
ISO/IEC JTC 1/SC 22/WG14
WG 21, SG 22

2012-1-20

N2632 v1
P2305R0

Type inference for variable definitions and function returns
proposal for C23

Jens Gustedt
INRIA and ICube, Université de Strasbourg, France

We propose the inclusion of the so-called auto feature for variable definitions and function types into C.
This feature allows to infer types from expressions that are used in initializers or return statements. This is

part of a series of papers for the improvement of type-generic programming in C that has been introduced
in N2638.

I. MOTIVATION

In N2638 it is argued that the features presented in this paper are useful in a more general
context, namely for the combination with lambdas. We will not repeat this argumentation
here, but try to motivate the introduction of the auto feature as a stand-alone addition
to C.

In accordance with C’s syntax for declarations and in extension of its semantics, C++ has
a feature that allows to infer the type of a variable from its initializer expression.

auto y = cos(x);

This eases the use of type-generic functions because now the return value and type can
be captured in an auxiliary variable, without necessarily having the type of the argument,
here x, at hand. That feature is not only interesting because of the obvious convenience
for programmers who are perhaps too lazy to lookup the type of x. It can help to avoid
code maintenance problems: if x is a function parameter for which potentially the type may
be adjusted during the lifecycle of the program (say from float to double), all dependent
auxiliary variables within the function are automatically updated to the new type.

This can even be used if the return type of a type-generic function is just an aggregation
of several values for which the type itself is just an uninteresting artefact:

1 #define div(X, Y) \
2 _Generix ((X)+(Y), \
3 int: div , \
4 long: ldiv , \
5 long long: lldiv) \
6 ((X), (Y))
7
8 // int , long or long long?
9 auto res = div (38484848448 , 448484844);

10 auto a = b * res.quot + res.rem;

An important restriction for the coding of type-generic macros in current C is the impos-
sibility to declare local variables of a type that is dependent on the type(s) of the macro
argument(s). Therefore, such macros often need arguments that provide the types for which
the macro was evaluated. This not only inconvenient for the user of such macros but also
an important source of errors. If the user chooses the wrong type, implicit conversions can
impede on the correctness of the macro call.

© 2021 by the author(s). Distributed under a Creative Commons Attribution 4.0 International License

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2638.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2638.pdf

N2632
P2305R0

:2 Jens Gustedt

For type-generic macros that declare local variables, auto can easily remove the need for
the specification of the base types of the macro arguments:

1 #define dataCondStoreTG(P, E, D) \
2 do { \
3 auto* _pr_p = (P); \
4 auto _pr_expected = (E); \
5 auto _pr_desired = (D); \
6 bool _pr_c; \
7 do { \
8 mtx_lock (&_pr_p ->mtx); \
9 _pr_c = (_pr_p ->data == _pr_expected); \

10 if (_pr_c) _pr_p ->data = _pr_desired; \
11 mtx_unlock (&_pr_p ->mtx); \
12 } while (!_pr_c); \
13 } while (false)

C’s declaration syntax currently already allows to omit the type in a variable definition,
as long as the variable is initialized and a storage initializer (such as auto or static)
disambiguates the construct from an assignment. In previous versions of C the interpretation
of such a definition had been int; since C11 this is a constraint violation. We will propose
to align C with C++, here, and to change this such the type of the variable is inferred the
type from the initializer expression.

In a second alignment with C++ we propose to also extend this notion of auto type inference
to function return types, namely such that such a return type can be deduced from return
statements or be void if there is none. Having that possibility can also ease portable coding
with types that, depending on the platform, may resolve to different base types.

A good example for such a type in the C standard itself is time_t, which is just known to
be an implementation-defined real type. Consider the following function that computes the
maximum value of two parameters that have types time_t and long.

1 inline auto max(time_t a, long b){
2 return (a < 0)
3 ? ((b < 0) ? ((a < b) ? b : a) : b)
4 : ((b >= 0) ? ((a < b) ? b : a) : a);
5 }

The return expression performs default arithmetic conversion to determine a type that
can hold the maximum value. The function definition is adjusted to that return type. This
property holds regardless if time_t is a floating point or integer type and, if it is an integer
type, if it is a signed or unsigned type.

As another example, consider the following function that computes the sum over an array
of integers of a platform-dependent integer type strength and returns the value as the
promoted type of strength.

1 inline auto sum(size_t n, strength A[n]){
2 switch(n) {
3 case 0: return +((strength)0); // return the promoted type
4 case 1: return +A[0]; // return the promoted type
5 default: return sum(n/2, A) + sum(n - n/2, &A[n/2]);

Type inference for variable definitions and function returns N2632
P2305R0

:3

6 }
7 }

If instead sum would have been defined with a prototype as follows

strength sum(size_t n, strength A[n]);

for a narrow type strength such as unsigned char, the return type and result would be
different from the previous. In particular, the result of the addition would have been con-
verted back from the promoted type to strength before each return, possibly leading to a
surprising overall results. On the other hand, using the promoted type explicitly

strength_promoted sum(size_t n, strength A[n]);

forces the user to determine that promoted type in a possibly complicated cascade of
compile-time conditionals for which the result heavily depends on properties of the exe-
cution platform.

It makes not much sense to have auto forward declarations of functions since such an
identifier of function type without unknown return type could not be used easily. Most
functions that use the auto feature will probably be restricted to one TU (and thus best
declared with static) or be declared to be inline. For the latter, it will still be important
to be able to emit the function symbol in a chosen TU, and so declaration syntax for auto
functions still may have its use after such a function definition has been met. Consider the
following declarations for the max function from above:

1 extern auto max(time_t , long); // forces symbol emission for TU
2 auto max(time_t , long); // same
3 auto max(); // same

The extern declaration and the equivalent ones are considered to be valid, if they follow
the definition and thus the inferred return type is already known.

II. PROPOSED ADDTIONS

In the following we will explain our proposed additions and argue the design choices. The
full text of the proposed additions is given as a diff against C17 in the appendix.

II.1. Syntax

Type inference for definitions of objects and functions could be added to the standard with
a minimal effort by just allowing the omission of a type specifier in all places where this is
unambiguous. Unfortunately this is not the path that the current extensions have chosen.

Gcc and related compilers provide the feature by adding an __auto_type keyword. The use
of that keyword disambiguates between declarations and assignments, but is also used when
a declaration that has a storage specifier infers the type from an intializer.

C++ reuses the auto keyword for the same purpose. That is, auto can be added to any
declaration, even already having another storage specifier, to indicate that the type of the
declared identifier is is inferred from an initialization (for object declarations) or from return
statements (for function declarations).

N2632
P2305R0

:4 Jens Gustedt

To achieve maximum compatibility with C++, we propose to follow their lead and to relax
the rules for the auto keyword as indicated. Details of the necessary relaxation of syntax
constraints and semantics can be found in clauses 6.7.1 (storage class specifiers) and 6.9.1
(function definitions).

II.2. Semantics

The addition to the semantics is anchored in clause 6.7.2 (type specifiers) where the con-
straint that a type specifier has to appear in a declaration is removed, and the term under-
specified declaration is introduced to describe declarations that have no such specifier.

For underspecified declarations, a new clause 6.7.10 is added. It refers to the necessary
adjustments for functions (see II.4 below), and then specifies and exemplifies the new rules
for objects.

II.3. Type inference for objects

An underspecified declaration of a object has to be a definition that additionally has an
initializer, namely an initializer with an assignment expression E of type T0. The type
of that assignment expression that enters into the adjusted type of the declared object is
the type T1 of that expression after possible lvalue, array-to-pointer or function-to-pointer
conversion. The type T1 is unique and determined at translation time. There is a unique
type specifier T2 that can be inserted after the last storage class specifier, such that the
such adjusted declaration becomes a complete object declaration of type T3 that can be
initialized with the given initializer.

T0 type of assignment expression E
T1 type of E after lvalue etc conversion
T2 type specifier to adjust the declaration
T3 type of the adjusted the declaration

For example with

long A[5] = { 0 };
auto const* ap = A;

we have

T0 long[5]
T1 long*
T2 long
T3 long const*

II.4. Type inference for functions

The semantics for underspecified functions are mainly defined in two places: clauses 6.8.6.4
(the return statement) and 6.9.1 (function definitions).

Important requirements for the semantics are to ensure that multiple return statements pro-
vide consistent return types and that underspecified functions still can be used recursively.
This is ensured by using the (converted) type of the lexicographic first return expression,
and by constraining possible other return expressions to have the same type.

Using the first expression, has the advantage that the function prototype is then known
thereafter, and that the scope of the identifier can start at the end of that first return

Type inference for variable definitions and function returns N2632
P2305R0

:5

statement. For example in the function sum above, the first return statement (for case 0)
determines that the return type is the promoted type of strength and the identifier sum
can then be used in recursive calls for the default case.

II.5. Permitted types for the return of functions

A return statement in an underspecified function could a priori have a type that is only
locally defined within the function. Using such a type would make it visible to code outside
of the definition of the function, and thus defy the usually scoping rules for type definitions.
Therefore, clause 6.9.1, p.7 constrains types that may be used as a return expression to
types that are already visible before the definition of the function.

III. QUESTIONS FOR WG14

(1) Does WG14 want the inferred type feature for C23 along the lines of N2632?
(2) Does WG14 want to integrate the changes as specified in N2632 into C23?

Acknowledgements

Thanks to JeanHeyd Meneide for comments and suggestions.

IV. PROPOSED WORDING

The proposed text is given as diff against C17.

— Additions to the text are marked as
::::::
shown.

— Deletions of text are marked as shown.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2632.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2632.pdf

CORE 202101 (E) § 6, working draft — January 11, 2021 C17.. 2632

6. Language

6.1 Notation
1 In the syntax notation used in this clause, syntactic categories (nonterminals) are indicated by italic

type, and literal words and character set members (terminals) by bold type. A colon (:) following
a nonterminal introduces its definition. Alternative definitions are listed on separate lines, except
when prefaced by the words "one of". An optional symbol is indicated by the subscript "opt", so
that

{ expressionopt }

indicates an optional expression enclosed in braces.

2 When syntactic categories are referred to in the main text, they are not italicized and words are
separated by spaces instead of hyphens.

3 A summary of the language syntax is given in Annex A.

6.2 Concepts
6.2.1 Scopes of identifiers

1 An identifier can denote an object; a function; a tag or a member of a structure, union, or enumeration;
a typedef name; a label name; a macro name; or a macro parameter. The same identifier can denote
different entities at different points in the program. A member of an enumeration is called an
enumeration constant. Macro names and macro parameters are not considered further here, because
prior to the semantic phase of program translation any occurrences of macro names in the source file
are replaced by the preprocessing token sequences that constitute their macro definitions.

2 For each different entity that an identifier designates, the identifier is visible (i.e., can be used) only
within a region of program text called its scope. Different entities designated by the same identifier
either have different scopes, or are in different name spaces. There are four kinds of scopes: function,
file, block, and function prototype. (A function prototype is a declaration of a function that declares
the types of its parameters.)

3 A label name is the only kind of identifier that has function scope. It can be used (in a goto statement)
anywhere in the function in which it appears, and is declared implicitly by its syntactic appearance
(followed by a : and a statement).

4 Every other identifier has scope determined by the placement of its declaration (in a declarator or
type specifier). If the declarator or type specifier that declares the identifier appears outside of any
block or list of parameters, the identifier has file scope, which terminates at the end of the translation
unit. If the declarator or type specifier that declares the identifier appears inside a block or within the
list of parameter declarations in a function definition, the identifier has block scope, which terminates
at the end of the associated block. If the declarator or type specifier that declares the identifier
appears within the list of parameter declarations in a function prototype (not part of a function
definition), the identifier has function prototype scope, which terminates at the end of the function
declarator. If an identifier designates two different entities in the same name space, the scopes might
overlap. If so, the scope of one entity (the inner scope) will end strictly before the scope of the other
entity (the outer scope). Within the inner scope, the identifier designates the entity declared in the
inner scope; the entity declared in the outer scope is hidden (and not visible) within the inner scope.

5 Unless explicitly stated otherwise, where this document uses the term "identifier" to refer to some
entity (as opposed to the syntactic construct), it refers to the entity in the relevant name space whose
declaration is visible at the point the identifier occurs.

6 Two identifiers have the same scope if and only if their scopes terminate at the same point.

7 Structure, union, and enumeration tags have scope that begins just after the appearance of the
tag in a type specifier that declares the tag. Each enumeration constant has scope that begins
just after the appearance of its defining enumerator in an enumerator list.

::
An

:::::::::
identifier

::::
that

::::
has

modifications to ISO/IEC 9899:2018, § 6.2.1 page 28 Language

1

2632 C17.. § 6.2.2, working draft — January 11, 2021 CORE 202101 (E)

::
an

::::::::::::::
underspecified

::::::::::
declarator

:::
and

:::::
that

:::::::::
designates

:::
an

::::::
object

::::
has

:
a
::::::
scope

::::
that

:::::
starts

::
at

::::
the

::::
end

::
of

:::
its

:::::::::
initializer;

::
if

:::
the

:::::
same

:::::::::
identifier

::::::::
declares

:::::::
another

::::::
entity

::
in

:::
an

::::::::::::
surrounding

::::::
scope,

::::
that

:::::::::::
declaration

:
is
:::::::

hidden
:::

as
:::::
soon

::
as

::::
the

:::::
inner

::::::::::
declarator

::
is

::::
met.29)

::
An

:::::::::
identifier

::::
that

::::::::::
designates

::
a
::::::::
function

:::::
with

::
an

::::::::::::::
underspecified

::::::
return

::::
type

::::
has

:
a
::::::
scope

::::
that

:::::
starts

:::::
after

:::
the

::::::::
lexically

::::
first

:::::::
return

:::::::::
statement

::
in

:::
its

:::::::
function

::::::
body

::
or

::
at

::::
the

::::
end

::
of

::::
the

::::::::
function

:::::
body

::
if

:::::
there

::
is

:::
no

:::::
such

:::::::
return,

::::
and

:::::
from

::::
that

::::::
point

:::::::
extends

::
to

::::
the

::::::
whole

::::::::::
translation

:::::
unit.

:
Any other identifier has scope that begins just after the

completion of its declarator.

8 As a special case, a type name (which is not a declaration of an identifier) is considered to have
a scope that begins just after the place within the type name where the omitted identifier would
appear were it not omitted.

Forward references: declarations (6.7), function calls (6.5.2.2), function definitions (6.9.1), identifiers
(6.4.2), macro replacement (6.10.3), name spaces of identifiers (6.2.3), source file inclusion (6.10.2),
statements and blocks (6.8).

6.2.2 Linkages of identifiers
1 An identifier declared in different scopes or in the same scope more than once can be made to refer to

the same object or function by a process called linkage.30) There are three kinds of linkage: external,
internal, and none.

2 In the set of translation units and libraries that constitutes an entire program, each declaration of a
particular identifier with external linkage denotes the same object or function. Within one translation
unit, each declaration of an identifier with internal linkage denotes the same object or function. Each
declaration of an identifier with no linkage denotes a unique entity.

3 If the declaration of a file scope identifier for an object or a function contains the storage-class
specifier static, the identifier has internal linkage.31)

4 For an identifier declared with the storage-class specifier extern in a scope in which a prior dec-
laration of that identifier is visible,32) if the prior declaration specifies internal or external linkage,
the linkage of the identifier at the later declaration is the same as the linkage specified at the prior
declaration. If no prior declaration is visible, or if the prior declaration specifies no linkage, then the
identifier has external linkage.

5 If the declaration of an identifier for a function has no storage-class specifier, its linkage is determined
exactly as if it were declared with the storage-class specifier extern. If the declaration of an identifier
for an object has file scope and no storage-class specifier

::
or

:::::
only

:::
the

::::::::
specifier

:::::
auto , its linkage is

external.

6 The following identifiers have no linkage: an identifier declared to be anything other than an object
or a function; an identifier declared to be a function parameter; a block scope identifier for an object
declared without the storage-class specifier extern.

7 If, within a translation unit, the same identifier appears with both internal and external linkage, the
behavior is undefined.

Forward references: declarations (6.7), expressions (6.5), external definitions (6.9), statements (6.8).

6.2.3 Name spaces of identifiers
1 If more than one declaration of a particular identifier is visible at any point in a translation unit, the

syntactic context disambiguates uses that refer to different entities. Thus, there are separate name
spaces for various categories of identifiers, as follows:

— label names (disambiguated by the syntax of the label declaration and use);

— the tags of structures, unions, and enumerations (disambiguated by following any33) of the

29)
:::
That

::::::
means,

:::
that

::
the

::::
outer

:::::::::
declaration

:
is
:::
not

:::::
visible

:::
for

::
the

::::::::
initializer.

30)There is no linkage between different identifiers.
31)A function declaration can contain the storage-class specifier static only if it is at file scope; see 6.7.1.
32)As specified in 6.2.1, the later declaration might hide the prior declaration.
33)There is only one name space for tags even though three are possible.

Language modifications to ISO/IEC 9899:2018, § 6.2.3 page 29

2

2632 C17.. § 6.7.1, working draft — January 11, 2021 CORE 202101 (E)

6.7.1 Storage-class specifiers
Syntax

1 storage-class-specifier:
typedef
extern
static
_Thread_local
auto
register

Constraints
2 At most, one storage-class specifier may be given in the declaration specifiers in a declaration, except

that _Thread_local may appear with static or extern ,
::::
and

::::
that

:::::
auto

::::
may

:::::::
appear

::::
with

:::
all

::::::
others

:::
but

:::::
with

::::::::
typedef .124)

3 In the declaration of an object with block scope, if the declaration specifiers include _Thread_local,
they shall also include either static or extern. If _Thread_local appears in any declaration of an
object, it shall be present in every declaration of that object.

4 _Thread_local shall not appear in the declaration specifiers of a function declaration.
::::
auto

:::::
shall

::::
only

:::::::
appear

::
in

::::
the

::::::::::
declaration

:::::::::
specifiers

::
of

::
a
::::::::
function

:::::::::::
declaration

::
if

:
it
::

is
::::

the
::::::::::
declaration

:::::
part

::
of

::
a

:::::::
function

::::::::::
definition

::
or

::
if

:::
the

:::::::::::::
corresponding

::::::::
function

::::
has

:::::::
already

:::::
been

:::::::
defined.

:

Semantics
5 The typedef specifier is called a "storage-class specifier" for syntactic convenience only; it is

discussed in 6.7.8. The meanings of the various linkages and storage durations were discussed in
6.2.2 and 6.2.4.

6 A declaration of an identifier for an object with storage-class specifier register suggests that
access to the object be as fast as possible. The extent to which such suggestions are effective is
implementation-defined.125)

7 The declaration of an identifier for a function that has block scope shall have no explicit storage-class
specifier other than extern.

8 If an aggregate or union object is declared with a storage-class specifier other than typedef, the
properties resulting from the storage-class specifier, except with respect to linkage, also apply to the
members of the object, and so on recursively for any aggregate or union member objects.

9
:
If
:::::
auto

::::::::
appears

::::
with

::::::::
another

::::::::::::
storage-class

::::::::
specifier,

::
or

::
if
::
it

::::::::
appears

::
in

:
a
:::::::::::
declaration

::
at

:::
file

::::::
scope

::
it

:
is
::::::::
ignored

:::
for

:::
the

::::::::
purpose

::
of

::::::::::::
determining

:
a
:::::::
storage

:::::
class

::
or

::::::::
linkage.

::
It

:::::
then

::::
only

::::::::
indicates

::::
that

::::
the

::::::::
declared

::::
type

::::
may

:::
be

::::::::
inferred

::::
from

:::
an

:::::::::
initializer

::::
(for

::::::
objects

::::
see

::::::
6.7.10),

:::
or

:::::
from

:::
the

::::::::
function

:::::
body

:::
(for

:::::::::
functions

:::
see

:::::::
6.8.6.4).

:

Forward references: type definitions (6.7.8)
:
,
::::
type

:::::::::
inference

:::::::
(6.7.10),

::::::::
function

::::::::::
definitions

::::::
(6.9.1).

6.7.2 Type specifiers
Syntax

1 type-specifier:
void
char
short
int

124)See "future language directions" (6.11.5).
125)The implementation can treat any register declaration simply as an auto declaration. However, whether or not

addressable storage is actually used, the address of any part of an object declared with storage-class specifier register
cannot be computed, either explicitly (by use of the unary & operator as discussed in 6.5.3.2) or implicitly (by converting
an array name to a pointer as discussed in 6.3.2.1). Thus, the only operator that can be applied to an array declared with
storage-class specifier register is sizeof.

Language modifications to ISO/IEC 9899:2018, § 6.7.2 page 79

3

CORE 202101 (E) § 6.7.2, working draft — January 11, 2021 C17.. 2632

long
float
double
signed
unsigned
_Bool
_Complex
atomic-type-specifier
struct-or-union-specifier
enum-specifier
typedef-name

Constraints
2 At

::::::
Unless

:::::
stated

::::::::::
otherwise,

::
at

:
least one type specifier shall be given in the declaration specifiers in

each declaration, and in the specifier-qualifier list in each struct declaration and type name. Each list
of type specifiers shall be one of the following multisets (delimited by commas, when there is more
than one multiset per item); the type specifiers may occur in any order, possibly intermixed with the
other declaration specifiers.

— void

— char

— signed char

— unsigned char

— short, signed short, short int, or signed short int

— unsigned short, or unsigned short int

— int, signed, or signed int

— unsigned, or unsigned int

— long, signed long, long int, or signed long int

— unsigned long, or unsigned long int

— long long, signed long long, long long int, or signed long long int

— unsigned long long, or unsigned long long int

— float

— double

— long double

— _Bool

— float _Complex

— double _Complex

— long double _Complex

— atomic type specifier

— struct or union specifier

— enum specifier

— typedef name

3 The type specifier _Complex shall not be used if the implementation does not support complex types
(see 6.10.8.3).

modifications to ISO/IEC 9899:2018, § 6.7.2 page 80 Language

4

2632 C17.. § 6.7.2.1, working draft — January 11, 2021 CORE 202101 (E)

Semantics
4 Specifiers for structures, unions, enumerations, and atomic types are discussed in 6.7.2.1 through

6.7.2.4. Declarations of typedef names are discussed in 6.7.8. The characteristics of the other types
are discussed in 6.2.5.

:::::::::::
Declarations

:::
for

::::::
which

:::
the

:::::
type

:::::::::
specifiers

:::
are

::::::::
inferred

:::::
from

:::::::::
initializers

::::
are

:::::::::
discussed

::
in

::::::
6.7.10.

5 Each of the comma-separated multisets designates the same type, except that for bit-fields, it is
implementation-defined whether the specifier int designates the same type as signed int or the
same type as unsigned int.

6
::
A

::::::::::
declaration

::::
that

::::::::
contains

:::
no

:::::
type

::::::::
specifier

::
is

::::
said

:::
to

:::
be

::::::::::::
underspecified.

::::::::::
Identifiers

:::::
that

:::
are

:::::
such

::::::::
declared

::::
have

:::::::::::
incomplete

::::
type.

::::::
Their

::::
type

::::
can

::
be

::::::::::
completed

::
by

:::::
type

::::::::
inference

:::::
from

:::
an

:::::::::::
intialization

:::
(for

:::::::
objects)

:::
or

:::::
from

:::::::
return

::::::::::
statements

::
in

:
a
::::::::
function

:::::
body

::::
(for

::::::
return

:::::
types

:::
of

:::::::::
functions).

:

Forward references: atomic type specifiers (6.7.2.4), enumeration specifiers (6.7.2.2), structure and
union specifiers (6.7.2.1), tags (6.7.2.3), type definitions (6.7.8).

:
,
::::
type

:::::::::
inference

:::::::
(6.7.10).

:

6.7.2.1 Structure and union specifiers
Syntax

1 struct-or-union-specifier:
struct-or-union identifieropt { struct-declaration-list }
struct-or-union identifier

struct-or-union:
struct
union

struct-declaration-list:
struct-declaration
struct-declaration-list struct-declaration

struct-declaration:
specifier-qualifier-list struct-declarator-listopt ;
static_assert-declaration

specifier-qualifier-list:
type-specifier specifier-qualifier-listopt
type-qualifier specifier-qualifier-listopt
alignment-specifier specifier-qualifier-listopt

struct-declarator-list:
struct-declarator
struct-declarator-list , struct-declarator

struct-declarator:
declarator
declaratoropt : constant-expression

Constraints
2 A struct-declaration that does not declare an anonymous structure or anonymous union shall contain

a struct-declarator-list.

3 A structure or union shall not contain a member with incomplete or function type (hence, a structure
shall not contain an instance of itself, but may contain a pointer to an instance of itself), except that
the last member of a structure with more than one named member may have incomplete array type;
such a structure (and any union containing, possibly recursively, a member that is such a structure)
shall not be a member of a structure or an element of an array.

4 The expression that specifies the width of a bit-field shall be an integer constant expression with a
nonnegative value that does not exceed the width of an object of the type that would be specified
were the colon and expression omitted.126) If the value is zero, the declaration shall have no
declarator.
126)While the number of bits in a _Bool object is at least CHAR_BIT, the width (number of sign and value bits) of a _Bool can

be just 1 bit.

Language modifications to ISO/IEC 9899:2018, § 6.7.2.1 page 81

5

CORE 202101 (E) § 6.7.10, working draft — January 11, 2021 C17.. 2632

struct T x = {.l = 43, .k = 42, };

void f(void)
{

struct S l = { 1, .t = x, .t.l = 41, };
}

The value of l.t.k is 42, because implicit initialization does not override explicit initialization.

37 EXAMPLE 13 Space can be "allocated" from both ends of an array by using a single designator:

int a[MAX] = {
1, 3, 5, 7, 9, [MAX-5] = 8, 6, 4, 2, 0

};

38 In the above, if MAX is greater than ten, there will be some zero-valued elements in the middle; if it is less than ten, some of
the values provided by the first five initializers will be overridden by the second five.

39 EXAMPLE 14 Any member of a union can be initialized:

union { /* ... */ } u = {.any_member = 42 };

Forward references: common definitions <stddef.h> (7.19).

6.7.10 Type inference
Constraints

1
:::
An

:::::::::::::
underspecified

:::::::::::
declaration

:::::
shall

:::::::
contain

:::
the

:::::::
storage

::::
class

::::::::
specifier

::::::
auto.

2
:::
For

:::
an

::::::::::::::
underspecified

::::::::::
declaration

:::
of

::
a

::::::::
function

::::
that

::
is

::::
also

::
a
::::::::::
definition,

:::
the

::::::
return

:::::
type

:::::
shall

:::
be

:::::::::
completed

:::
as

::
of

:::::
6.9.1.

:::
For

:::
an

::::::::::::::
underspecified

::::::::::
declaration

::
of

::
a

::::::::
function

::::
that

:
is
::::
not

:
a
:::::::::
definition

::
a
:::::
prior

:::::::::
definition

::
of

:::
the

::::::::
declared

::::::::
function

:::::
shall

::
be

:::::::
visible.

:

3
:::
An

:::::::::::::
underspecified

:::::::::::
declaration

::
of

:::
an

:::::
object

::::
that

::
is

::::
also

::
a

:::::::::
definition

::::
and

::::
that

:
is
::::
not

:::
the

::::::::::
declaration

:::
of

:
a
::::::::::
parameter

::::
shall

:::
be

::
of

::::
one

::
of

:::
the

::::::
forms

:

::::::::
declarator = assignment-expression

::::::::
declarator = { assignment-expression }

::::::::
declarator = { assignment-expression , }

::::
such

::::
that

:::
the

::::::::::
declarator

::::
does

::::
not

:::::::
declare

::
an

::::::
array.

4
:::
For

:::
an

::::::::::::::
underspecified

::::::::::
declaration

::::::
there

:::::
shall

::
be

::
a
:::::
type

::::::::
specifier

::::
type

:::
that

::::
can

:::
be

::::::::
inserted

::
in

::::
the

::::::::::
declaration

::::::::::::
immediately

::::
after

::::
the

:::
last

:::::::
storage

:::::
class

::::::::
specifier

::::
that

::::::
makes

::::
the

::::::::
adjusted

::::::::::
declaration

::
a

:::::
valid

::::::::::
declaration

::::
and

:::::
such

::::
that

:::
the

:::::::::::
assignment

:::::::::::
expression,

::::
after

::::::::
possible

:::::::
lvalue,

:::::::::::::::
array-to-pointer

::
or

:::::::::::::::::
function-to-pointer

:::::::::::
conversion,

:::
has

::::
the

:::::::::::
non-atomic,

::::::::::
unqualified

:::::
type

::
of

:::
the

::::::::
declared

:::::::
object.157)

::
A

:::::::
function

:::::::::::
declaration

::::
that

::
is

:::
not

::
a

:::::::::
definition

::::
shall

:::::
have

:
a
:::::
type

::::
that

::
is

::::::::::
compatible

:::::
with

:::
the

::::
type

::
of

::::
the

:::::::::::::
corresponding

:::::::::
definition.

:

Description
5

::::::::
Provided

::::
the

::::::::::
constraints

::::::
above

::::
are

::::::::::
respected,

::
in

:::
an

::::::::::::::
underspecified

:::::::::::
declaration

::::
the

:::::
type

::
of

::::
the

::::::::
declared

:::::::::
identifiers

::
is
::::

the
::::
type

:::::
after

::::
the

::::::::::
declaration

::::
has

:::::
been

::::::::
adjusted

:::
by

::::
type

:
.
::::
The

:::::
type

::
of

:::::
each

::::::::
identifier

::::
that

::::::::
declares

:::
an

::::::
object

:::
is

::::::::::
incomplete

:::::
until

::::
the

::::
end

:::
of

:::
the

:::::::::::
assignment

::::::::::
expression

:::::
that

:::::::::
initializes

::
it.

6 NOTE
:::
The

::::
scope

::
of

:::
the

:::::::
identifier

:::
for

::::
which

:::
the

::::
type

::
is

::::::
inferred

:::
only

:::::
starts

::::
after

::
the

::::
end

::
of

::
the

::::::::
initializer

:::::
(6.2.1),

::
so

:::
the

::::::::
assignment

::::::::
expression

:::::
cannot

:::
use

:::
the

:::::::
identifier

::
to

::::
refer

::
to

:::
the

::::
object

::
or
:::::::

function
:::
that

::
is

:::::::
declared,

:::
for

::::::
example

::
to

::::
take

::
its

::::::
address.

:::
Any

:::
use

::
of

:::
the

:::::::
identifier

:
in
:::
the

:::::::
initializer

::
is

::::::
invalid,

:::
even

::
if

::
an

::::
entity

::::
with

:::
the

::::
same

::::
name

::::
exists

::
in

::
an

::::
outer

:::::
scope.

:

:::::
{

::::::::::::
double

::
a

::
=

::
7;

::::::::::::
double

::
b

::
=

::
9;

157)
::
For

::::
most

:::::::::
assignment

:::::::::
expressions

:
of
::::::

integer
::
or

::::::
floating

::::
point

::::
type,

::::
there

:::
are

::::::
several

::::
types

:::
type

::
that

::::::
would

::::
make

::::
such

:
a
::::::::
declaration

:::::
valid.

:::
The

:::::
second

::::
part

::
of

::
the

::::::::
constraint

::::::
ensures

:::
that

:::::
among

::::
these

::
a
:::::
unique

::::
type

:
is
:::::::::
determined

:::
that

::::
does

:::
not

:::
need

::::::
further

::::::::
conversion

::
to

::
be

:
a
::::
valid

:::::::
initializer

:::
for

::
the

:::::
object.

modifications to ISO/IEC 9899:2018, § 6.7.10 page 106 Language

6

2632 C17.. § 6.7.10, working draft — January 11, 2021 CORE 202101 (E)

:::::::
{

::::::::::::::
double

::
b

:
=
::
b
::*::

b
:
;
::::::

//
::::::
error

:
,
::::
RHS

:::::
uses

:::::::::::::
uninitialized

:::::::::
variable

::::::::::::::
printf

:::
("%g

:
\
:
n
::
",

::
a
:
)
:
;
:::::

//
::::::
valid

:
,
:::::
uses

::
"

:
a

:
"

:::::
from

:::::
outer

::::::
scope

:
,
:::::::
prints

::
7

::::::::::::
auto

::
a

:::
=
::
a
::*::

a
:
;
::::::

//
::::::
error

:
,
::
"
:
a
:
"
:::::
from

::::::
outer

:::::
scope

:::
is

::::::::
already

:::::::::
shadowed

:::::::
}

:::::::
{

::::::::::::
auto

::
b

:::
=
::
a
::*::

a
:
;
::::::

//
::::::
valid

:
,
:::::
uses

::
"

:
a

:
"

:::::
from

:::::
outer

::::::
scope

::::::::::::
auto

::
a

:::
=
::
b
:
;
: :::::::::

//
::::::
valid

:
,
::::::::
shadows

::
"

:
a

:
"

::::
from

::::::
outer

::::::
scope

:::::::::::
...

::::::::::::::
printf

:::
("%g

:
\
:
n
::
",

::
a
:
)
:
;
:::::

//
::::::
valid

:
,
:::::
uses

::
"

:
a

:
"

:::::
from

:::::
inner

::::::
scope

:
,
:::::::
prints

:::
49

:::::::
}

:::::::::
...

:::::
}

7 EXAMPLE 1
::::::
Consider

:::
the

:::::::
following

:::::::::
definitions:

::::::
static

:::::
auto

::
a

::
=

::::
3.5;

::::
auto

::*::
p
::
=

::
&

:
a

:
;

::::
They

::
are

::::::::
interpreted

::
as
::
if

:::
they

:::
had

::::
been

::::::
written

::
as:

::::::
static

:::::
auto

::::::
double

::
a
::
=
:::::
3.5;

::::
auto

:::::::
double

::* ::
p

::
=

:
&
:
a
:
;

::::
which

:::::
again

:
is
::::::::
equivalent

::
to

::::::
static

:::::::
double

::
a

::
=

::::
3.5;

::::::
double

::*::
p

::
=

::
&

:
a

:
;

::
So

:::::::
effectively

::
a
:
is
:
a
::::::
double

:::
and

:
p
::
is

:
a
:::::::
double*.

:

8 EXAMPLE 2
:
In
:::
the

:::::::
following,

:::
pA

:
is
::::
valid

::::::
because

:::
the

:::
type

::
of

:
A
::::
after

::::::::::::
array-to-pointer

::::::::
conversion

:
is
::
a

:::::
pointer

::::
type,

:::
and

::
qA

::
is

::::
valid

::::::
because

:
it
::::
does

::
not

::::::
declare

::
an

::::
array

:::
but

:
a
::::::
pointer

:
to
:::

an
::::
array.

::::::
double

::
A
:::
[3]

::
=

::
{

::
0

::
};

::::
auto

::::::
const

::* :::
pA

::
=

:
A
:
;

::::
auto

::::::
const

:::
(* ::
qA

:
)

::
[3]

::
=
::
&
:
A
:
;

9 EXAMPLE 3
:::
Type

:::::::
inference

:::
can

::
be

::::
used

::
to

::::::
capture

::
the

::::
type

::
of

:
a
:::
call

::
to

:
a
:::::::::
type-generic

:::::::
function

:::
and

:::
can

::
be

::::
used

::
to

:::::
ensure

:::
that

::
the

::::
same

::::
type

::
as

::
the

::::::::
argument

:
x
::
is

::::
used.

:
#
:::::::
include

::
<

::::::
tgmath

:
.h

:
>

::::
auto

::
y
::
=
::::
cos

:
(

:
x

:
)

:
;

:
If
::::::
instead

::
the

::::
type

::
of

:
y
:
is
:::::::
explicitly

:::::::
specified

::
to

:
a
::::::
different

::::
type

::::
than

:
x,
:
a
::::::::

diagnosis
:
of
:::

the
:::::::
mismatch

::
is

:::
not

:::::::
enforced.

10 EXAMPLE 4
:
A
:::::::::
type-generic

:::::
macro

:::
that

:::::::::
generalizes

::
the

:::
div

:::::::
functions

:::::::
(7.22.6.2)

:
is
::::::

defined
:::
and

::::
used

::
as

::::::
follows.

:

:
#
::::::
define

::::
div

:
(

:
X

:
,

::
Y

:
)

::::::::
_Generic

::
((

:
X
:
)
::
+(

:
Y
:
)
:
,
::::
int

:
:
::::
div

:
,

:::::
long

:
:

::::
ldiv

:
,
:::::
long

:::::
long

:
:
::::::
lldiv

:
)
::
((

:
X
:
)
:
,

::
(

:
Y

:
)

:
)

::::
auto

::
z
::
=
::::
div

:
(

:
x

:
,

::
y)

:
;

::::
auto

::
q
::
=
::
z

:
.

::::
quot

:
;

::::
auto

::
r
::
=
::
z

:
.

:::
rem

:
;

Language modifications to ISO/IEC 9899:2018, § 6.7.10 page 107

7

CORE 202101 (E) § 6.8.6.2, working draft — January 11, 2021 C17.. 2632

/* ... */
continue;

}
// handle other operations
/* ... */

}

4 EXAMPLE 2 A goto statement is not allowed to jump past any declarations of objects with variably modified types. A jump
within the scope, however, is permitted.

goto lab3; // invalid: going INTO scope of VLA.
{

double a[n];
a[j] = 4.4;

lab3:
a[j] = 3.3;
goto lab4; // valid: going WITHIN scope of VLA.
a[j] = 5.5;

lab4:
a[j] = 6.6;

}
goto lab4; // invalid: going INTO scope of VLA.

6.8.6.2 The continue statement
Constraints

1 A continue statement shall appear only in or as a loop body.

Semantics
2 A continue statement causes a jump to the loop-continuation portion of the smallest enclosing

iteration statement; that is, to the end of the loop body. More precisely, in each of the statements

while (/* ... */) {
/* ... */
continue;
/* ... */

contin:;
}

do {
/* ... */
continue;
/* ... */

contin:;
} while (/* ... */);

for (/* ... */) {
/* ... */
continue;
/* ... */

contin:;
}

unless the continue statement shown is in an enclosed iteration statement (in which case it is
interpreted within that statement), it is equivalent to goto contin;.164)

6.8.6.3 The break statement
Constraints

1 A break statement shall appear only in or as a switch body or loop body.

Semantics
2 A break statement terminates execution of the smallest enclosing switch or iteration statement.

6.8.6.4 The return statement
Constraints

1 A return statement with an expression shall not appear in a function whose return type is void. A
return statement without an expression shall only appear in a function whose return type is void.

2
:::
For

::
a
:::::::::

function
::::
that

::::
has

:::
an

:::::::::::::::
underspecified

::::::
return

::::::
type,

:::
all

::::::::
return

::::::::::
statements

::::::
shall

::::::::
provide

::::::::::
expressions

:::::
with

:
a
:::::::::
consistent

:::::
type

::
or

:::::
none

::
at

:::
all.

:::::
That

::
is,

::
if

::::
any

::::::
return

::::::::::
statement

:::
has

:::
an

::::::::::
expression,

164)Following the contin: label is a null statement.

modifications to ISO/IEC 9899:2018, § 6.8.6.4 page 114 Language

8

2632 C17.. § 6.8.6.4, working draft — January 11, 2021 CORE 202101 (E)

::
all

:::::::
return

::::::::::
statements

:::::
shall

::::
have

:::
an

::::::::::
expression

:::::
(after

::::::
lvalue,

:::::::::::::::
array-to-pointer

::
or

::::::::::::::::::
function-to-pointer

::::::::::
conversion)

:::::
with

:::
the

:::::
same

:::::
type;

:::::::::
otherwise

:::
all

:::::::
return

:::::::::::
expressions

:::::
shall

::::
have

:::
no

::::::::::
expression.

:

Semantics
3 A return statement terminates

::::::::
evaluates

::::
the

::::::::::
expression,

::
if
:::::

any,
::::::::::
terminates

:::
the

:
execution of the

current function
:::::::
function

::::::
body and returns control to its caller. A function

::
the

::::::
caller.

:::
A

::::::::
function

:::::
body may have any number of return statements.

4 If a return statement with an expression is executed, the value of the expression is returned to the
caller as the value of the function call expression. If the expression has a type different from the
return type of the function in which it appears, the value is converted as if by assignment to an
object having the return type of the function.165)

5
:::
For

:
a
::::::::
function

::::
that

::::
has

::
an

::::::::::::::
underspecified

::::::
return

:::::
type,

:::
the

::::::
return

::::
type

::
is
:::::::::::
determined

:::
by

:::
the

::::::::
lexically

:::
first

::::::::
return

:::::::::
statement,

::
if

::::
any,

::::
that

::
is

::::::::::
associated

::
to

:::
the

::::::::
function

:::::
body

::::
and

::
is

::::::::
specified

:::
as

:::
the

::::
type

:::
of

:::
that

:::::::::::
expression,

::
if

::::
any,

:::::
after

::::::
lvalue,

::::::::::::::::
array-to-pointer,

:::::::::::::::::
function-to-pointer

:::::::::::
conversion,

::
or

:::
as

:::::
void

::
if

::::
there

::
is
:::
no

:::::::::::
expression.

6 EXAMPLE In:

struct s { double i; } f(void);
union {

struct {
int f1;
struct s f2;

} u1;
struct {

struct s f3;
int f4;

} u2;
} g;

struct s f(void)
{

return g.u1.f2;
}

/* ... */
g.u2.f3 = f();

there is no undefined behavior, although there would be if the assignment were done directly (without using a function call
to fetch the value).

165)The return statement is not an assignment. The overlap restriction of 6.5.16.1 does not apply to the case of function
return. The representation of floating-point values can have wider range or precision than implied by the type; a cast can be
used to remove this extra range and precision.

Language modifications to ISO/IEC 9899:2018, § 6.8.6.4 page 115

9

CORE 202101 (E) § 6.9, working draft — January 11, 2021 C17.. 2632

6.9 External definitions
Syntax

1 translation-unit:
external-declaration
translation-unit external-declaration

external-declaration:
function-definition
declaration

Constraints
2 The storage-class specifiers auto and

::::::::
specifier register shall not appear in the declaration specifiers

in an external declaration.

3 There shall be no more than one external definition for each identifier declared with internal linkage
in a translation unit. Moreover, if an identifier declared with internal linkage is used in an expression
(other than as a part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), there shall be exactly one external definition for the identifier in the translation unit.

Semantics
4 As discussed in 5.1.1.1, the unit of program text after preprocessing is a translation unit, which

consists of a sequence of external declarations. These are described as "external" because they
appear outside any function (and hence have file scope). As discussed in 6.7, a declaration that also
causes storage to be reserved for an object or a function named by the identifier is a definition.

5 An external definition is an external declaration that is also a definition of a function (other than an
inline definition) or an object. If an identifier declared with external linkage is used in an expression
(other than as part of the operand of a sizeof or _Alignof operator whose result is an integer
constant), somewhere in the entire program there shall be exactly one external definition for the
identifier; otherwise, there shall be no more than one.166)

6.9.1 Function definitions
Syntax

1 function-definition:
declaration-specifiers declarator declaration-listopt compound-statement

declaration-list:
declaration
declaration-list declaration

Constraints
2 The identifier declared in a function definition (which is the name of the function) shall have a

function type, as specified by the declarator portion of the function definition.167)

3 The return type of a function shall be void or a complete object type other than array type.

4 The storage-class specifier, if any, in the declaration specifiers shall be either extern or static
:
,

:::::::
possibly

::::::::::
combined

::::
with

::::::
auto .

5 If the declarator includes a parameter type list, the declaration of each parameter shall include an
identifier, except for the special case of a parameter list consisting of a single parameter of type void,
in which case there shall not be an identifier. No declaration list shall follow.

166)Thus, if an identifier declared with external linkage is not used in an expression, there need be no external definition for
it.

modifications to ISO/IEC 9899:2018, § 6.9.1 page 116 Language

10

2632 C17.. § 6.9.1, working draft — January 11, 2021 CORE 202101 (E)

6 If the declarator includes an identifier list, each declaration in the declaration list shall have at least
one declarator, those declarators shall declare only identifiers from the identifier list, and every
identifier in the identifier list shall be declared. An identifier declared as a typedef name shall not
be redeclared as a parameter. The declarations in the declaration list shall contain no storage-class
specifier other than register and no initializations.

7
:::
An

:::::::::::::
underspecified

::::::::
function

:::::::::
definition

:::::
shall

:::::::
contain

:::
an

:::::
auto

::::::
storage

:::::
class

::::::::
specifier.

::::
The

::::::
return

:::::
type

:::
for

::::
such

::
a

:::::::
function

::
is

:::::::::::
determined

::
as

:::::::::
described

:::
for

:::
the

:::::::
return

:::::::::
statement

::::::::
(6.8.6.4)

:::
and

:::::
shall

:::
be

::::::
visible

::::
prior

:::
to

:::
the

::::::::
function

::::::::::
definition.

Semantics
8

:
If
:::::
auto

::::::::
appears

::
as

::
a
::::::::::::
storage-class

::::::::
specifier

::
it

::
is

::::::::
ignored

:::
for

:::
the

::::::::
purpose

::
of

::::::::::::
determining

::
a

:::::::
storage

::::
class

:::
or

:::::::
linkage

::
of

:::
the

:::::::::
function.

::
It
:::::
then

::::
only

:::::::::
indicates

::::
that

:::
the

::::::
return

:::::
type

::
of

::::
the

::::::::
function

::::
may

:::
be

:::::::
inferred

:::::
from

:::::::
return

::::::::::
statements

::
or

::::
the

::::
lack

:::::::
thereof,

:::
see

:::::::
6.8.6.4.

9 The declarator in a function definition specifies the name of the function being defined and the
identifiers of its parameters. If the declarator includes a parameter type list, the list also specifies the
types of all the parameters; such a declarator

::::::::
(possibly

::::::::
adjusted

::
by

:::
an

::::::::
inferred

::::
type

:::::::::
specifier) also

serves as a function prototype for later calls to the same function in the same translation unit. If the
declarator includes an identifier list,168) the types of the parameters shall be declared in a following
declaration list. In either case, the type of each parameter is adjusted as described in 6.7.6.3 for a
parameter type list; the resulting type shall be a complete object type.

10 If a function that accepts a variable number of arguments is defined without a parameter type list
that ends with the ellipsis notation, the behavior is undefined.

11 Each parameter has automatic storage duration; its identifier is an lvalue.169) The layout of the
storage for parameters is unspecified.

12 On entry to the function, the size expressions of each variably modified parameter are evaluated
and the value of each argument expression is converted to the type of the corresponding parameter
as if by assignment. (Array expressions and function designators as arguments were converted to
pointers before the call.)

13 After all parameters have been assigned, the compound statement that constitutes the body of the
function definition is executed.

14 Unless otherwise specified, if the } that terminates a function is reached, and the value of the
function call is used by the caller, the behavior is undefined.

15
::::::::
Provided

::::
the

:::::::::::
constraints

::::::
above

::::
are

::::::::::
respected,

::::
the

::::::
return

:::::
type

:::
of

:::
an

::::::::::::::
underspecified

:::::::::
function

:::::::::
definition

::
is

::::::::
adjusted

:::
as

::
if

:::
the

::::::::::::::
corresponding

:::::
type

::::::::
specifier

::::
had

:::::
been

::::::::
inserted

:::
in

:::
the

::::::::::
definition.

:::
The

:::::
type

::
of

:::::
such

:
a
::::::::
function

::
is
:::::::::::
incomplete

::::::
within

::::
the

::::::::
function

:::::
body

::::
until

::::
the

::::::::
lexically

::::
first

:::::::
return

:::::::::
statement

::::
that

:
it
:::::::::
contains,

:
if
:::::
any,

::
or

:::::
until

:::
the

::::
end

::
of

:::
the

::::::::
function

:::::
body,

::::::::::
otherwise.170)

16 NOTE
:
In
::
a

::::::
function

::::::::
definition,

::
the

::::
type

::
of

::
the

:::::::
function

:::
and

::
its

:::::::
prototype

:::::
cannot

::
be

:::::::
inherited

::::
from

:
a
::::::
typedef:

:

:: ::: :::::::
typedef

::::
int

:
F
:
(
::::
void

:
)
:
;
::::::::::::

// type
:
F is "function with no parameters

:::::::::::::::::::::::::::::::::::::
// returning

:::
int"

:: ::: :
F
::
f

:
,

::
g

:
;

::::::::::::::::::::::::
//

:
f and

:
g both have type compatible with

:
F

:: ::: :
F
::
f

::
{

:::
/* :::

...
:::*/::

}
: ::::::::::::::

// WRONG: syntax/constraint error

:: ::: :
F
::
g

::
()

::
{

:::
/* :::

...
:::*/::

}
:::::::::::::

// WRONG: declares that
:
g returns a function

:: ::: :::
int

::
f

:
(

::::
void

:
)

:
{
:::
/*::::

...
:::*/::

}
:::::::

// RIGHT:
:
f has type compatible with

:
F

:: ::: :::
int

::
g

::
()

::
{

::
/*::::

...
:::*/::

}
:::::::::::

// RIGHT:
:
g has type compatible with

:
F

:: ::: :
F
::*:
e

:
(

::::
void

:
)

:
{
:::
/*::::

...
:::*/::

}
::::::::

//
:
e returns a pointer to a function

:: ::: :
F
::::*((:

e
:
)

:
)

:
(

:::
void

:
)
::
{
:::
/*::::

...
:::*/::

}
::::

// same: parentheses irrelevant

:: ::: :::
int

:::
(* ::
fp

:
)

:
(

:::
void

:
)
:
;
: :::::::::::::::

//
::
fp points to a function that has type

:
F

:: ::: :
F
::*::
Fp

:
;

:::::::::::::::::::::::::
//

::
Fp points to a function that has type

:
F

167)The intent is that the type category in a function definition cannot be inherited from a typedef:
168)See "future language directions" (6.11.7).
169)A parameter identifier cannot be redeclared in the function body except in an enclosed block.
170)

:::
This

:::::
means

:::
that

::::
such

:
a
::::::
function

:::::
cannot

:::
be

:::
used

:::
for

::::
direct

:::::::
recursion

:::::
before

::
or

:::::
within

:::
the

:::
first

:::::
return

:::::::
statement.

Language modifications to ISO/IEC 9899:2018, § 6.9.1 page 117

11

CORE 202101 (E) § 6.9.1, working draft — January 11, 2021 C17.. 2632

17 EXAMPLE 1 In the following:

extern int max(int a, int b)
{

return a > b ? a: b;
}

extern is the storage-class specifier and int is the type specifier; max(int a, int b) is the function declarator; and

{ return a > b ? a: b; }

is the function body. The following similar definition uses the identifier-list form for the parameter declarations:

extern int max(a, b)
int a, b;
{

return a > b ? a: b;
}

Here int a, b; is the declaration list for the parameters. The difference between these two definitions is that the first form acts
as a prototype declaration that forces conversion of the arguments of subsequent calls to the function, whereas the second
form does not.

18 EXAMPLE 2 To pass one function to another, one might say

int f(void);
/* ... */
g(f);

Then the definition of g might read

void g(int (*funcp)(void))
{

/* ... */
(*funcp)(); /* or funcp(); ...*/

}

or, equivalently,

void g(int func(void))
{

/* ... */
func(); /* or (*func)(); ...*/

}

19 EXAMPLE 3
::::::
Consider

:::
the

:::::::
following

::::::
function

:::
that

::::::::
computes

::
the

::::::::
maximum

::::
value

::
of

:::
two

::::::::
parameters

:::
that

::::
have

::::::
integer

::::
types

:
T
:::
and

::
S.

::::::::::
inline

:::::
auto

:::
max

:
(
:
T
:
,
::
S
:
)
:
;
:::
//

::::::::
invalid

:
:
:::
no

:::::::::::
definition

:::::::
visible

:::::::
...

::::::::::
inline

:::::
auto

:::
max

:
(
:
T
::
a
:
,
::
S
::
b
:
)
:
{

::::::::::::
return

::
(

:
a

::
<

::
0)

::::::::::::::
?

:::
((b

::
<
: :::

0)
::
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)

::
:

::
b

:
)

::::::::::::::
:

:::
((b

:::
>=

:::
0)

::
?
:::
((

:
a
::
<
::
b
:
)
::
?
::
b
::
:
::
a
:
)

::
:

::
a

:
)

:
;

:::::
}

:::::::
...

::::::
//

::::::
valid

:
:

::::::::::
definition

::::::::
visible

::::::::::
extern

:::::
auto

:::
max

:
(
:
T
:
,
::
S
:
)
:
;
:::
//

:::::::
forces

:::::::::::
definition

:::
to

:::
be

::::::::
external

::::::::
auto

::::
max

:
(

:
T

:
,

::
S)

:
;
: :::::::::

//
:::::
same

::::::::
auto

::::
max

::
()

:
;

::::::::::::::
//

:::::
same

modifications to ISO/IEC 9899:2018, § 6.9.1 page 118 Language

12

2632 C17.. § 6.9.2, working draft — January 11, 2021 CORE 202101 (E)

:::
The

:::::
return

::::::::
expression

:::::::
performs

::::::
default

:::::::
arithmetic

:::::::::
conversion

:
to
::::::::

determine
:
a
::::

type
:::
that

:::
can

::::
hold

::
the

::::::::
maximum

:::::
value

:::
and

:
is
::
at

::::
least

::
as

::::
wide

::
as

:::
int.

:::
The

:::::::
function

:::::::
definition

::
is

::::::
adjusted

::
to

:::
that

:::::
return

::::
type.

::::
This

:::::::
property

::::
holds

::::::::
regardless

:
if
::::
types

::
T

:::
and

:
S
::::
have

::
the

::::
same

::
or
:::::::
different

::::::::
signedness.

:

::
The

::::
first

::::::
forward

::::::::
declaration

::
of
:::

the
:::::::
function

:
is
::::::
invalid,

::::::
because

:::
an

::::
auto

:::
type

:::::::
function

::::::::
declaration

:::
that

::
is
:::
not

:
a
::::::::

definition

:
is
::::
only

::::
valid

:
if
:::

the
::::::::
definition

::
of

::
the

:::::::
function

:
is
::::::

visible.
::

In
:::::::

contrast
:
to
::::

that,
:::
the

::::::
extern

::::::::
declaration

:::
and

:::
the

:::
two

::::::::
following

:::::::
equivalent

::::
ones

:::
are

::::
valid

::::::
because

::::
they

:::::
follow

:::
the

::::::::
definition

:::
and

::::
thus

::
the

:::::::
inferred

:::::
return

:::
type

::
is
::::::
known.

:::::::
Thereby

::
in

::
is

::::::
ensured

:::
that

::
the

:::::::::
translation

:::
unit

::::::
provides

:::
an

::::::
external

:::::::
definition

::
of

::
the

:::::::
function.

:

20 EXAMPLE 4
:::
The

:::::::
following

:::::::
function

:::::::
computes

:::
the

:::
sum

::::
over

::
an

:::::
array

::
of

::::::
integers

::
of

:::
type

::
T
:::
and

::::::
returns

::
the

:::::
value

::
as

:::
the

:::::::
promoted

::::
type

:
of
::
T.

::::::::::
inline

::::::::
auto

::::
sum

:
(

:::::
size_t

::
n
:
,
::
T
::
A
:
[
:
n
::
])

:
{

::::::::::::
switch

:
(

:
n

:
)

::
{

::::::::::::
case

:::
0:

:::::::::::::::::
return

:::
+((

:
T
:
)
::
0)

:
;
:::::::::::::::::::::::::::::::

//
:::::::
return

::::
the

:::::::::
promoted

:::::
type

::::::::::::
case

:::
1:

:::::::::::::::::
return

:
+
:
A
::::
[0];

: ::::::::::::::::::::::::::::::::
//

:::::::
return

::::
the

:::::::::
promoted

:::::
type

:::::::::::::::
default

:
:

:::::::::::::::::
return

:::
sum

:
(
:
n
:::
/2,

::
A
:
)
::
+
::::
sum

:
(
:
n
::
-
::
n
:::
/2,

::
&

:
A

:
[

:
n

::::
/2]);

: :::
//

::::::
valid

::::::::::
recursion

:::::::
}

:::::
}

:
If
::::::
instead

:::
sum

:::::
would

:::
have

:::
bee

::::::
defined

::::
with

:
a
:::::::
prototype

::
as

::::::
follows

:::::
T
::::
sum

:
(

::::::
size_t

:
n
:
,
::
T
::
A
:
[
:
n
::
])

:
;

::
for

:
a
::::::
narrow

:::
type

::
T
:::
such

::
as
::::::::::::
unsigned char,

:::
the

:::::
return

::::
type

:::
and

::::
result

:::::
would

::
be

:::::::
different

::::
from

::
the

:::::::
previous.

::
In

::::::::
particular,

::
the

:::::
result

:
of
:::
the

::::::
addition

:::::
would

::::
have

::::
been

:::::::
converted

::::
back

:::
from

:::
the

:::::::
promoted

::::
type

:
to
::
T

::::
before

::::
each

::::::
return,

::::::
possibly

::::::
leading

:
to
::

a
:::::::
surprising

::::::
overall

:::::
results.

::::
Also,

::::::::
specifying

:::
the

:::::::
promoted

::::
type

:
of
::

a
:::::
narrow

::::
type

:
T
:::::::
explicitly

:::
can

::
be

::::::
tedious

::::::
because

:::
that

:::
type

:::::::
depends

::
on

:::::::
properties

::
of
:::
the

:::::::
execution

:::::::
platform.

:

6.9.2 External object definitions
Semantics

1 If the declaration of an identifier for an object has file scope and an initializer, the declaration is an
external definition for the identifier.

2 A declaration of an identifier for an object that has file scope without an initializer, and without a
storage-class specifier or with the storage-class specifier static, constitutes a tentative definition. If a
translation unit contains one or more tentative definitions for an identifier, and the translation unit
contains no external definition for that identifier, then the behavior is exactly as if the translation
unit contains a file scope declaration of that identifier, with the composite type as of the end of the
translation unit, with an initializer equal to 0.

3 If the declaration of an identifier for an object is a tentative definition and has internal linkage, the
declared type shall not be an incomplete type.

4 EXAMPLE 1

int i1 = 1; // definition, external linkage
static int i2 = 2; // definition, internal linkage
extern int i3 = 3; // definition, external linkage
int i4; // tentative definition, external linkage
static int i5; // tentative definition, internal linkage

int i1; // valid tentative definition, refers to previous
int i2; // 6.2.2 renders undefined, linkage disagreement
int i3; // valid tentative definition, refers to previous
int i4; // valid tentative definition, refers to previous
int i5; // 6.2.2 renders undefined, linkage disagreement

extern int i1; // refers to previous, whose linkage is external

Language modifications to ISO/IEC 9899:2018, § 6.9.2 page 119

13

	Motivation
	Proposed addtions
	Syntax
	Semantics
	Type inference for objects
	Type inference for functions
	Permitted types for the return of functions

	Questions for WG14
	Proposed wording

