
ISO/IEC JTC 1/SC 22/WG14
WG 21, SG 22

2021-1-20

N2634 v1
P2306R0

Type-generic lambdas
proposal for C23

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

For the lambda expressions that were introduced in N2633, we propose the addition of auto parameters
that can be completed by the arguments (in a function call) or by the parameter types of target function

pointer (in a conversion).

I. MOTIVATION

This paper is fully motivated in N2638, namely for the improvement of type-generic pro-
gramming in C. For a simple motivation of the feature compared to simple lambdas see for
example the MAXIMUM macro in the proposed text, 6.5.2.6 p17.

II. DESIGN CHOICES

We chose to follow C++ syntax and semantic as close a possible.

II.1. Permissible contexts for type-generic lambdas

It is the intent of this paper, to allow a value of a type-generic lambda type only in a context
where it will be completed, either by the arguments of a function call or by the parameter
types of a target function pointer to which a type-generic function literal is converted.
This is to ensure that compilers that implement this feature have to do no lookahead or
pre-compilation of code snippets with a lot of unknown types.

This is achieved by integrating types of type-generic lambdas into the terminology of the
standard as being incomplete types. Thereby it is not possible to define objects of such a
type. Because lambdas can only be declared in definitions by type inference, effectively such
lambdas cannot even be declared.

By these properties, the only possibility to specify a type-generic lambda that is re-usable
at different places of a source is textual, in particular by defining function-like macros. This
restriction is a deliberate choice for this proposal, here. If in a later phase (probably C26)
WG14 would also want to add objects of type-generic lambda type to the language or adopt
C++’s template functions, this could easily be achieved on top of what is done here.

II.2. Parameter type inference

Parameter type inference only leaves a design choice for array and function parameters. To
be in line with traditional function declarations, we extend the possibility of type inference
to such types and specify that these are to be re-written to pointers to form a valid function
prototype.

III. SYNTAX AND TERMINOLOGY

For all proposed wording see Section VII.

Syntax considerations for this feature are straight forward; we just have to allow the auto
feature to extend to the parameters of lambdas, 6.7.6.3.

© 2021 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2633.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2638.pdf

N2634
P2306R0

:2 Jens Gustedt

In terms of terminology, we introduce the terms incomplete lambda type (6.2.5 p20) and
type-generic lambda (6.5.2.6 p9).

IV. SEMANTICS

The principal semantics of type-generic lambdas are described within three paragraphs.

— Paragraph 6.2.5.6 p9 specifies the possible use of type-generic lambdas.
— Paragraph 6.2.5.6 p10 provides the rules for the completion of such a lambda in a function

call.
— An insertion into 6.3.2.1 p5 describes the mechanism for conversions of type-generic

function literals to function pointers.

V. CONSTRAINTS AND REQUIREMENTS

This proposal constrains the possible uses of type-generic lambdas even further than for
simple lambdas, namely essentially to function calls and conversions to pointer-types. Even
though it would have been possible to formulate such a requirement as a constraint, we chose
not to do so because this might be an area for implementations to extend the C standard
and to implement some template feature for lambda values. Forcing them to diagnose such
constructs would be counter-productive and hinder progress in that area.

The only constraint that this proposal includes is in 6.5.2.6 p6, namely that a type-generic
lambda that is used in a conversion to a function pointer must have a return type that is
compatible to the one of the target function pointer type.

VI. QUESTIONS FOR WG14

(1) Does WG14 want type-generic lambdas for C23 along the lines of N2634?
(2) Does WG14 want to integrate the changes as specified in N2634 into C23?

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2634.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2634.pdf

Type-generic lambdas N2634
P2306R0

:3

References

Jens Gustedt. 2021a. Function literals and value closures. Technical Report N2633. ISO. available at http:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n2633.pdf.

Jens Gustedt. 2021b. Improve type generic programming. Technical Report N2638. ISO. available at http:
//www.open-std.org/jtc1/sc22/wg14/www/docs/n2638.pdf.

Jens Gustedt. 2021c. Lvalue closures. Technical Report N2635. ISO. available at http://www.open-std.org/
jtc1/sc22/wg14/www/docs/n2635.pdf.

Jens Gustedt. 2021d. Type-generic lambdas. Technical Report N2634. ISO. available at http://www.
open-std.org/jtc1/sc22/wg14/www/docs/n2634.pdf.

Jens Gustedt. 2021e. Type inference for variable definitions and function return. Technical Report N2632.
ISO. available at http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2632.pdf.

VII. PROPOSED WORDING

The proposed text is given as diff against N2633.

— Additions to the text are marked as
::::::
shown.

— Deletions of text are marked as shown.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2633.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2633.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2638.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2638.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2635.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2635.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2634.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2634.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2632.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2633.pdf

N2634 lambda.. § 6.2.5, working draft — January 10, 2021 CORE 202101 (E)

— A structure type describes a sequentially allocated nonempty set of member objects (and, in
certain circumstances, an incomplete array), each of which has an optionally specified name
and possibly distinct type.

— A union type describes an overlapping nonempty set of member objects, each of which has an
optionally specified name and possibly distinct type.

— A function type describes a function with specified return type. A function type is characterized
by its return type and the number and types of its parameters. A function type is said to
be derived from its return type, and if its return type is T, the function type is sometimes
called "function returning T". The construction of a function type from a return type is called
"function type derivation".

— A lambda type is a complete
:::
an object type that describes the value of a lambda expression. A

::::::::
complete

:
lambda type is characterized but not determined by a return type that is inferred

from the function body of the lambda expression, and by the number, order, and type of
parameters that are expected for function calls.

:
; The

:::
the

:
function type that has the same

return type and list of parameter types as the lambda is called the prototype of the lambda
:
.
::
A

:::::::
lambda

::::::::::
expression

::::
that

:::
has

::::::::::::::
underspecified

:::::::::::
parameters

::::
has

::
an

:::::::::::
incomplete

:::::::
lambda

:::::
type

::::
that

:::
can

:::
be

:::::::::
completed

:::
by

::::::::
function

::::
call

::::::::::
arguments.

— A pointer type may be derived from a function type or an object type, called the referenced type. A
pointer type describes an object whose value provides a reference to an entity of the referenced
type. A pointer type derived from the referenced type T is sometimes called "pointer to T".
The construction of a pointer type from a referenced type is called "pointer type derivation".
A pointer type is a complete object type.

— An atomic type describes the type designated by the construct _Atomic(type-name). (Atomic
types are a conditional feature that implementations need not support; see 6.10.8.3.)

These methods of constructing derived types can be applied recursively.

21 Arithmetic types and pointer types are collectively called scalar types. Array and structure types are
collectively called aggregate types.50)

22 An array type of unknown size is an incomplete type. It is completed, for an identifier of that type,
by specifying the size in a later declaration (with internal or external linkage). A structure or union
type of unknown content (as described in 6.7.2.3) is an incomplete type. It is completed, for all
declarations of that type, by declaring the same structure or union tag with its defining content later
in the same scope.

23 A type has known constant size if the type is not incomplete and is not a variable length array type.

24 Array, function, and pointer types are collectively called derived declarator types. A declarator type
derivation from a type T is the construction of a derived declarator type from T by the application of
an array-type, a function-type, or a pointer-type derivation to T.

25 A type is characterized by its type category, which is either the outermost derivation of a derived
type (as noted above in the construction of derived types), or the type itself if the type consists of no
derived types.

26 Any type so far mentioned is an unqualified type. Each unqualified type has several qualified versions
of its type,51) corresponding to the combinations of one, two, or all three of the const, volatile,
and restrict qualifiers. The qualified or unqualified versions of a type are distinct types that
belong to the same type category and have the same representation and alignment requirements.52)

A derived type is not qualified by the qualifiers (if any) of the type from which it is derived.

50)Note that aggregate type does not include union type because an object with union type can only contain one member at
a time.

51)See 6.7.3 regarding qualified array and function types.
52)The same representation and alignment requirements are meant to imply interchangeability as arguments to functions,

return values from functions, and members of unions.

Language modifications to ISO/IEC 9899:2018, § 6.2.5 page 33

1

N2634 lambda.. § 6.3.2.2, working draft — January 10, 2021 CORE 202101 (E)

version of the type of the lvalue; otherwise, the value has the type of the lvalue. If the lvalue has an
incomplete type and does not have array type, the behavior is undefined. If the lvalue designates an
object of automatic storage duration that could have been declared with the register storage class
(never had its address taken), and that object is uninitialized (not declared with an initializer and no
assignment to it has been performed prior to use), the behavior is undefined.

3 Except when it is the operand of the sizeof operator, or the unary & operator, or is a string literal
used to initialize an array, an expression that has type "array of type" is converted to an expression
with type "pointer to type" that points to the initial element of the array object and is not an lvalue.
If the array object has register storage class, the behavior is undefined.

4 A function designator is an expression that has function type. Except when it is the operand of the
sizeof operator,70) or the unary & operator, a function designator with type "function returning
type" is converted to an expression that has type "pointer to function returning type".

5 Closures
:::::
Other

:::::
than

::::::::
specified

:::
in

:::
the

::::::::::
following,

:::::::
lambda

:::::
types

:
shall not be converted to any other

object type. A function literal with a type "lambda with prototype type" can be converted implicitly
or explicitly to an expression that has type "pointer to type".

:::
For

:
a
::::::::::::

type-generic
::::::::
lambda,

::::::
types

::
of

::::::::::::::
underspecified

::::::::::
parameters

:::::
shall

:::::
first

::
be

:::::::::::
completed

:::::::::
according

:::
to

:::
the

:::::::::::
parameters

::
of

::::
the

::::::
target

:::::::::
prototype;

::::
that

:::
is,

:::
for

:::::
each

::::::::::::::
underspecified

::::::::::
parameter

:::::
there

:::::
shall

:::
be

:
a
:::::
type

::::::::
specifier

::
as

::::::::::
described

::
in

:::::
6.7.10

:::::
such

::::
that

:::
the

::::::::
adjusted

::::::::::
parameter

::::
type

::
is
:::::::::::
compatible

::::
with

:::
the

::::::::::
parameter

:::::
type

::
of

:::
the

::::::
target

:::::::
function

:::::
type.

:::::
After

:::::
that,

:::
the

::::::::
inferred

::::::
return

::::
type

::
of

:::
the

:::::
thus

:::::::::
completed

:::::::
lambda

:::::
shall

::
be

:::::::::::
compatible

::::
with

:::
the

::::::
return

:::::
type

::
of

:::
the

::::::
target

::::::::::
prototype.71) The function pointer value behaves as if a function

with internal linkage with the appropriate prototype, a unique name, and the same function body
as for λ had been specified in the translation unit and the function pointer had been formed by
function-to-pointer conversion of that function. The only difference is

:::::::::
differences

::::
are

::::
that,

::
if

:
λ
::
is
::::
not

::::::::::::
type-generic,

:::
the

::::::::
resulting

::::::::
function

:::::::
pointer

::
is

:::
the

:::::
same

:::
for

:::
the

::::::
whole

::::::::
program

::::::::::
execution

:::::::::
whenever

:
a
::::::::::
conversion

:::
of

:
λ
::
is
::::
met72)

:::
and

:
that the function pointer needs not necessarily to be distinct from

any other compatible function pointer that provides the same observable behavior.

Forward references: lambda expressions (6.5.2.6) address and indirection operators (6.5.3.2), as-
signment operators (6.5.16), common definitions <stddef.h> (7.19), initialization (6.7.9), postfix
increment and decrement operators (6.5.2.4), prefix increment and decrement operators (6.5.3.1), the
sizeof and _Alignof operators (6.5.3.4), structure and union members (6.5.2.3).

:
,
::::
type

:::::::::
inference

:::::::
(6.7.10).

6.3.2.2 void

1 The (nonexistent) value of a void expression (an expression that has type void) shall not be used in any
way, and implicit or explicit conversions (except to void) shall not be applied to such an expression.
If an expression of any other type is evaluated as a void expression, its value or designator is
discarded. (A void expression is evaluated for its side effects.)

6.3.2.3 Pointers
1 A pointer to void may be converted to or from a pointer to any object type. A pointer to any object

type may be converted to a pointer to void and back again; the result shall compare equal to the
original pointer.

2 For any qualifier q, a pointer to a non-q-qualified type may be converted to a pointer to the q-qualified
version of the type; the values stored in the original and converted pointers shall compare equal.

3 An integer constant expression with the value 0, or such an expression cast to type void *, is called
a null pointer constant.73) If a null pointer constant is converted to a pointer type, the resulting
pointer, called a null pointer, is guaranteed to compare unequal to a pointer to any object or function.

70)Because this conversion does not occur, the operand of the sizeof operator remains a function designator and violates
the constraints in 6.5.3.4.

71)It follows that lambdas of different type cannot be assigned to each other. Thus, in the conversion of a function literal to a
function pointer, the prototype of the originating lambda expression can be assumed to be known, and a diagnostic can be
issued if the prototypes do not aggree.

72)
:::
Thus

::
a
::::::
function

:::::
literal

:::
that

::
is

::
not

::::::::::
type-generic

:::
has

:::::::
properties

::::
that

::
are

::::::
similar

:
to
::

a
::::::
function

:::::::
declared

:::
with

::::::
static

:::
and

:

::::::
inline.

:
A
:::::::
possible

:::::::::::
implementation

::
of

:::
the

:::::
lambda

::::
type

:
is
::

to
::
be

:::
the

:::
the

::::::
function

:::::
pointer

::::
type

::
to

:::::
which

:::
they

::::::
convert.

73)The macro NULL is defined in <stddef.h> (and other headers) as a null pointer constant; see 7.19.

Language modifications to ISO/IEC 9899:2018, § 6.3.2.3 page 41

2

N2634 lambda.. § 6.5.2.6, working draft — January 10, 2021 CORE 202101 (E)

Constraints
2 A lambda expression shall not be operand of the unary & operator.111)

3 A capture that is listed in the capture list is an explicit capture. If the capture clause is [=], id is the
name of an object with automatic storage duration in a surrounding scope, id is used within the
function body of the lambda without redeclaration and id is not a parameter, the effect is as if id
had been used in a capture list. Such a capture is an implicit capture.

4 Captures without assignment expression shall be names of complete objects with automatic storage
duration in a scope surrounding the lambda expression that do not have array type and that are
visible at the point of evaluation of the lambda expression. An identifier shall appear at most once;
either as an explicit capture or as a parameter name in the parameter type list.

5 Within the function body, identifiers (including explicit and implicit captures, and parameters of the
lambda) shall be used according to the usual scoping rules, but identifiers of a scope that includes
the lambda expression and that are declared with automatic storage duration shall only be evaluated
within the assignment expression of a value capture.112)

6 The
::::
After

::::::::::::
determining

:::
the

::::
type

:::
of

::
all

::::::::
captures

::::
and

::::::::::
parameters

:::
the

:
function body shall be such that a

return type type according to the rules in 6.8.6.4 can be inferred.
:
If
::::
the

:::::::
lambda

::::::
occurs

::
in

::
a

::::::::::
conversion

::
to

:
a
::::::::
function

:::::::
pointer,

::::
the

:::::::
inferred

::::::
return

:::::
type

::::
shall

:::
be

::::::::::
compatible

::
to

::::
the

::::::::
specified

::::::
return

::::
type

::
of

::::
the

:::::::
function

::::::::
pointer.

Semantics
7 If the parameter clause is omitted, a clause of the form () is assumed. A lambda expression without

capture list is called a function literal expression, otherwise it is called a closure expression. A lambda
value originating from a function literal expression is called a function literal, otherwise it is called a
closure.

8 Similar to a function definition, a lambda expression forms a single block scope that comprises its
capture clause, its parameter clause and its function body. Each explicit capture and parameter has a
scope of visibility that starts immediately after its definition is completed and extends to the end
of the function body. The scope of visibility of implicit captures is the function body. In particular,
captures and parameters are visible throughout the whole function body, unless they are redeclared
in a depending block within that function body. Captures

:::::
Value

::::::::
captures and parameters have

automatic storage duration; in each function call to the formed lambda value, a new instance of
each

:::::
value

:
capture and parameter is created and initialized in order of declaration and has a lifetime

until the end of the call, only that the address of captures is not necessarily unique.

9
::
A

:::::::
lambda

::::::::::
expression

::::
for

::::::
which

::
at

:::::
least

::::
one

::::::::::
parameter

:::::::::::
declaration

::
in

::::
the

:::::::::
parameter

::::
list

::::
has

:::
no

::::
type

::::::::
specifier

::
is

::
a
:
type-generic lambda

::::
with

:::
an

:::::::::::
imcomplete

::::::::
lambda

:::::
type.

::
It
:::::

shall
:::::

only
::::::
occur

::
in

::
a

::::
void

:::::::::::
expression,

::
as

::::
the

::::::
postfix

:::::::::::
expression

::
of

::
a

::::::::
function

::::
call

::
or,

::
if
::::

the
:::::::
capture

::::::
clause

:::
is

::::::
empty,

:::
in

:
a
::::::::::
conversion

:::
to

:
a
:::::::
pointer

:::
to

::::::::
function

::::
with

:::::
fully

:::::::::
specified

::::::::::
parameter

:::::
types,

::::
see

::::::
6.3.2.1.

::::
For

::
a
:::::
void

::::::::::
expression,

::
it

:::
has

:::
no

::::
side

::::::
effects

::::
and

:::::
shall

::
be

::::::::
ignored.

:

10
:::
For

::
a

::::::::
function

::::
call,

:::
the

:::::
type

:::
of

::
an

::::::::::
argument

:::::
(after

:::::::
lvalue,

:::::::::::::::
array-to-pointer

::
or

::::::::::::::::::
function-to-pointer

::::::::::
conversion)

:::
to

::
an

::::::::::::::
underspecified

:::::::::
parameter

:::::
shall

::
be

:::::
such

::::
that

::
it

:::
can

:::
be

::::
used

::
to

:::::::::
complete

:::
the

:::::
type

::
of

:::
that

::::::::::
parameter

::::::::::
analogous

::
to

::::::
6.7.10,

::::
only

::::
that

:::
the

::::::::
inferred

::::
type

:::
for

:::
an

:::::::::
parameter

::
of

::::::
array

::
or

::::::::
function

::::
type

::
is

::::::::
adjusted

:::::::::::
analogously

:::
to

::::::::
function

::::::::::
declarators

::::::::
(6.7.6.3)

::
to

::
a

::::::::
possibly

::::::::
qualified

::::::
object

:::::::
pointer

::::
type

::::
(for

::
an

::::::
array)

:::
or

::
to

:
a
::::::::
function

:::::::
pointer

:::::
type

:::
(for

::
a

::::::::
function)

:::
to

::::::
match

::::
type

::
of

::::
the

:::::::::
argument.

::::
For

:
a
::::::::::
conversion

::
of

::::
any

:::::::::::
arguments,

:::
the

::::::::::
parameter

:::::
types

:::::
shall

::
be

:::::
those

:::
of

:::
the

::::::::
function

:::::
type.

11 If a capture id is defined without an assignment expression, the assignment expression is assumed
to be id itself, referring to the object of automatic storage duration of the surrounding scope that

111)Objects with lambda type that can be operand of the unary & operator can be formed by type inference and initialization
with a lambda value.

112)Identifiers of visible automatic objects that are not captures, may still be used if they are not evaluated, for example in
sizeof expressions (if they are not VM types) or as controlling expression of a generic primary expression.

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 65

3

CORE 202101 (E) § 6.5.2.6, working draft — January 10, 2021 lambda.. N2634

exists according to the constraints.113)

12 The implicit or explicit assignment expression E in the definition of a value capture determines
a value E0 with type T0, which is E after possible lvalue, array-to-pointer or function-to-pointer
conversion. The type of the capture is T0 const and its value is E0 for all evaluations in all function
calls to the lambda value. If, within the function body, the address of the capture id or one of
its members is taken, either explicitly by applying a unary & operator or by an array to pointer
conversion,114) and that address is used to modify the underlying object, the behavior is undefined.
The evaluation of E takes place during the evaluation of the lambda expression; for an explicit
capture when the value capture is met and for an implicit capture at the beginning of the evaluation
of the function body.

13 For each lambda expression, the return type type is inferred as indicated in the constraints. A lambda
expression λ

:::
that

::
is
::::
not

:::::::::::
type-generic

:
has an unspecified lambda type L that is the same for every

evaluation of λ. If λ appears in a context that is not a function call, a value of type L is formed that
identifies λ and the specific set of values of the identifiers in the capture clause for the evaluation, if
any. This is called a lambda value. It is unspecified, whether two lambda expressions λ and κ share
the same lambda type even if they are lexically equal but appear at different points of the program.
Objects of lambda type shall not be modified.

Recommended practice
14 To avoid their accidental modification, it is recommended that declarations of lambda type objects

are const qualified. Whenever possible, implementations are encouraged to diagnose any attempt
to modify a lambda type object.

15 EXAMPLE 1 The usual scoping rules extend to lambda expressions; the concept of captures only restricts which identifiers
may be evaluated or not.

#include <stdio.h>
static long var;
int main(void) {
[](void){ printf("%ld\n", var); }(); // valid, prints 0
[var](void){ printf("%ld\n", var); }(); // invalid, var is static

int var = 5;

[var](void){ printf("%d\n", var); }(); // valid, prints 5
[](void){ printf("%d\n", var); }(); // invalid
[var](void){ printf("%zu\n", sizeof var); }(); // valid, prints sizeof(int)
[](void){ printf("%zu\n", sizeof var); }(); // valid, prints sizeof(int)
[](void){ extern long var; printf("%ld\n", var; }(); // valid, prints 0

}

16 EXAMPLE 2 The following uses a function literal as a comparison function argument for qsort.

#define SORTFUNC(TYPE) [](size_t nmemb, TYPE A[nmemb]) { \
qsort(A, nmemb, sizeof(A[0]), \

[](void const* x, void const* y){ /* comparison lambda */ \
TYPE X = *(TYPE const*)x; \
TYPE Y = *(TYPE const*)y; \
return (X < Y) ? -1 : ((X > Y) ? 1 : 0); /* return of type int */ \

} \
); \

return A; \
}
...
long C[5] = { 4, 3, 2, 1, 0, };

113)The evaluation in rules in the next paragraph then stipulates that it is evaluated at the point of evaluation of the lambda
expression, and that within the body of the lambda an unmutable auto object of the same name, value and type is made
accesssible.
114)The capture does not have array type, but if it has a union or structure type, one of its members may have such a type.

modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 66 Language

4

N2634 lambda.. § 6.5.2.6, working draft — January 10, 2021 CORE 202101 (E)

SORTFUNC(long)(5, C); // lambda → (pointer →) function call
...
auto const sortDouble = SORTFUNC(double); // lambda value → lambda object
double* (*sF)(size_t nmemb, double[nmemb]) = sortDouble; // conversion
...
double* ap = sortDouble(4, (double[]){ 5, 8.9, 0.1, 99, });
double B[27] = { /* some values ... */ };
sF(27, B); // reuses the same function
...
double* (*sG)(size_t nmemb, double[nmemb]) = SORTFUNC(double); // conversion

This code evaluates the macro SORTFUNC twice, therefore in total four lambda expressions are formed.

The function literals of the "comparison lambdas" are not operands of a function call expression, and so by conversion a
pointer to function is formed and passed to the corresponding call of qsort. Since the respective captures are empty, the
effect is as if to define two comparison functions, that could equally well be implemented as static functions with auxiliary
names and these names could be used to pass the function pointers to qsort.

The outer lambdas are again without capture. In the first case, for long, the lambda value is subject to a function call, and it is
unspecified if the function call uses a specific lambda type or directly uses a function pointer. For the second, a copy of the
lambda value is stored in the variable sortDouble and then converted to a function pointer sF. Other than for the difference
in the function arguments, the effect of calling the lambda value (for the compound literal) or the function pointer (for array
B) is the same.

For optimization purposes, an implementation may fold lambda values that are expanded at different points of the program
such that effectively only one function is generated. For example here the function pointers sF and sG may or may not be
equal.

:

17 EXAMPLE 3
::::::
Consider

:::
the

:::::::
following

::::::::::
type-generic

::::::
function

:::::
literal

:::
that

:::::::
computes

:::
the

::::::::
maximum

::::
value

::
of

:::
two

::::::::
parameters

::
X

:::
and

:
Y.
:

:
#
::::::
define

::::::::
MAXIMUM

:
(

:
X,

::
Y
:
)
: ::::::::::::::::::::::::::::: :

\

:::::::
[](

::::
auto

::
a

:
,

::::
auto

::
b
:
)
:
{
: ::::::::::::::::::::::::::: :

\

::::::::::::
return

::
(

:
a

::
<

::
0)

: :::::::::::::::::::::::::::::: :
\

::::::::::::::
?

:::
((b

::
<
: :::

0)
::
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)

::
:

::
b

:
)

::::
\

::::::::::::::
:

:::
((b

:::
>=

:::
0)

::
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)

::
:

::
a

:
)

:
;

:::
\

::::::
}(

:
X
::
,

::
Y

:
)

::::::::
auto

::
R

::
=

:::::::
MAXIMUM

::::
(-1,

:::
-1

:
U
:
)
:
;

::::::::
auto

::
S

::
=

:::::::
MAXIMUM

:::
(-1

:
U
:
,
:::
-1

:
L
:
)
:
;

::::
After

::::::::::
preprocessing,

:::
the

:::::::
definition

::
of

::
R,

::::::
becomes

:

::::
auto

::
R
::
=
::::
[](

::::
auto

:
a
:
,
:::::
auto

::
b
:
)
:
{

::::::::
return

::
(

:
a

::
<

:::
0)

::::::
?
:::
((

:
b

::
<

:: ::
0)

:
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)
::
:
::
b
:
)

::::::
:
:::
((

:
b

:::
>=

:::
0)

:
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)
::
:
::
a
:
)
:
;

:::::::
}(-1,

:::
-1

:
U

:
)

:
;

::
To

:::::::
determine

::::
type

:::
and

:::::
value

::
of

:
R,
::::

first
::
the

::::
type

::
of

:::
the

::::::::
parameters

::
in

:::
the

::::::
function

:::
call

:::
are

::::::
inferred

::
to

::
be

:::::::::
signed int

:::
and

:

:::::::::::
unsigned int,

:::::::::
respectively.

::::
With

:::
this

:::::::::
information,

:::
the

:::
type

::
of

::
the

::::::
return

::::::::
expression

::::::
becomes

:::
the

:::::::
common

:::::::
arithmetic

::::
type

:
of
:::

the
::::
two,

::::
which

::
is
:::::::::::
unsigned int.

::::
Thus

:::
the

:::::
return

:::
type

::
of

:::
the

::::::
lambda

:
is
:::
that

::::
type.

::::
The

::::::
resulting

::::::
lambda

::::
value

::
is

:::
the

:::
first

::::::
operand

::
to

::
the

:::::::
function

:::
call

::::::
operator

:::
().

::
So

:
R
:::
has

::
the

::::
type

:::::::::::
unsigned int

:::
and

:
a
::::
value

::
of

::::::::
UINT_MAX.

::
For

::
S,

:
a
::::::
similar

:::::::
deduction

:::::
shows

:::
that

:::
the

::::
value

:::
still

::
is

:::::::
UINT_MAX

:::
but

::
the

::::
type

::::
could

::
be

:::::::::::
unsigned int

::
(if

:::
int

:::
and

::::
long

::::
have

::
the

::::
same

:::::
width)

::
or
::::
long

::
(if

::::
long

::
is

::::
wider

::::
than

::::
int).

::
As

::::
long

:
as
::::

they
:::
are

::::::
integers,

::::::::
regardless

:
of
:::

the
::::::
specific

:::
type

::
of

:::
the

::::::::
arguments,

:::
the

:::
type

::
of
:::
the

::::::::
expression

:
is
::::::

always
::::
such

:::
that

::
the

::::::::::
mathematical

::::::::
maximum

::
of

:::
the

:::::
values

:::
fits.

::
So

::::::
MAXIMUM

:::::::::
implements

::
a

:::::::::
type-generic

::::::::
maximum

::::
macro

::::
that

:
is
::::::
suitable

:::
for

:::
any

:::::::::
combination

::
of

:::::
integer

::::
types.

18 EXAMPLE 4

void matmult(size_t k, size_t l, size_t m,
double const A[k][l], double const B[l][m], double const C[k][m]) {

// dot product with stride of m for B
// ensure constant propagation of l and m
auto const λδ = [l,m](double const v[l], double const B[l][m], size_t m0) {

Language modifications to ISO/IEC 9899:2018, § 6.5.2.6 page 67

5

CORE 202101 (E) § 6.7.6.3, working draft — January 10, 2021 lambda.. N2634

}

Forward references: function declarators (6.7.6.3), function definitions (6.9.1), initialization (6.7.9).

6.7.6.3 Function declarators (including prototypes)
Constraints

1 A function declarator shall not specify a return type that is a function type or an array type.

2 The only storage-class specifier
::::::::
specifiers that shall occur in a parameter declaration is

:::
are

:::::
auto

::::
and

register.

3 An identifier list in a function declarator that is not part of a definition of that function shall be
empty.

::
A

:::::::::
parameter

:::::::::::
declaration

:::::::
without

:::::
type

::::::::
specifier

:::::
shall

:::
not

:::
be

:::::::
formed,

:::::::
unless

:
it
::::::::
includes

::::
the

::::::
storage

:::::
class

::::::::
specifier

:::::
auto

::::
and

::::::
unless

::
it

:::::::
appears

::
in

::::
the

:::::::::
parameter

:::
list

:::
of

:
a
:::::::
lambda

:::::::::::
expression.

4 After adjustment, the parameters in a parameter type list in a function declarator that is part of a
definition of that function shall not have incomplete type.

Semantics
5 If, in the declaration "T D1", D1 has the form

D (parameter-type-list)
or

D (identifier-listopt)

and the type specified for ident in the declaration "T D" is "derived-declarator-type-list T", then the
type specified for ident is "derived-declarator-type-list function returning the unqualified version of T".

6 A parameter type list specifies the types of, and may declare identifiers for, the parameters of the
function.

7 A
:::::
After

:::
the

:::::::::
declared

:::::
types

:::
of

:::
all

::::::::::
parameters

:::::
have

:::::
been

:::::::::::
determined

:::
in

:::::
order

:::
of

:::::::::::
declaration,

::::
any

declaration of a parameter as "array of type" shall be adjusted to "qualified pointer to type", where
the type qualifiers (if any) are those specified within the [and] of the array type derivation. If the
keyword static also appears within the [and] of the array type derivation, then for each call to
the function, the value of the corresponding actual argument shall provide access to the first element
of an array with at least as many elements as specified by the size expression.

8 A declaration of a parameter as "function returning type" shall be adjusted to "pointer to function
returning type", as in 6.3.2.1.

9 If the list terminates with an ellipsis (, ...), no information about the number or types of the
parameters after the comma is supplied.156)

10 The special case of an unnamed parameter of type void as the only item in the list specifies that the
function has no parameters.

11 If, in a parameter declaration, an identifier can be treated either as a typedef name or as a parameter
name, it shall be taken as a typedef name.

12 If the function declarator is not part of a definition of that function, parameters may have incomplete
type and may use the [*] notation in their sequences of declarator specifiers to specify variable
length array types.

13 The storage-class specifier in the declaration specifiers for a parameter declaration, if present, is
ignored unless the declared parameter is one of the members of the parameter type list for a function
definition.

14 An identifier list declares only the identifiers of the parameters of the function. An empty list in
a function declarator that is part of a definition of that function specifies that the function has no
parameters. The empty list in a function declarator that is not part of a definition of that function

156)The macros defined in the <stdarg.h> header (7.16) can be used to access arguments that correspond to the ellipsis.

modifications to ISO/IEC 9899:2018, § 6.7.6.3 page 102 Language

6

N2634 lambda.. § 6.7.10, working draft — January 10, 2021 CORE 202101 (E)

struct S {
int i;
struct T t;

};

struct T x = {.l = 43, .k = 42, };

void f(void)
{

struct S l = { 1, .t = x, .t.l = 41, };
}

The value of l.t.k is 42, because implicit initialization does not override explicit initialization.

37 EXAMPLE 13 Space can be "allocated" from both ends of an array by using a single designator:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] = 8, 6, 4, 2, 0

};

38 In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it is less than ten, some of
the values provided by the first five initializers will be overridden by the second five.

39 EXAMPLE 14 Any member of a union can be initialized:

union { /* ... */ } u = {.any_member = 42 };

Forward references: common definitions <stddef.h> (7.19).

6.7.10 Type inference
Constraints

1 An underspecified declaration shall contain the storage class specifier auto.

2 For an underspecified declaration of a function that is also a definition, the return type shall be
completed as of 6.9.1. For an underspecified declaration of a function that is not a definition a prior
definition of the declared function shall be visible.

3 An underspecified declaration of an object that is also a definition and that is not the declaration of a
parameter shall be of one of the forms

declarator = assignment-expression
declarator = { assignment-expression }
declarator = { assignment-expression , }

such that the declarator does not declare an array.

4 For an underspecified declaration such that the assignment expression does not have lambda type
there shall be a type specifier type that can be inserted in the declaration immediately after the last
storage class specifier that makes the adjusted declaration a valid declaration and such that the
assignment expression, after possible lvalue, array-to-pointer or function-to-pointer conversion,
has the non-atomic, unqualified type of the declared object.165)if the assignment expression has
lambda type,

::
the

::::::::
lambda

::::
type

:::::
shall

:::
be

::::::::
complete

::::
and

:
the declarator shall only consist of storage

class specifiers, qualifiers and the identifier that is to be declared. A function declaration that is not a
definition shall have a type that is compatible with the type of the corresponding definition.

Description
5 Although there is no syntax derivation to form declarators of lambda type, values of lambda type

can be used as assignment expression and the inferred type is that lambda type, possibly qualified.
Otherwise, provided the constraints above are respected, in an underspecified declaration the type

165)For most assignment expressions of integer or floating point type, there are several types type that would make such a
declaration valid. The second part of the constraint ensures that among these a unique type is determined that does not need
further conversion to be a valid initializer for the object.

Language modifications to ISO/IEC 9899:2018, § 6.7.10 page 111

7

	Motivation
	Design choices
	Permissible contexts for type-generic lambdas
	Parameter type inference

	Syntax and terminology
	Semantics
	Constraints and requirements
	Questions for WG14
	References
	Proposed wording

