 is _ => *this; // do nothing
 }
}

P2392 R0 Pattern matching using is and as — Sutter 40

 [P1308R0] examples
P1308 This paper (proposed)

enum color { red, yellow, green, blue };

const Vec3 opengl_color =
 inspect(c) {
 red => Vec3(1.0, 0.0, 0.0)
 yellow => Vec3(1.0, 1.0, 0.0)
 green => Vec3(0.0, 1.0, 0.0)
 blue => Vec3(0.0, 0.0, 1.0)
 };

enum color { red, yellow, green, blue };

const Vec3 opengl_color =
 inspect (c) {
 is red => Vec3(1.0, 0.0, 0.0);
 is yellow => Vec3(1.0, 1.0, 0.0);
 is green => Vec3(0.0, 1.0, 0.0);
 is _ => Vec3(0.0, 0.0, 1.0);
 };

struct player { std::string name;
 int hitpoints; int lives; };

void takeDamage(player &p) {
 inspect(p) {
 [hitpoints: 0, lives:0] => gameOver();
 [hitpoints:hp@0, lives:l] => hp=10, l--;
 [hitpoints:hp] if (hp<=3) => { hp--;
 almostDead(); }
 [hitpoints:hp] => hp--;
 }
}

struct player { std::string name;
 int hitpoints; int lives; };

void takeDamage(player &p) {
 inspect (p) {
 is [_,0,0] => gameOver();
 [_,hp,l] is [_,0,1] => hp=10, l--;
 [_,hp,_] is _ {
 if hp<=3 => { hp--; almostDead(); }
 is _ => --hp;
 }
 }
}

struct node {
 std::unique_ptr<node> left;
 std::unique_ptr<node> right;
 int value;
};

template <typename Visitor>
void visit_leftmost(const node& n, Visitor&& v)
{
 inspect(n) {
 [left: nullptr] => v(n);
 [left: *left] => visit_leftmost(left,
 std::forward<Visitor>(v));
 }
}

struct node {
 std::unique_ptr<node> left;
 std::unique_ptr<node> right;
 int value;
};

template <typename Visitor>
void visit_leftmost(const node& n, Visitor&& v)
{
 inspect (n) {
 is [nullptr,_,_] => v(n);
 [left,_,_] is _ => visit_leftmost(*left,
 std::forward<Visitor>(v));
 }
}

// alternate: visit leftmost only traversing
// to a left child node if its value >= 5

template <typename Visitor>
void visit_leftmost2(const node& n, Visitor&& v)
{
 inspect(n) {
 [left] if (left && left->value >= 5)
 => visit_leftmost(left,
 std::forward<Visitor>(v));
 __ => v(n);
 }

// alternate: visit leftmost only traversing
// to a left child node if its value >= 5

template <typename Visitor>
void visit_leftmost2(const node& n, Visitor&& v)
{
 inspect (n) {
 [left,_,_] if left && left->value >= 5
 => visit_leftmost(*left,
 std::forward<Visitor>(v));
 is _ => v(n);
 }

https://wg21.link/p1308r0

P2392 R0 Pattern matching using is and as — Sutter 41

}

}

class Animal { ... };
class Cat : public Animal { ... };
class Crow : public Animal { ... };

void listen(const Animal &a) {
 inspect(a) {
 Cat c => c.speak();
 Crow c => std::cout << "All crows say "
 << c.speak() << std::endl;
 }
}

class Animal { ... };
class Cat : public Animal { ... };
class Crow : public Animal { ... };

void listen(const Animal &a) {
 inspect (a) {
 c as Cat => c.speak();
 c as Crow => std::cout << "All crows say "
 << c.speak() << std::endl;
 }
}

P2392 R0 Pattern matching using is and as — Sutter 42

 [P1260R0] examples
P1260 This paper (proposed)

inspect (x) {
 0: std::cout << "got zero";
 1: std::cout << "got one";
 _: std::cout << "don't care";
}

inspect (x) {
 is 0 => std::cout << "got zero";
 is 1 => std::cout << "got one";
 is _ => std::cout << "don't care";
}

inspect (s) {
 "foo": std::cout << "got foo";
 "bar": std::cout << "got bar";
 _: std::cout << "don't care";
 }

inspect (s) {
 is "foo" => std::cout << "got foo";
 is "bar" => std::cout << "got bar";
 is _ => std::cout << "don't care";
}

inspect (t) {
 [0, 0]: std::cout << "on origin";
 [0, y]: std::cout << "on y-axis";
 [x, 0]: std::cout << "on x-axis";
 [x, y]: std::cout << x << ',' << y;
 }

inspect (t) {
 is [0, 0] => std::cout << "on origin";
 is [0, _] => std::cout << "on y-axis";
 is [_, 0] => std::cout << "on x-axis";
 [x,y] is _ => std::cout << x << ',' << y;
}

inspect (v) {
 <int> i: strm << "got int: " << i;
 <float> f: strm << "got float: " << f;
}

inspect (t) {
 i as int => strm << "got int: " << i;
 f as float => strm << "got float: " << f;
}

// assume Shape has an origin
struct Circle : Shape { int radius; };
struct Rectangle : Shape { int width, height; };

int get_area(const Shape& shape) {
 inspect (shape) {
 (as<Circle> ? [r]) : return 3.14 * r * r;
 (as<Rectangle> ? [w, h]): return w * h;
 }
}

// assume Shape has an origin
struct Circle : Shape { int radius; };
struct Rectangle : Shape { int width, height; };

int get_area(const Shape& shape) {
 inspect (shape) {
 [r] as Circle => 3.14 * r * r;
 [w,h] as Rectangle => w * h;
 }
}

int eval(const Expr& expr) {
 inspect (expr) {
 <int> i: return i;
 <Neg> [e]: return -eval(*e);
 <Add> [l, r]: return eval(*l) + eval(*r);
 <Mul> [l, r]: return eval(*l) * eval(*r);
 }
}

int eval(const Expr& expr) {
 inspect (expr) {
 i as int => return i;
 [e] as Neg => return -eval(*e);
 [l,r] as Add => return eval(*l) + eval(*r);
 [l,r] as Mul => return eval(*l) * eval(*r);
 }
}

https://wg21.link/p1260r0

P2392 R0 Pattern matching using is and as — Sutter 43

 [Solodkyy 2014b] Urbana 2014 examples
Urbana 2014 This paper (proposed)

double area(const Shape& s) {
 inspect (s) {
 when Circle: return 2*pi*radius(); // not s.radius()
 when Square: return height()*width();
 default: error(“unknown shape”);
 }
}

double area(const Shape& s) {
 inspect (s) {
 c as Circle => return 2*pi*c.radius();
 s as Square => return s.height()*s.width();
 is _ => error(“unknown shape”);
 }
}

class Expr { virtual ~Expr(); };
class Value : Expr { int value; };
class Plus : Expr { Expr& a; Expr& b; };
class Minus : Expr { Expr& a; Expr& b; };
class Times : Expr { Expr& x; Expr& y; };
class Divide: Expr { Expr& divident; Expr& divisor; };

int eval(const Expr* e) {
 inspect (e) {
 when Value: return value;
 when Plus: return eval(a)+eval(b);
 when Minus: return eval(a)-eval(b);
 when Times: return eval(x)*eval(y);
 when Divide: return eval(dividend)/eval(divisor);
 }
}

class Expr { virtual ~Expr(); };
class Value : Expr { int value; };
class Plus : Expr { Expr& a; Expr& b; };
class Minus : Expr { Expr& a; Expr& b; };
class Times : Expr { Expr& x; Expr& y; };
class Divide: Expr { Expr& dividend; Expr& divisor; };

int eval(const Expr* e) {
 return inspect (e) {
 e as Value => e.value;
 e as Plus => eval(e.a)+eval(e.b);
 e as Minus => eval(e.a)-eval(e.b);
 e as Times => eval(e.x)*eval(e.y);
 e as Divide => eval(e.dividend)/eval(e.divisor);
 is _ => an_error; // match-anything required
 };
}

istream& operator<<(istream& os,
 const variant<int,double>& u)
{
 inspect (u) {
 when {int a}: return os << a;
 when {double d}: return os << d;
 }
}

istream& operator<<(istream& os,
 const variant<int,double>& u)
{
 return inspect (u) {
 a as int => os << a;
 d as double => os << d;
 };
}

void advance(Iterator p, int n)
{
 inspect(Iterator) {
 when Forward_iterator: // ?fallthrough if empty?
 when Bidirectional_iterator: while(--n>0) ++p;

 when Randomaccess_iterator: p+=n;
 }
}

void advance(Iterator p, int n)
{
 inspect(Iterator) {
 is Forward_iterator ||
 is Bidirectional_iterator => while(--n>0) ++p;

 is Randomaccess_iterator => p+=n;
 }
}

template<typename T, typename U>
void f(T& x, U xx)
{
 inspect (x,xx) {
 when {int* p,0}: p=nullptr;

template<typename T, typename U>
void f(T& x, U xx)
{
 inspect {x,xx} {
 [p,_] is [int*,0] => p=nullptr;

file:///D:/OneDrive/C++/cppx/%20https/www.stroustrup.com/pattern-matching-November-2014.pdf

P2392 R0 Pattern matching using is and as — Sutter 44

 when {_a,int}: ... // _a is an introduced name
 }
}

 [a,_] is [_,int] => ...
 }
}

double factorial(int n)
{
 assert(0<=n);
 inspect(n) {
 when 0: return 1;
 when {double m}: return m*factorial(m−1);
 // m initialized by n
 }
}

double factorial(int n)
{
 assert(0<=n);
 inspect(n) {
 is 0 => return 1;
 m as double => return m*factorial(m−1);
 }
}

template<typename ...Ts>
void print(tuple<Ts...>& t)
{
 inspect (t) {
 when {}: ;
 when {auto a}: cout<<a;
 when {_a,_tail}: cout<<a; print(tail);
 }
}

template<typename ...Ts>
void print(tuple<Ts...>& t)
{
 inspect (t) {
 is [] => ;
 [a] is [_] => cout<<a;
 [a,...tail] is _ => cout<<a; print(tail...);
 }
}
// Note: this would be an extension...
// do want to allow variadic names?

template<typename ...Ts, typename ...Us>
bool operator==(tuple<Ts...>& t, tuple<Us...>& u)
{
 inspect (t,u) {
 when {{},{}}: return true;
 when {_,{}}: return false;
 when {{},_}: return false;
 default: if (head(t)!=head(u)) return false;
 return tail(t)==tail(u);
 }
}

// (1) a direct respelling in this paper’s syntax

template<typename ...Ts, typename ...Us>
bool operator==(tuple<Ts...>& t, tuple<Us...>& u)
{
 inspect (t,u) {
 is [[],[]] => return true;
 is [_ ,[]] => return false;
 is [[],_] => return false;
 is _ => if (head(t)!=head(u)) return false;
 return tail(t)==tail(u);
 }
}

(same as previous)

// (2) my preferred way, in this paper’s syntax...
// regular + makes the recursive case visible

template<typename ...Ts, typename ...Us>
bool operator==(tuple<Ts...>& t, tuple<Us...>& u)
{
 return inspect (t,u) {
 is [[],[]] => true;
 is [_ ,[]] => false;
 is [[],_] => false;
 if head(t)!=head(u) => false;
 is _ => tail(t)==tail(u);
 };
}

P2392 R0 Pattern matching using is and as — Sutter 45

(same as previous)

// (3) or this, fully regular

template<typename ...Ts, typename ...Us>
bool operator==(tuple<Ts...>& t, tuple<Us...>& u)
{
 return inspect (t,u) {
 is [[],[]] => true;
 is [_ ,[]] => false;
 is [[],_] => false;
 if head(t)!=head(u) => false;
 if tail(t)==tail(u) => true;
 is _ => false;
 };
}

void print(Range<T> r) // use PM?
{
 inspect(r) {
 when {}: ;
 when {_p,_q}: cout << *_p; print(++_p,_q);
 }
}

void print(Range<T> r) // has suitable operator is/as
{
 inspect(r) {
 is ranges::empty => ;
 [p,q] is _ => { cout << *_p; print(++p,q); }
 }
}

void print(Range<T> r) // use PM?
{
 inspect(begin(r),end(r)) {
 when {_b,_e} | _b==_e: return; // conditional match
 when {Iterator _b, Iterator _e}:
 cout << *_b; print(++_e);
 }
}

void print(Range<T> r) // use PM?
{
 inspect(begin(r),end(r)) {
 [b,e] b==e => return; // conditional match
 [b,e] is [Iterator,Iterator]
 => { cout << *_b; print(++_e); }
 }
}

P2392 R0 Pattern matching using is and as — Sutter 46

 [Rust PM] examples
Rust This paper (proposed)

let x = 1;

match x {
 1 => println!("one"),
 2 => println!("two"),
 3 => println!("three"),
 _ => println!("anything"),
}

auto x = 1;

cout << inspect (x) {
 is 1 => "one";
 is 2 => "two";
 is 3 => "three";
 is _ => "anything";
};

let x = 'x';
let c = 'c';

match c {
 x => println!("x: {} c: {}", x, c),
} // implicit shadowing pitfall

auto x = 'x';
auto c = 'c';

inspect (c) {
 x is _ => cout<<fmt("x: {} c: {}", x, c),
} // explicit: new names always before ‘is’

let x = 1;

match x {
 1 | 2 => println!("one or two"),
 3 => println!("three"),
 _ => println!("anything"),
}

auto x = 1;

cout << inspect (x) {
 is 1 || is 2 => "one or two";
 is 3 => "three";
 is _ => "anything";
};

let x = 1;

match x {
 e @ 1 ... 5 => println!("in the range"),
 _ => println!("out of the range"),
}

auto x = 1;

inspect (x) {
 is in(1,5) => cout << "in the range";
 is _ => cout << "out of the range";
}

let x = 1;

match x {
 e @ 1 ... 5 |
 e @ 8 ... 10 => println!("got value {}", e),
 _ => println!("anything"),}

auto x = 1;

inspect (x) {
 e is in(1,5) ||
 is in(8,10) => cout<<fmt("got value {}", e);
 is _ => cout << "anything";
}

struct Point { x: i32, y: i32 }

let origin = Point { x: 0, y: 0 };

match origin {
 Point { x, y } => println!("({},{})", x, y),
}

match origin {
 Point { x: x1, y: y1 } => println!("({},{})", x1, y1),
}

match origin {
 Point { .., y: yy } => println!("y is {}", yy),
}

struct Point { int x; int y; };

Point origin(0, 0);

inspect (origin) {
 [x,y] is _ => { cout<<fmt("({},{})", x, y); }
}

inspect (origin) {
 [x1,y1] is _ => { cout<<fmt("({},{})", x1, y1); }
}

inspect (origin) {
 [_,yy] is _ => { cout<<fmt("y is {}", yy); }
}

https://doc.rust-lang.org/1.5.0/book/patterns.html

P2392 R0 Pattern matching using is and as — Sutter 47

 [Swift PM] examples
Swift This paper (proposed)

let point = (3,2);

switch point {
 case let (x,y):
 print("Point is at (\(x), \(y))")
}

pair point(3,2);

inspect (point) {
 [x,y] is _ =>
 cout<<fmt("Point is at ({}, {})", x, y);
}

let point = (1,2);

switch point {
case (0, 0):
 print("(0, 0) is at the origin.")
case (-2...2, -2...2):
 print("(\(point.0), \(point.1)) is near the origin.")
default:
 print("Point is at (\(point.0), \(point.1)).")
}

pair point (1,2);

inspect (point) {
 [_,_] is [0, 0] =>
 cout << "(0, 0) is at the origin.";
 [x,y] is [in(-2,2), in(-2,2)] =>
 cout << fmt("({}, {}) is near the origin", x, y);
 [x,y] is _ =>
 cout << fmt("Point is at ({}, {})", x, y);
}

switch x {
case _ where x > 0:
 print("positive")
case _ where x < 0:
 print("negative")
default:
 print("zero")
}

inspect (x) {
if x > 0 =>
 cout << "positive";
if x < 0 =>
 cout << "negative";
is _ =>
 cout << "zero";
}

https://docs.swift.org/swift-book/ReferenceManual/Patterns.html

P2392 R0 Pattern matching using is and as — Sutter 48

 Bjarne’s syntax examples
Examples from Bjarne’s Apr 2020 draft paper that are not already covered above.

Examples like the red-black tree balancing and small string optimization are classic use cases for pattern match-

ing. See also [N3449], [Solodkyy 2012], and [Solodkyy 2014b].

Bjarne’s paper This paper (proposed)

enum Color { Red, Black };

template <typename T>
struct Node {
 void balance();
 Color color;
 shared_ptr<Node> lhs;
 T value;
 shared_ptr<Node> rhs;
};

template <typename T>
void Node<T>::balance() {
 *this = inspect (*this) {
 // left-left case
 [case Black, *[case Red, *[case Red, a, x, b], y, c], z, d]:
 Node{Red, make_shared<Node>(Black, a, x, b),
 y, make_shared<Node>(Black, c, z, d)};

 // left-right case
 [case Black, *[case Red, a, x, *[case Red, b, y, c]], z, d]:
 Node{Red, make_shared<Node>(Black, a, x, b),
 y, make_shared<Node>(Black, c, z, d)};

 // right-left case
 [case Black, a, x, *[case Red, *[case Red, b, y, c], z, d]]:
 Node{Red, make_shared<Node>(Black, a, x, b),
 y, make_shared<Node>(Black, c, z, d)};

 // right-right case
 [case Black, a, x, *[case Red, b, y, *[case Red, c, z, d]]]:
 Node{Red, make_shared<Node>(Black, a, x, b),
 y, make_shared<Node>(Black, c, z, d)};

 // do nothing
 __ : *this
 };
}

enum Color { Red, Black };

template <typename T>
struct Node {
 void balance();
 Color color;
 shared_ptr<Node> lhs;
 T value;
 shared_ptr<Node> rhs;
};

template <typename T>
void Node<T>::balance() {
 *this = inspect (*this) {
 // left-left case
 [_, *[_, *[_, a, x, b], y, c], z, d]
 is [Black, *[Red, *[Red, _, _, _], _, _], _, _] ||

 // left-right case
 [_, *[_, a, x, *[_, b, y, c]], z, d]
 is [Black, *[Red, _, _, *[Red, _, _, _]], _, _] ||

 // right-left case
 [_, a, x, *[_, *[_, b, y, c], z, d]]
 is [Black, _, _, *[Red, *[Red, _, _, _], _, _]] ||

 // right-right case
 [_, a, x, *[_, b, y, *[_, c, z, d]]]
 is [Black, _, _, *[Red, _, _, *[Red, _, _, _]]]

 => Node{Red, make_shared<Node>(Black, a, x, b),
 y, make_shared<Node>(Black, c, z, d)};

 is _ => *this; // do nothing
 }
}

// short string optimization
char* String::data() {
 inspect (*this) {
 Local [i]: return i;
 Remote [r]: return r.ptr;
 }
}

// short string optimization
char* String::data() {
 inspect (*this) {
 [i] is Local => return i;
 [r] is Remote => return r.ptr;
 }
}

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3449.pdf
https://www.stroustrup.com/OOPSLA-typeswitch-draft.pdf
file:///D:/OneDrive/C++/cppx/%20https/www.stroustrup.com/pattern-matching-November-2014.pdf

P2392 R0 Pattern matching using is and as — Sutter 49

int fac(int n) {
 return inspect(n) {
 0: 1;
 m ? m>1: m*fac(m-1);
 __: throw Negative_fac{};
 };
}

int fac(int n) {
 return inspect (n) {
 is 0 => 1;
 is n>1 => n*fac(n-1);
 is _ => throw Negative_fac{};
 };
}

int fac(int n) { // not proposed, would be special case
 return inspect(n) {
 0: 1;
 ? n>1: n*fac(n-1);
 __: throw Negative_fac{};
 };
}

int fac(int n) { // naturally works, no special case
 return inspect (n) {
 is 0 => 1;
 m is m>1 => m*fac(m-1);
 is _ => throw Negative_fac{};
 };
}

// concepts
template<Iterator Iter>
Iter advance(Iter p, int n) {
 return inspect(Iter) {
 input_iterator: while (n--) ++p;
 random_access_iterator: p+n;
 auto: static_assert(“bad type for advance()”);
 };
}

// concepts
template<Iterator Iter>
Iter advance(Iter p, int n) {
 return inspect (Iter) {
 is input_iterator => while (n--) ++p;
 is random_access_iterator => p+n;
 is _ => static_assert(“bad type for advance()”);
 };
}

// types
inspect(decltype(x)) {
 Foo P: … // P names a type
 Bar Q: … // Q names a type
 auto: static_assert(“no type I know of”);
};

// types
inspect (decltype(x)) {
 P is Foo => … // P names a type
 Q is Bar => … // Q names a type
 is _ => static_assert(“no type I know of”);
}

inspect (x) {
 [a,b] is [_,odd] && is [<100,b] && check(a,b)
 => do_something(a,b);
}

inspect (x) {
 [a,b] b is odd && a<100 && check(a,b)
 => do_something(a,b);
}

P2392 R0 Pattern matching using is and as — Sutter 50

4 Appendix:

Notes on implementation, optimization, and syntax

4.1 Implementation notes: Grammar, avoiding ambiguities
Thanks to Richard Smith for his feedback that led to much of the content of this section, including suggesting

these grammar productions.

 is and as are context-sensitive keywords
The words is and as are not globally reserved, so we have to make sure that uses of those names as identifiers

(e.g., names of types, variables, namespaces) all work including being aware of any backward compatibility is-

sues.

 Grammar productions for is and as expressions
There are five grammar productions for is-expressions:

1) type-id is type-id

2) type-id is type-constraint

3) expression is expression

4) expression is type-id

5) expression is type-constraint

#3 covers both “expression is value” and “expression is value-constraint.”

“expression has operator is” can be either #3 or #4.

Note If the grammar doesn’t easily allow cases like unsigned int is Modulo for the C fundamental types

whose names are multiple tokens, we shouldn’t let them complicate this design. The user can use a

typedef/using alias as the usual workaround for today’s problem cases such as a function-style cast

like unsigned int(5). — In the future we could perhaps generally solve the problem with those

names by some other general approach instead of fixing individual cases in the language For exam-

ple, we could make those names parse as single whitespace tokens (i.e., “unsigned /*arbitrary

whitespace*/ int” would become a single token and a new globally reserved keyword, as we did for

“ref class” etc. in C++/CLI), and then the main issues are questions like whether macros should be

able to create such a token.

 In cases like int(int()) that grammatically can be valid value expressions and valid function types,

we interpret them as value expressions. To use a type, give it a name.

There is one grammar production for as-expressions:

6) expression as type-id

The grammar productions would be:

pm-expression:

P2392 R0 Pattern matching using is and as — Sutter 51

 cast-expression <ins>as-is-expression</ins>

(and similar for the other pm-expression productions)

as-is-expression:

 cast-expression

 as-is-expression is is-constraint

 as-is-expression as type-id

 type-id is type-id

 type-id is type-constraint

is-constraint:

 cast-expression

 type-id

 type-constraint

 [is-constraint-list[opt]]

is-constraint-list:

 is-constraint ...[opt]

 is-constraint-list , is-constraint ...[opt]

For example:

• 3 * x as y is z would parse as 3 * ((x as y) is z)

• ++a is b++ would parse as (++a) is (b++)

Note We’ll want to allow pack expansion in a [...] list. At least tuple is [PackOfTypes...] makes

sense here, but we should also consider whether to allow constructs like tuple is [int...] to

mean “these are all ints and I don’t care how many there are,” as Barry Revzin proposed for auto

[x...] = tuple; .

This grammar allows is followed by a lambda, since lambda-expressions are primary-expressions and so can ap-

pear basically anywhere. (See below for further discussion of lambdas.)

 operator is and operator as
When written as member functions, the new operator is and operator as look similar to existing conversion

functions to types named is or as, including that they can have a template-head:

template<typename T = void> struct is { };

template<typename T = void> struct as { };

struct X {

 operator is() const; // conversion operator to type ‘is’

 template<typename T>

 operator is<T>() const; // conversion operator to type ‘is<T>’

 operator as() const; // conversion operator to type ‘as’

 template<typename T>

 operator as<T>() const; // conversion operator to type ‘as<T>’

The new operators is and as are distinct because they require a return type, which is unambiguous:

P2392 R0 Pattern matching using is and as — Sutter 52

 bool operator is(X) const; // new member ‘operator is’, value of same type

 template<typename Y>

 bool operator is(Y) const; // new member ‘operator is’, value of different type

 template<typename ValPred>

 bool operator is(ValPred) const; // new member ‘operator is’, value predicate

 template<typename Type>

 bool operator is() const; // new member ‘operator is’, type

 template<typename T>

 T operator as() const; // new member ‘operator as’, type
};

Alternatively, these can be written using trailing return type syntax, in which case auto still comes first which it

cannot with a conversion operator.

Parsing these new operators requires no lookahead, because today is and as are not allowed in that position. In

C++20, when parsing a member function declarator that starts with a return type (or auto) followed by opera-

tor, we have we have already excluded conversion operators grammatically and the next token must be one of

the overloadable operator symbols. So if the next token is is or as, it is unambiguously the new operator, no

lookahead is required.

However, note this case:

struct Y : X {

 using X::operator is; // what does this mean?

};

The way we interpret this name depends on what we find in X, including if X is a dependent base class. If X has

both a conversion operator to type is and an overloaded bool operator is, both are brought into scope.

If X has both a conversion operator to type is and an overloaded bool operator is, then we need a rule to

make invoking operator is by name using member function call syntax unambiguous:

X().operator is() // today, invokes a conversion operator

For this case, we can either prefer the type query operator or the conversion operator. I don’t currently have a

preference.

Note If we were very concerned about visual ambiguity and/or about types that provide both a conver-

sion operator is and the new type query operator is (and similarly for as) we could just reserve

operator is and operator as even as conversion operators and break any code that uses them.

Such conversion operators can be rewritten to operator std::identity_t<is> and operator

std::identity_t<as>, if any such code actually exists. Richard Smith reports that Google’s large

internal code base has zero occurrences of “operator is” or “operator as,” and

codesearch.isocpp.org’s ~2.5M source files there are also zero occurrences.

 I don’t think we should do that. It would not remove any potential teachability issue even there is

one, because the syntax for writing operator is and operator as would still be the same so we

would still have to teach it. And it would create something new to teach, namely the asymmetry

that conversion operators are allowed except not for types with two particular names.

P2392 R0 Pattern matching using is and as — Sutter 53

 is and as munching
Consider:

new unsigned is nullptr // do we max-munch the 'is' as a type here?

We do not max-munch is.

It should be rare to find a new-expression on the left-hand side of an is, so it doesn’t seem incredibly important

to be able to give a good diagnostic. But if we do discover an issue with this, we could require () treat it the

same as with:

new widget -> f(); // error, parens required

(new widget) -> f(); // ok

so that we could require

new unsigned is nullptr // if this is problematic for some reason

(new unsigned) is nullptr // this is always unambiguous

Consider also:

unsigned int is Modulo

This could have the same kinds of parsing problems (or lack thereof) as

unsigned int n = unsigned int(5);

as a function-style cast. I don’t think the very-few C fundamental multi-token type names alone should influence

this design. If those are the only things not covered by the grammar we pick, that’s fine and today programmers

can use an alias to rename them to a single-token name as the usual workaround.

Note If we want to deal with multi-token type names, we can do it in a more general way in the future

rather than as a narrow tweak for just one particular feature, such as just for is/as or just for func-

tion-style casts. For example, we could broadly name the multi-token type names parse as single

whitespace tokens (i.e., “unsigned /*arbitrary whitespace*/ int” would become a single token, as

we did for ref class and similar in C++/CLI, and then the main issues are questions like whether

macros should be able to create the token).

 Function and variable declarations named is or as
Consider:

int is(int()); // a function declaration (vexing parse)

bool is(true); // a variable declaration (non-vexing)

These would not be valid is-expressions because if we have a type-id on the left then we must have a type or

type predicate on the right hand side; “type-id is expression” is not one of the productions allowed in §4.1.2.

Parsing this can require (minor) additional work. In C++20, if we see a type-specifier at the start of a statement

that is not followed by (or {, we know it’s a declaration and can parse it as such. With this new rule, we would

additional need to check if the next token is is, and if so, look ahead one more token to see if it’s followed by

something that could plausibly be a type-id or type-constraint (i.e., not (or { or = or ;) or something that could

plausibly follow the declared name in a variable declaration (i.e., (or { or = or ;).

P2392 R0 Pattern matching using is and as — Sutter 54

 cv-qualifiers
Consider this example in the case where is is a type:

const is x;

This is declaring a variable x of type const is. It is not comparing the (grammatically-valid but meaningless)

type-id const against the type or constraint x, but we will need a disambiguation rule to say so. Richard Smith

suggests we could generalize [dcl.spec.general]/3 to cover it:

If a type-name is encountered while parsing a decl-specifier-seq<ins>, defining-type-specifier-seq, or

type-specifier-seq S</ins>, it is interpreted as part of the decl-specifier-seq <ins>S</ins> if

and only if there is no previous defining-type-specifier <ins>or type-specifier</ins> other than a cv-quali-

fier in the decl-specifier-seq <ins>S</ins>."

 Composite constraints and lambdas
For the composite constraints, each Ci can independently be an expression / type-id / type-constraint. For exam-

ple:

make_tuple(3, 4, 5) is [3, int, Swappable]

There is a risk of ambiguity with lambda-expressions here:

int n;
int a;

struct X { int n; } x;

x is [a](int(n)) { return n == a; }

I think this is not a problem because is has lower precedence than [], but this needs to be double-checked.

However, if the above could parse as a valid expression

(x is [a]) (int(n))

then first we get

x is [a]

which is a boolean condition, which I think cannot be grammatically followed by (int . This looks like a function

call expression whose callee is the expression x is [a] which is obviously meaningless because we don’t allow

the callee of a function call to be of type bool, but it is grammatically valid.

The next token can also be anything else that can appear in a lambda-declarator. For example:

x is [a] -> y {}

This could be a lambda or a member access. In this case, both would be invalid, because an is predicate needs

to be unary and a member access needs a pointer or class as its left-hand side. So perhaps there are never any

interesting ambiguities from is [a] ->.

 Decompositions and attributes
Consider:

if(data is [_, [1, _]]) { ... } // e.g., struct { int; struct { int; int; } }

P2392 R0 Pattern matching using is and as — Sutter 55

if(data is [[1, _], _]) { ... } // e.g., struct { struct { int; int; } int; }

if(data is [[1, _]]) { ... } // e.g., struct { struct { int; int; } }

These cases would be ambiguous if attributes were permitted following is, so we do not allow attributes in the

middle of an is-expression.

We want to allow decomposition symmetrically also in structured bindings, so:

auto [_, [1, _]] = ... ;

auto [[1, _], _] = ... ;

auto [[1, _]] = ... ;

Option 1: We could disallow attributes in the position of structured bindings or after is, and likely very little

structured bindings code would break.

Option 2: Alternatively, we could adjust our current blanket rule that [[can only ever be used to introduce an

attribute, to support decompositions that start with [[or end with]]. This might have some non-trivial conse-

quences for some implementations. (We aren’t aware of any implementation that is still blindly deleting all to-

kens between paired [[and]] any more, at least, but should ask vendors for feedback.)

Option 3: Alternatively, we could require an absence of whitespace between the pair of [s in an attribute (and

symmetrically for the]s), so that then the ambiguity can be solved with whitespace (e.g., auto [[attr]] versus

auto [[nested]]).

 requires and is
Consider:

template< typename T, auto Size >
 requires Size is Number // type predicate constraint

This should be equivalent in meaning to

 requires Number<Size>

because the meaning should not change because of writing it using is. Note that this mean this particular ex-

pression should participate in constraint-based partial ordering, rather than being treated as an atomic con-

straint, so is-expressions will be treated specially during constraint normalization.

P2392 R0 Pattern matching using is and as — Sutter 56

4.2 Optimization notes: Static matches, integers, strings, and more
[Mach7] and [Solodkyy 2013] are a primary resource for high performance pattern matching in C++. This section

is not exhaustive, but seeks to illustrate a few important implementation strategies to show this model does not

interfere with getting the optimizations we expect from modern pattern matching using this example:

constexpr int f(auto x) {
 return inspect (x) {

 is string => g1(x); // group 1

 is 2 => g2(x); // group 2

 is 3 => g3(x);

 is 4 => g4(x);

 is "daffy" => g5(x); // group 3

 is "da vinci" => g6(x);

 is "daffodil" => g7(x);

 is _ => g8(x); // group 4

 }

}

This is equivalent to four groups of alternatives, and a quality implementation should group them, such as:

constexpr int f(auto x) {
 if constexpr(x is string) return g1(); // group 1

 else if constexpr(requires{ x==2; }) { // group 2

 // see §4.2.2

 }

 else if constexpr(requires{ x=="string-literal"; }) { // group 3

 // see §4.2.3

 }

 else return g8(x); // group 4

}

 Static matches: Types and compile-time values
All static tests can cause alternatives to be selected or elided at compile time as usual. For example, when in-

stantiating f<string> we know the selected alternative statically, and can emit this body:

 return g1(x);

For example, when instantiating f<int> we know can prune irrelevant alternatives and emit this body:

 return inspect (x) {
 is 2 => g2(x); // group 2
 is 3 => g3(x);
 is 4 => g4(x);

 is _ => g8(x); // group 4
 };

https://github.com/solodon4/Mach7
https://www.stroustrup.com/OpenPatternMatching.pdf

P2392 R0 Pattern matching using is and as — Sutter 57

 Integer series (C switch)
What we teach programmers: “For optimal efficiency, arrange integer alternatives to be consecutive where

possible.”

All consecutive integer alternatives can be optimized the same way as a C switch today.

For example, this sequence of consecutive alternatives from this section’s example:

 is 2 => g2(x);

 is 3 => g3(x);

 is 4 => g4(x);

could be implemented by rewriting it to a C switch:

 if constexpr(requires{ x==2; }) {

 switch (x) { // C switch, including all usual

 case 2: return g2(x); // break; // optimizations such as jump tables

 case 3: return g3(x); // break;

 case 4: return g4(x); // break;

 }

 }

or emitting a table lookup directly:

 if constexpr(requires{ x==2; }) {

 constexpr __pfna[] = { &g2, &g3, &g4 };
 if(x is in(2,4))

 __pfna[x-2](x);

 }

 String series (string matching FSM)
All string alternatives can be optimized using traditional string match approaches, including using the length to

avoid character comparisons, generating a FSM to guarantee single-pass comparison, and/or doing a hash table

lookup for the result.

The alternatives need not be consecutive to benefit.

For example, this sequence of consecutive alternatives from this section’s example:

 is "daffy" => g5(x);

 is "da vinci" => g6(x);

 is "daffodil" => g7(x);

could be emitted as if this short-circuited single-pass logic:

 if constexpr(requires{ x=="string-literal"; }) {

 if((x.length() == 5 || x.length() == 8) // quick short-circuit based on length

 && x[0] == 'd' && x[1] == 'a') // single pass over the string contents

 if(x[2] == 'f' && x[3] == 'f') { // (more generally, generate regex FSM)

 if(/* ... rest is "y" ... */)

P2392 R0 Pattern matching using is and as — Sutter 58

 return g7();

 else if(/* ... rest is "odil" ... */)

 return g6();

 } else if(/* ... rest is " vinci" ...*/)

 return g8();

 }

 O(1) indexed/type_info query (e.g., variant, any)
See §2.3.3 and §2.3.4.

 Additional resources
See [Mach7] and [Solodkyy 2013] as a primary resource for high performance pattern matching implementation.

Thanks to Bruno Cardoso Lopes for the following additional notes and references regarding pattern matching

optimizations:

[Augustsson 2005] is a good introduction.

[Maranget 2008] provides interesting ideas useful for machine learning, and other useful work from the author

is available in the References section of the paper.

We expect to get many optimizations for free or with little effort by leveraging what is already implemented in

existing optimizers for switches and branch chains. LLVM is very smart about optimizing CFGs coming out of

switches/branch-chains, much of which applies to pattern matching. [Sayle 2008] describes GCC jump threading,

transformations on jump-tables/lookup-tables/if-trees/if-chains and other optimizations. Other more ad-hoc

topics include also using PGO, or treating vectors specially in face of structural binding patterns which can allow

for some neat SIMD codegen using predicates/masks/shuffle.

https://github.com/solodon4/Mach7
https://www.stroustrup.com/OpenPatternMatching.pdf
https://link.springer.com/chapter/10.1007%2F3-540-15975-4_48
https://www.cs.tufts.edu/comp/150FP/archive/luc-maranget/jun08.pdf
https://www.researchgate.net/publication/245584786_A_Superoptimizer_Analysis_of_Multiway_Branch_Code_Generation

P2392 R0 Pattern matching using is and as — Sutter 59

4.3 Syntax notes: inspect, =>, ()
The following alternate syntax choices don’t affect the basic design or semantics of the approach in this paper.

This approach can switch to use those at any point if we want.

 Introducing the pattern match: switch vs. match vs. inspect (etc.)
Priorities: The key is to pick a syntax that

• is short and clear — short because a pattern match expression wants a concise syntax, but not just a

symbol because a pattern match statement wants a syntax that is readable and should use a nice word;

• directly connotes the right thing;

• is unambiguous and parseable without excessive lookahead; and

• doesn’t make it hard to teach programmers to use pattern matching instead of C-style switching in

modern code.

Options: Major options discussed in this section are

• switch

• match contextual word

• inspect contextual word

• uglified new reserved word

• multiple new contextual words

• existing reserved word (besides just switch)

• existing reserved word/symbol plus another word

switch. For example

switch (x) { /* need more lookahead to disambiguate less-usual flavors of switch */

I would prefer switch (as in C, C++, and Swift), if the lookahead for disambiguation is not prohibitive, and if it

were acceptable to WG21, but at this point that seems unlikely because of parsing and teaching concerns. The

word switch:

• is short and clear (and already reserved);

• directly connotes the right thing since this is a strict generalization of C and C++ switch, that covers ex-

actly a superset of the uses, and removes the one known pitfall (implicit case fallthrough) — so this is

still a switch, just enabling patterns in the body rather than specific integer equality cases only;

• is unambiguous with existing uses of switch, but because legal switch bodies can be unusual4 the dis-

ambiguation can require lookahead potentially as far as the closing }, possibly with a tentative parse;

and

• makes it easy to tell programmers “avoid case in new code, is is better” because is is more flexible

than case and more general because it could be used everywhere in the language.

match. For example

match (x) { /* need more lookahead to disambiguate from a declaration */

The word match:

4 For example, switch(x){}, switch(x){label:...}, switch(x){unreachable_code()}, switch(x){int i; case:..}.

P2392 R0 Pattern matching using is and as — Sutter 60

• is short and clear, and the most similar to switch;

• directly says what we are going to do — it’s a word we always use anyway when describing the new fea-

ture’s operation even if we call it something else (e.g., “an inspect statement matches the...”);

• is unambiguous with lookahead; and

• makes it easy to tell programmers “avoid switch and case in new code, match is better because it al-

lows is,” since is is more flexible than case and more general because it could be used everywhere in

the language.

inspect or other single words. For example

inspect (x) { /* need more lookahead to disambiguate from a declaration */

and possibly other similar single English verbs. These meet most of the criteria, but they no longer directly say

what we are going to do. If we use a new word like inspect or match, we should make it contextual in a cur-

rently-unused place in the grammar, as we did with override.

Disambiguation is needed in any of the above cases (extending the reserved word switch or adding a new con-

textual word), and it’s okay to require some token lookahead to disambiguate from today’s code. It’s not okay to

require not tentative parses with backtracking, or parsing that relies on semantic analysis (even though we al-

ready have some of that, we mustn’t add more).

An uglified new reserved word. If we feel we must take a new reserved word, it must be uglified to be uncom-

mon enough to avoid significant code breakage. For example, inspect is less widely used than match, but even

inspect is probably too difficult to reserve because it used in enough major projects as ABI-sensitive identifiers

(such as virtual functions and namespaces which are difficult or impossible to change). Candidates that are ugli-

fied enough to avoid this problem would include options like

patternmatch (x) // note: one word

__match (x)

I find options in this category aesthetically unpleasant and in some cases embarrassing. We should not resort to

such a syntax unless there are serious problems with every better one, and I think the earlier-mentioned syntax

options do not have serious enough problems to warrant considering such ugly names.

Multiple new contextual words. C++ does not allow whitespace between identifiers, so we could use a multi-

word introducer. For example

pattern match (x) // note: two words

match pattern (x)

on match (x)

match with (x)

or with more lookahead

match (x) with

with (x) match

I find options in this category less bad than an uglified new reserved word, but needlessly verbose which is un-

desirable for pattern matching expressions which need to be concise.

P2392 R0 Pattern matching using is and as — Sutter 61

A single existing reserved word. If we want to prioritize a syntax that is easy to parse in the first two tokens, we

can do no better than a keyword that is already reserved. For example, we could consider

switch (x)

case (x)

? (x)

However, I still think the best of these is switch, for the advantages mentioned above. And ? is likely too terse

for the statement form; in my opinion we want a word here.

An existing reserved word (possibly a symbol) plus an additional word. Examples include two reserved words

such as

switch if (X)

if switch (X)

case if (X)

if case (X)

?? (x)

or one reserved word and one non-reserved word such as

match if (x)

if match (x)

match? (x) // note: could use match? for non-exhaustive and

match! (x) // match! for exhaustive (I don’t like this)

or with more lookahead

match (x) if

match (x) using

These are easy to parse, and not as terrible as uglified reserved words, but still not desirable in my opinion.

P2392 R0 Pattern matching using is and as — Sutter 62

 Introducing the new names: Whitespace or :
Priorities: The key is to pick a syntax that

• is short and clear;

• directly connotes the right thing; and

• is unambiguous (for compilers and for humans).

Consider using is in constrained declarations, boolean expressions and pattern matching alternatives. First, us-

ing decomposition:

if (auto&& [x,y] is [even,odd] = z) f(x, y*2); // A: declaration: introduces x,y

if (std::tie(x,y) is [even,odd]) f(x, y*2); // B: expression: preexisting x,y
 // Note: “if ([x,y] is [even,odd])” is not currently legal,

 // although it has been considered as a synonym for B

inspect (z) {

 [x,y] is [even,odd] => { f(x, y*2); } // C: alternative: introduces x,y

}

Note that C is both visually and semantically like A, not like B. Because we do not allow the same syntax for B (as

mentioned in the above Note comment), there is no real visual ambiguity in the case where we are introducing

decomposed names.

If we are introducing a non-decomposed name, there is a potential visual (not parsing) ambiguity. For example:

if (auto&& x is even = z) f(x); // A2: declaration: introduces x

if (x is even) f(x); // B2: expression: preexisting x

inspect (z) {
 x is even => f(x); // C2: alternative: introduces x

}

Even though in this case all three are visually similar, we think that C2 is clear as written.

If we want to make this visually explicit, we could require : after introduced names:

inspect (z) {

 [x,y]: is [even,odd] => ...

 x: is even => ...
}

P2392 R0 Pattern matching using is and as — Sutter 63

 Introducing the selected result: = vs. => vs. case vs. then vs. : vs. ->
Priorities: The key is to pick a syntax that

• is short and clear;

• directly connotes the right thing;

• is unambiguous; and

• is general (not a special-purpose syntax that works only in pattern matching).

I prefer either = or =>, because both:

• are short and visible;

• effectively convey that the full switch/match/inspect evaluates to this result;

• is unambiguous in this position; and

• is generalizable for us outside inspect only (= is already used to mean “set to this result,” and => has

already been proposed for terse lambdas, see below).

case is good and familiar and already reserved. Based on discussion so far, however, it is probably too tainted to

use because it’s the current construct that has a pitfall (fallthough) we are trying to remove and in my experi-

ence provokes the most antibodies of any suggestion on this list: case the only pattern matching keyword that

I’ve seen get more “but that’s the thing we’re trying to get rid of!” resistance than switch.

then is excellent and general, and a keyword that is arguably logically missing from if…else already (C omitted

the middle of if…then…else). But if we use it for pattern matching we will either not be general (it will be used

there only) or we will face pressure to add it to if…else where it would be always redundant with the existing

mandatory () as well as with { } when those are used, as discussed further in §4.3.4.

: works well today because it always comes as part of the triplet “case value :” which is visible as a whole. In

the pattern matching examples where it’s the only token between a pattern and a result, it’s too short and tends

to disappear. (Some may argue = has the same problem; I don’t think it does, though of course => is compara-

tively still more visible.)

-> does not work generally because it already has a meaning in some places outside pattern matching where we

might want to express “evaluates to this result,” notably in lambdas…

Generalizability example: Terse lambdas. Note that => has already been suggested for such a non-pattern-

matching use, namely for single-expression lambdas in P0573:

[](x,y) => x+y // P0573

I personally like = here too equally with =>:

[](x,y) = x+y // equally good as => I think

And case, :, and -> do not work as well:

[](x,y) case x+y // doesn’t make sense

[](x,y) : x+y // plausible, but not my preference

[](x,y) -> x+y // collides with return type syntax

If we do use =>: Taking it as a new token without other mitigation, as the P1371 prototype does, would break

obscure code like this:

https://godbolt.org/z/or1s6h
https://godbolt.org/z/or1s6h

P2392 R0 Pattern matching using is and as — Sutter 64

x<&y::operator=> // valid but extremely rare

which might be fine because this is very rare (codesearch has 3 hits in 2.5 million source files) and could be fixed

by the programmer adding a space. Alternatively, we can also add a language workaround rule to break the =>

token into the two tokens = and > when it follows the keyword operator, similar to what we did for >>.

I think operator=> is the only currently legal token sequence that would be affected. Other cases found in

codesearch include ones like this, which might be fine depending on what the implementation does internally:

#pragma data(heap_size => 3000) // wouldn’t be broken (example hit)

https://codesearch.isocpp.org/cgi-bin/cgi_ppsearch?q=operator+%3D+%3E&search=Search
http://codesearch.isocpp.org/actcd19/main/h/hp2xx/hp2xx_3.4.4-11/old/to_pm.c

P2392 R0 Pattern matching using is and as — Sutter 65

 Delimiting the condition/body:) required or optional
Priorities: The key is to pick a syntax that

• is short and clear;

• directly connotes the right thing;

• is unambiguous; and

• is general (not a special-purpose syntax that works only in pattern matching).

I slightly prefer that the redundant () parentheses can be omitted for inspect, if for consistency we now (or

someday) also allowed omitting them for all uses of if, range-for, switch, do/while, and while that use { },

because in all of those cases they are already redundant in all legal C and C++ code. For example, I would allow

these:

switch a { ...

if a { ...

for x : y { ...

while a { ...

do { ... } while a ;

For the constructs that support loop-scoped variables, if you want those then write the full syntax with ().

In all languages, the key is that there must be “a” well-known delimiter between the condition and what follows

it. For example, all of these are unambiguous:

 IF a THEN thing Algol

 IF a DO thing BCPL

 if a then thing Pascal, Ada

 if a : Python, : plus indented block

 thing

 if (a) thing C, C++

 if a { thing } Rust, Swift, and my suggestion here for future C++…

 just make optional the existing syntax that is already redundant

Two delimiters is always redundant, including every C and C++ if/etc. we’ve ever written using both () and { }:

 if (a) { thing } C, C++, Rust, Swift… but having both) and { is always redundant

 (Rust emits a “redundant parens” warning)

Note that there is a place C and C++ already do not require () around branch conditions, which is fine because

there is already a delimiter:

 a ? thing : thing2 C, C++ — following BCPL’s “a -> thing1 , thing2” (see below)

Historically, why did C require () around control flow conditions, when BCPL did not? Well, BCPL didn’t need to

because it always had a delimiter in the required grammar:

P2392 R0 Pattern matching using is and as — Sutter 66

IF a DO thing

TEST a THEN thing

TEST a DO thing
a -> thing

UNLESS a DO thing

WHILE a DO thing

UNTIL a DO thing

thing REPEATWHILE a

thing REPEATUNTIL a
SWITCHON a CASE ...

FOR a = b TO c DO thing

FOR a = b TO c by d DO thing

But when C made { } optional and did not add a keyword like then or similar in the grammar, it lost a reliable

marker between the condition and the branch body. So it had to arrange for one, and picked). Perhaps it was

following Fortran, which did require (), even though they were always redundant in Fortran because of the

mandatory THEN:

 IF (a) THEN thing Fortran

In all C and C++ code ever written, these mandatory () have always been redundant when { } are used around

the body. Furthermore, we now understand the consequences of making { } optional are that code is more brit-

tle especially under maintenance, when the programmer intends for two statements to be in a branch but they

accidentally are not (even apart from macro expansion issues); if we had a time machine, with the benefit of

hindsight I’m reasonably certain sure we would make () optional and { } mandatory, instead of the reverse.

Why do I mention this now? Because we’re talking about adding yet a new place we’d require (), and yet that

ceremony is always redundant for proposed pattern matching if we require { } anyway.

So I think it’s worth discussing the option of making the new pattern matching construct cleaner by not requiring

(), and at the same time keep the language consistent by just also allowing () to be omitted when it’s already

redundant (i.e., when { } are used) in if, switch, range-for, while, and do/while, and with zero code breakage

(perfect backward compatibility).

P2392 R0 Pattern matching using is and as — Sutter 67

4.4 Extension notes

 Exceptional alternatives
[P2381R0] proposes allowing exceptions to be handled by pattern matching alternatives. For example:

P1371 P2381

try { inspect (a()) {
 <reta> => { /*...*/ }
} }
catch(b const&) { /*...*/ }
catch(c const&) { /*...*/ }
catch(d const&) { /*...*/ }

inspect (a()) {
 <reta> => { /*...*/ }
 => { /*...*/ }
 <c> => { /*...*/ }
 <d> => { /*...*/ }
}

This may be plausible, but we would have to think carefully about a few things.

First, we probably want an annotation like catch before the exceptional cases, for two reasons:

• Normal and error/exceptional control flows are fundamentally different and should be visually distinct.

They are usually handled by different code, not the same code: A normal result is always used immedi-

ately at the call site and is a natural thing to inspect immediately, whereas an error is typically not han-

dled immediately (it is atypical for the immediate call site to also know how to resolve an error).

• Any function could throw a type E to report errors, and also return the same type E, or a variant that

includes E, etc. to report normal results. So the syntax for match a thrown E must be somehow distinct

from all other patterns for a return type that could otherwise mention E.

Second, we would like generality: Is there a more general feature that would address the syntactic overhead in

the left-hand example above? In [P0709R4] §4.5.3, I proposed a catch sugar that would allow writing the exam-

ple as follows:

This paper, with P0709R4 §4.5.3 “catch” sugar This paper, with exceptional alternatives and “catch”

inspect (a()) {
 is some_thing => { /*...*/ }
 is other_thing => { /*...*/ }
 // ...
}
catch(b) { /*...*/ }
catch(c) { /*...*/ }
catch(d) { /*...*/ }

inspect (a()) {
 is some_thing => { /*...*/ }
 is other_thing => { /*...*/ }
 // ...
 catch b => { /*...*/ }
 catch c => { /*...*/ }
 catch d => { /*...*/ }
}

My inclination is to not pursue the right-hand approach unless we find compelling examples. There is little syn-

tactic benefit, and the left-hand side has the advantage of keeping normal and error paths strictly separate.

Note that although error handling code should be separate, it could make sense to enable using inspect within

error handling code. For example:

catch(auto const& err) { // a potential extension, that would

 inspect(err) { // let us use inspect naturally ehre

 is b => { /*...*/ }

http://wg21.link/p2381r0
http://wg21.link/p709r4

P2392 R0 Pattern matching using is and as — Sutter 68

 is c => { /*...*/ }

 is d => { /*...*/ }

 }
}

A potential compelling example emphasized in [P2381R0] is the desire to treat errors uniformly, whether they

are encoded in the return type (e.g., result<R,E>) which can be handled naturally in any pattern matching de-

sign, or thrown using an exception would require an extension. However, most of the motivation for proliferat-

ing errors encoded in the return type is because of exception handling semantics and costs, and so for this ex-

ample my preference would be to fix exceptions so that we can use them uniformly instead of proliferating ways

of reporting errors (see [P0709R4]). And even if we did want to allow pattern matching to handle errors uni-

formly whether returned by codes or thrown as exceptions, we will won’t achieve that unless we have a uniform

syntax for the two, which likely would require a way to identify return type that bear errors so they can be

treated uniformly by catch alternatives.

http://wg21.link/p2381r0
http://wg21.link/p709r4

P2392 R0 Pattern matching using is and as — Sutter 69

4.5 History and related work
In 2013-14, modern C++ pattern matching work was prominently pioneered by Yuriy Solodkyy et al. in [Mach7]

and [Solodkyy 2013]. This formed the basis for the Urbana 2014 evening session [Solodkyy 2014b]. Interestingly,

this paper’s proposed syntax is remarkably consistent with the form shown in Urbana; see §3.5.6.

While exploring ways to simplify C++ during 2015-2016, I had noticed the usefulness of general is and as, prob-

ably influenced by seeing that basic syntax in C#. In WG21, I initially proposed is and as specifically for meta-

classes in 2017 in [P0707R0], and then later in private conversations further developed how those could be gen-

eralized in C++ to cover general type and value constraints broadly throughout the language, from simple if

conditions to template requirements/specializations, including pattern matching. This paper existed in basically

its current form in early 2019; it now includes refinements from private discussions during March-June 2021.

Independently, in 2017 C# released version 7.0 with pattern matching that embodied very similar parallel ideas.

C# had is and switch since version 1.0 (2002) but they were separate features until they were unified/general-

ized via pattern matching in C# 7.0 (2017) in much the same way that this proposal unifies/generalizes is with

the generalized switch (aka inspect). The C# language designers commented on how well and naturally the

original C# is and switch generalized to pattern matching, although not initially designed for patterns.

Note One major difference between C# and this proposal is that in C# is and as are not currently custom-

izable; they never run user-written code. This is an extension C# could allow in the future.

Also independently, in 2018-2020, Michael Park’s [P1260R0], David Sankel et al.’s [P1308R0], and Bruno Cardoso

Lopes et al.’s in [P1371R3] pattern matching proposals for C++ again embodied similar parallel ideas:

is allows v is pattern as a general form of [P1260R0] §4.5 pattern matches v and [P1371R3] §5.5

MATCHES(pattern,v). In the previous papers, matches and MATCHES are exposition-only, but both

hint at making that feature usable also outside inspect statements, albeit as pseudocode. In this

paper, v is pattern is first-class boolean expression allowed throughout the language.

as is a general form of [P1260R0] §4.3.2.5 as<T> and [P1371R3] <T>. Although [P1260R0] shows as<>

being used inside inspect statements, the implementation suggested in section 4.3.2.5 hints at

something usable outside inspect statements as well. In this paper, v as T is a first-class expression

allowed throughout the language.

I think it’s a promising sign that this similar approach of expressing pattern matching using a generalized “is” and

a generalized “switch” has been independently reinvented several times, as well as the directly related of a gen-

eralized “as” in result alternatives, and that the basic form remains consistent with the ideals of Urbana 2014.

Additionally, for decomposition and name introduction, this paper reuses (and expands) [] structured bindings,

which also is parallel to the previous papers:

[] is a similar approach to the [] syntax in the three recent prior papers. In this paper, it strictly hews

to structured bindings syntax and semantics, including extending both symmetrically to allow gen-

eralized predicates, nested patterns, and wildcards.

In “surface syntax,” this paper tries to minimize distracting differences from the current pattern matching pro-

posals:

=> to introduce alternative results directly follows the => syntax in [P1308R0] and [P1371R3].

inspect as the main introducer directly follows the inspect syntax in the three recent prior papers.

https://github.com/solodon4/Mach7
https://www.stroustrup.com/OpenPatternMatching.pdf
file:///D:/OneDrive/C++/cppx/%20https/www.stroustrup.com/pattern-matching-November-2014.pdf
http://wg21.link/p707r0
https://wg21.link/p1260r0
https://wg21.link/p1308r0
https://wg21.link/p1371r3
https://wg21.link/p1260r0
https://wg21.link/p1371r3
https://wg21.link/p1260r0
https://wg21.link/p1371r3
https://wg21.link/p1260r0
https://wg21.link/p1308r0
https://wg21.link/p1371r3

P2392 R0 Pattern matching using is and as — Sutter 70

5 Bibliography
[Augustsson 2005] L. Augustsson. “Compiling pattern matching” (Lecture Notes in Computer Science, vol. 201,

June 2005).

[Bandela 2018] J. Bandela. “simple_match: Simple, Extensible C++ Pattern Matching Library” (GitHub, updated

June 2018).

[Boost.Any] K. Henney and A. Polukhin. “Boost.Any” (Boost).

[LLVM Variant] llvm::pdb::Variant type (LLVM.org).

[Mach7] Y. Solodkyy, G. Dos Reis, B. Stroustrup. “Mach7: Pattern Matching for C++” (GitHub, updated December

2019).

[Maranget 2008] L. Maranget. “Compiling Pattern Matching to good Decision Trees” (Proceedings of the 2008

ACM SIGPLAN workshop on ML, September 2008).

[N3449] B. Stroustrup. “Open and Efficient Type Switch for C++” (WG21 paper, September 2012).

[N3804] B. Dawes, K. Henney, D. Krügler. “Any Library Proposal” (WG21, paper, October 2013).

[P0095R1] D. Sankel. “Pattern Matching and Language Variants” (WG21 paper, May 2016).

[P0144R2] H. Sutter, B. Stroustrup, G. Dos Reis. “Structured bindings” (WG21 paper, March 2016).

[P0326R0] V. J. Botet Escribá. “Structured binding: Customization points issues” (WG21 paper, May 2016).

[P0327R3] V. J. Botet Escribá. “Product-type access (revision 3)” (WG21 paper, October 2017).

[P0707R0] H. Sutter. “Metaclasses” (WG21 paper, June 2017).

[P0709R4] H. Sutter. “Zero-overhead deterministic exceptions: Throwing values” (WG21 paper, August 2019).

[P1096R0] T. Doumler. “Simplify the customization point for structured bindings” (WG21 paper, October 2018).

[P1110R0] J. Yasskin, JF Bastien. “A placeholder with no name” (WG21 paper, June 2018).

[P1179R1] H. Sutter. “Lifetime safety: Preventing common dangling” (WG21 paper, November 2019).

[P1260R0] M. Park. “Pattern Matching” (WG21 paper, May 2018).

[P1308R0] D. Sankel, D. Sarginson, S. Murzin. “Pattern Matching” (WG21 paper, October 2018).

[P1371R3] B. Cardoso Lopes, S. Murzin, M. Park, D. Sankel, D. Sarginson, B. Stroustrup. “Pattern Matching”

(WG21 paper, September 2020).

[P1469R0] S. Murzin, M. Park, D. Sankel, D. Sarginson. “Disallow _ Usage in C++20 for Pattern Matching in

C++23” (WG21 paper, January 2019).

[P2381R0] J. Waterloo. “Pattern Matching with Exception Handling” (WG21 paper, unpublished draft, May

2021).

[Park 2019] M. Park. “MPark.Patterns” (GitHub, updated October 2019).

[Rust PM] “Patterns” (Rust documentation).

https://link.springer.com/chapter/10.1007%2F3-540-15975-4_48
https://github.com/jbandela/simple_match
https://www.boost.org/doc/libs/1_75_0/doc/html/any.html
https://llvm.org/doxygen/PDBTypes_8h_source.html#l00410
https://github.com/solodon4/Mach7
https://www.cs.tufts.edu/comp/150FP/archive/luc-maranget/jun08.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3449.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3804.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0095r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0144r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0326r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0327r3.pdf
http://wg21.link/p707r0
http://wg21.link/p709r4
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1096r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1110r0.html
http://wg21.link/p1179r1
https://wg21.link/p1260r0
https://wg21.link/p1308r0
https://wg21.link/p1371r3
https://wg21.link/p1469r0
http://wg21.link/p2381r0
https://github.com/mpark/patterns
https://doc.rust-lang.org/1.5.0/book/patterns.html

P2392 R0 Pattern matching using is and as — Sutter 71

[Sayle 2008] R. A. Sayle. “A Superoptimizer Analysis of Multiway Branch Code Generation” (Proceedings of the

GCC Developers’ Summit, June 2008]

[Solodkyy 2012] Y. Solodkyy, G. Dos Reis, B. Stroustrup. “Open and Efficient Type Switch for C++” (OOPSLA, Octo-

ber 2012).

[Solodkyy 2013] Y. Solodkyy, G. Dos Reis, B. Stroustrup. “Open Pattern Matching for C++” (ACM International

Conference on Generative Programming and Component Engineering, October 2013).

[Solodkyy 2014] Y. Solodkyy. “Mach7: The Design and Evolution of a Pattern Matching Library for C++” (C++

Now, May 2014).

[Solodkyy 2014a] Y. Solodkyy. “Accept No Visitors” (CppCon, September 2014).

[Solodkyy 2014b] Y. Solodkyy, G. Dos Reis, B. Stroustrup. “Pattern Matching for C++” (WG21 presentation at Ur-

bana-Champaign, November 2014).

[Swift PM] “Patterns” (Swift documentation, last major section update September 2019).

[Wakely 2020] J. Wakely. Top answer to “Get the status of a std::future” (StackOverflow, June 2012 and updated

November 2020).

https://www.researchgate.net/publication/245584786_A_Superoptimizer_Analysis_of_Multiway_Branch_Code_Generation
https://www.stroustrup.com/OOPSLA-typeswitch-draft.pdf
https://www.stroustrup.com/OpenPatternMatching.pdf
https://www.youtube.com/watch?v=OkDS6hmU-w8
https://www.youtube.com/watch?v=QhJguzpZOrk
file:///D:/OneDrive/C++/cppx/%20https/www.stroustrup.com/pattern-matching-November-2014.pdf
https://docs.swift.org/swift-book/ReferenceManual/Patterns.html
https://stackoverflow.com/a/10917945

