Text Formatting
Revision History
Changes since R4
- Clarify that
s
inbasic_format_arg(const char_type* s)
shall point to a NTCTS. - Remove
is_arithmetic
andis_integral
. - Clarify that the formatter output should be deterministic in Table 1 — Formatter requirements.
- Minor wording corrections.
Changes since R3
- Use
OutputIterator
concept in formatting functions that take output iterators and replace theSize
template parameter withiter_difference_t
. - Rename
*parse_context
to*format_parse_context
. - Disallow consecutive zeros in
arg-id
andwidth
. - Specify formatting of arithmetic and pointer types in terms of
to_chars
. - Clarify what is the current locale.
- Use the shortest round-trip format as the default floating-point formatting.
- Add missing specializations of
formatter
. - Clarify that the
sign
option applies to floating-point infinity and NaN. - Propose adding a new entry
<format>
to table 18 in section 15.5.1.2 [headers]. - Add section numbers in Proposed wording.
- Add a feature test macro.
- Remove tautological Ensures clauses.
- Merge two
make_format_args
overloads. - Replace
args()
witharg(size_t)
inbasic_format_context
. - Make
format_arg_store
exposition-only.
Changes since R2
- Add section Argument visitation with an example of how to use the visitation API to implement dynamic format specifiers.
- Rename
visit
tovisit_format_arg
to distinguish fromvariant
'svisit
. - Merge [format.syntax] into [format.functions].
- Remove the restriction that
'\0'
cannot be used as a fill character. - Replace Postconditions with Ensures.
Changes since R1
- Add the
format_to_n
function taking an output iterator and a size. - Add a note that compile-time processing of format strings applies to user-defined types with custom parsers to section Compile-time processing of format strings.
- Rename
count
toformatted_size
. - Drop nested namespace
fmt
. - Add
format
prefix or infix to class and function names to avoid potential name collision after removing the nested namespace. - Improve wording.
- Replace the requirement of implementing a formatter via ostream insertion operator if the latter is provided with a note that it can be implemented in such way.
- Expand the Acknowledgements section and remove "Reply to".
Changes since R0
- Add section Compile-time processing of format strings.
- Separate parsing and formatting in the extension API replacing
format_value
function template with class templateformatter
to allow compile-time processing of format strings. - Change return type of
format_to
andvformat_to
toOutputIterator
in synopsis. - Remove sections Null-terminated string view and Format string, and
replace
basic_cstring_view
withbasic_string_view
. - Add a link to the implementation in Introduction.
- Add a note regarding time formatting and compatibility with D0355 "Extending <chrono> to Calendars and Time Zones" [16] to section Extensibility.
- Rename
basic_args
tobasic_format_args
. - Rename
is_numeric
tois_arithmetic
. - Add the
count
function that counts the number of characters and use it to define output ranges. - Remove
basic_buffer
and section Formatting buffer and replace buffers with output iterators. - Add Appendix A: Benchmarks.
- Explain the purpose of the type-erased API in more details in the Binary footprint section.
- Add Appendix B: Binary code comparison.
- Add formatting function overloads for
wchar_t
strings.
Introduction
Even with proliferation of graphical and voice user interfaces, text remains one of the main ways for humans to interact with computer programs and programming languages provide a variety of methods to perform text formatting. The first thing we do when learning a new programming language is often write a "Hello, World!" program that performs simple formatted output.
C++ has not one but two standard APIs for producing formatted output, the
printf
family of functions inherited from C and the I/O streams
library (iostreams).
While iostreams are usually the recommended way of producing formatted
output in C++ for safety and extensibility reasons, printf
offers
some advantages, such as an arguably more natural function call API, the
separation of formatted message and arguments, possibly with argument reordering
as a POSIX extension, and often more compact source and binary code.
This paper proposes a new text formatting library that can be used as a
safe and extensible alternative to the printf
family of functions.
It is intended to complement the existing C++ I/O streams library and reuse
some of its infrastructure such as overloaded insertion operators for
user-defined types.
Example:
string message = format("The answer is {}.", 42);
A full implementation of this proposal is available at
https://github.com/fmtlib/fmt/tree/std.
Design
Format string syntax
Variations of the printf
format string syntax are arguably the most
popular among the programming languages and C++ itself inherits printf
from C [1]. The advantage of the printf
syntax is
that many programmers are familiar with it. However, in its current form it has
a number of issues:
- Many format specifiers like
hh
,h
,l
,j
, etc. are used only to convey type information. They are redundant in type-safe formatting and would unnecessarily complicate specification and parsing. - There is no standard way to extend the syntax for user-defined types.
- There are subtle differences between different implementations. For example, POSIX positional arguments [2] are not supported on some systems [6].
- Using
'%'
in a custom format specifier poses difficulties, e.g. forput_time
-like time formatting.
Although it is possible to address these issues while maintaining resemblance
to the original printf
format, this will still break compatibility
and can potentially be more confusing to users than introducing a different
syntax.
Therefore we propose a new syntax based on the ones used in Python
[3], the .NET family of languages [4],
and Rust [5]. This syntax employs '{'
and
'}'
as replacement field delimiters instead of '%'
and it is described in detail in
[format.functions]. Some advantages of the
proposal are:
- A consistent and easy to parse mini-language focused on formatting rather than conveying type information
- Extensibility and support for custom format strings for user-defined types
- Positional arguments
- Support for both locale-specific and locale-independent formatting (see Locale support)
- Formatting improvements such as better alignment control, fill character, and binary representation
The syntax is expressive enough to enable translation, possibly automated,
of most printf
format strings. The correspondence between
printf
and the new syntax is given in the following table:
printf | new |
---|---|
- | < |
+ | + |
space | space |
# | # |
0 | 0 |
hh | unused |
h | unused |
l | unused |
ll | unused |
j | unused |
z | unused |
t | unused |
L | unused |
c | c (optional) |
s | s (optional) |
d | d (optional) |
i | d (optional) |
o | o |
x | x |
X | X |
u | d (optional) |
f | f |
F | F |
e | e |
E | E |
a | a |
A | A |
g | g (optional) |
G | G |
n | unused |
p | p (optional) |
Width and precision are represented similarly in printf
and the
proposed syntax with the only difference that runtime value is specified by
'*'
in the former and '{}'
in the latter, possibly
with the index of the argument inside the braces:
printf("%*s", 10, "foo");
format("{:{}}", "foo", 10);
As can be seen from the table above, most of the specifiers remain the same
which simplifies migration from printf
. A notable difference is
in the alignment specification. The proposed syntax allows left, center,
and right alignment represented by '<'
, '^'
,
and '>'
respectively which is more expressive than the
corresponding printf
syntax. The latter only supports left and
right alignment.
The following example uses center alignment and '*'
as a fill
character:
format("{:*^30}", "centered");
resulting in "***********centered***********"
.
The same formatting cannot be easily achieved with printf
.
In addition to positional arguments, the grammar can be easily extended to support named arguments.
Extensibility
Both the format string syntax and the API are designed with extensibility in mind. The mini-language can be extended for user-defined types and users can provide functions that implement parsing, possibly at compile time, and formatting for such types.
The general syntax of a replacement field in a format string is
replacement-field ::= '{' [arg-id] [':' format-spec] '}'
where format-spec
is predefined for built-in types, but can be
customized for user-defined types. For example, the syntax can be extended
for put_time
-like date and time formatting
time_t t = time(nullptr);
string date = format("The date is {0:%Y-%m-%d}.", *localtime(&t));
by providing a specialization of formatter
for tm
:
template<>
struct formatter<tm> {
constexpr format_parse_context::iterator parse(format_parse_context& ctx);
template<class FormatContext>
typename FormatContext::iterator format(const tm& tm, FormatContext& ctx);
};
The formatter<tm>::parse
function parses the
format-spec
portion of the format string corresponding to the
current argument and formatter<tm>::format
formats the value
and writes the output via the iterator ctx.begin()
.
Note that date and time formatting is not covered by this proposal but formatting facilities provided by D0355 "Extending <chrono> to Calendars and Time Zones" [16] can be easily implemented using this extension API.
An implementation of formatter<T>::format
can use ostream
insertion operator<<
for user-defined type T
if
available.
The extension API is based on specialization instead of the argument-dependent
lookup (ADL), because the parse
function doesn't take the object to
be formatted as an argument and therefore some other way of parameterizing it on
the argument type T
such as introducing a dummy argument has to be
used, e.g.
constexpr auto parse(type<T>, format_parse_context& ctx);
Another problem with ADL-based approach is compile-time performance as pointed out in [20]:
Overload resolution onoperator<<
tends to get expensive for larger projects with hundreds or thousands of candidates in the overload set. This seems hard to resolve, since choosing a different name foroperator<<
simply shifts the expense of overload resolution to a differently-named function.
Safety
Formatting functions rely on variadic templates instead of the mechanism
provided by <cstdarg>
. The type information is captured
automatically and passed to formatters guaranteeing type safety and making
many of the printf
specifiers redundant (see
Format String Syntax). Memory management is automatic to prevent
buffer overflow errors common to printf
.
Locale support
As pointed out in P0067 "Elementary string conversions"[17] there is a number of use cases that do not require internationalization support, but do require high throughput when produced by a server. These include various text-based interchange formats such as JSON or XML. The need for locale-independent functions for conversions between integers and strings and between floating-point numbers and strings has also been highlighted in [20]. Therefore a user should be able to easily control whether to use locales or not during formatting.
We follow Python's approach [3] and designate a separate format
specifier 'n'
for locale-aware numeric formatting. It applies to
all integral and floating-point types. All other specifiers produce output
unaffected by locale settings. This can also have positive effect on performance
because locale-independent formatting can be implemented more efficiently.
Positional arguments
An important feature for localization is the ability to rearrange formatting arguments as the word order may vary in different languages [7]. For example:
printf("String `%s' has %d characters\n", string, length(string)));
A possible German translation of the format string might be:
"%2$d Zeichen lang ist die Zeichenkette `%1$s'\n"
using POSIX positional arguments [2]. Unfortunately these positional specifiers are not portable [6]. The C++ I/O streams don't support such rearranging of arguments by design because they are interleaved with the portions of the literal string:
cout << "String `" << string << "' has " << length(string) << " characters\n";
The current proposal allows both positional and automatically numbered arguments, for example:
format("String `{}' has {} characters\n", string, length(string)));
with the German translation of the format string being:
"{1} Zeichen lang ist die Zeichenkette `{0}'\n"
Performance
The formatting library has been designed with performance in mind. It tries to minimize the number of virtual function calls and dynamic memory allocations done per formatting operation. In particular, if formatting output can fit into a fixed-size array allocated on stack, it should be possible to avoid both of them altogether by using a suitable API.
The format_to
function takes an arbitrary output iterator and, for
performance reasons, can be specialized for random-access and contiguous
iterators as shown in the reference implementation [14].
The locale-independent formatting can also be implemented more efficiently than the locale-aware one. However, the main goal for the former is to support specific use cases (see Locale support) rather than to improve performance.
See Appendix A: Benchmarks for a small performance comparison of the reference implementation of this proposal versus the standard formatting facilities.
Binary footprint
In order to minimize binary code size each formatting function that uses
variadic templates can be implemented as a small inline wrapper around its
non-variadic counterpart. This wrapper creates a basic_format_args
object, representing an array of type-erased argument references, with
make_format_args
and calls the non-variadic function to do the actual
work. For example, the format
variadic function calls
vformat
:
string vformat(string_view fmt, format_args args);
template<class... Args>
inline string format(string_view fmt, const Args&... args) {
return vformat(fmt, make_format_args(args...));
}
basic_format_args
can be implemented as an array of tagged unions.
If the number of arguments is small then the tags that indicate the arguments
types can be combined and passed into a formatting function as a single integer.
This single integer representing all argument types is computed at compile time
and only needs to be stored, resulting in smaller binary code.
Given a reasonable optimizing compiler, this will result in a compact per-call binary code, effectively consisting of placing argument pointers (or, possibly, copies for primitive types) and packed tags on the stack and calling a formatting function. See Appendix B: Binary code comparison for a specific example.
Exposing the type-erased API rather than making it an implementation detail and
only providing variadic functions allows applying the same technique to the
user code. For example, consider a simple logging function that writes a
formatted error message to clog
:
template<class... Args>
void log_error(int code, string_view fmt, const Args&... args) {
clog << "Error " << code << ": " << format(fmt, args...);
}
The code for this function will be generated for every combination of argument types which can be undesirable. However, if we use the type-erased API, there will be only one instance of the logging function while the wrapper function can be trivially inlined:
void vlog_error(int code, string_view fmt, format_args args) {
clog << "Error " << code << ": " << vformat(fmt, args);
}
template<class... Args>
inline void log_error(int code, string_view fmt, const Args&... args) {
vlog_error(code, fmt, make_format_args(args...));
}
The current design allows users to easily switch between the two approaches.
For similar reasons formatting functions take format strings as instances of
basic_string_view
instead of being parameterized on a string type.
This allows implicit conversions from null-terminated character strings and
basic_string
without affecting code size.
Format strings and char_traits
Format strings intentionally use the default character traits in the formatting functions API because making traits customizable creates potential problems with handling format specifications.
Consider the following example:
using ci_string_view = std::basic_string_view<char, ci_char_traits>;
auto s = format(ci_string_view("{:X}"), 0xCAFE);
where ci_char_traits
is a character trait with case-insensitive
comparison.
Since the format specification grammar is case-sensitive, the behavior of such code is no longer intuitive. There are several options:
- ill-formed (current proposal),
- well-formed and
s == "cafe"
, - well-formed and
s == "CAFE"
.
Option 2 is a potential pessimization because comparisons will have to go through traits while option 3 effectively ignores traits.
Existing standard functions that take format strings (printf
,
put_time
, strftime
) do not allow passing character
traits.
Compile-time processing of format strings
It is possible to parse format strings at compile time with
constexpr
functions which has been demonstrated in the reference
implementation [14] and in [18].
Unfortunately a satisfactory API cannot be provided using existing C++17
features. Ideally we would like to use a function call API similar to the one
proposed in this paper:
template<class String, class... Args>
string format(String fmt, const Args&... args);
where String
is some type representing a compile-time format
string, for example
struct MyString {
static constexpr string_view value() { return string_view("{}", 2); }
};
However, requiring a user to create a new type either manually or via a macro for every format string is not acceptable. P0424R1 "Reconsidering literal operator templates for strings" [15] provides a solution to this problem based on user-defined literal operators. If this or other similar proposal for compile-time strings is accepted into the standard, it should be easy to provide additional formatting APIs that make use of this feature. Obviously runtime checks will still be needed in cases where the format string is not known at compile time, but as shown in Appendix A: Benchmarks even with runtime parsing performance can be on par with or better than that of existing methods.
Compile-time processing of format strings can work with a user-defined type
T
if the formatter<T>::parse
function is
constexpr
.
Argument visitation
The argument visitation API can be used to implement dynamic format specifiers, for example, width and precision passed as additional formatting arguments as opposed to being encoded in the format string itself:
int width = 10;
int precision = 3;
auto s = format("{0:{1}.{2}f}", 12.345678, width, precision);
// s == " 12.346"
An example of a user-defined formatter with dynamic width:
struct Answer {};
template<>
struct formatter<Answer> {
int width_arg_index = 0;
// Parses dynamic width in the format "{<digit>}".
auto parse(format_parse_context& parse_ctx) {
auto iter = parse_ctx.begin();
auto get_char = [&]() { return iter != parse_ctx.end() ? *iter : 0; };
if (get_char() != '{')
return iter;
++iter;
char c = get_char();
if (!std::isdigit(c) || (++iter, get_char()) != '}')
throw format_error("invalid format");
width_arg_index = c - '0';
return ++iter;
}
auto format(Answer, format_context& format_ctx) {
auto arg = format_ctx.args().get(width_arg_index);
int width = visit_format_arg([](auto value) -> int {
if constexpr (!std::is_integral_v<decltype(value)>)
throw format_error("width is not integral");
else if (value < 0 || value > std::numeric_limits<int>::max())
throw format_error("invalid width");
else
return value;
}, arg);
return format_to(format_ctx.out(), "{:{}}", 42, width);
}
};
std::string s = format("{0:{1}}", Answer(), 10);
// s == " 42"
In many cases formatting can be delegated to standard formatters which makes manual handling of dynamic specifiers unneccessary, but the latter is still important for more complex cases.
This API can also be used to implement a custom formatting engine, such as
the one compatible with the printf
syntax, to provide some of the
benefits of the current proposal to the legacy code.
Impact on existing code
The proposed formatting API is defined in the new header
<format>
and should have no impact on existing code.
Proposed wording
Add a new entry <format>
to table 18 in section
15.5.1.2
[headers] paragraph 2.
Change in table 35 of 16.3.1 [support.limits.general] paragraph 3:
Macro name Value Header(s) […] […] […] __cpp_lib_filesystem 201703L <filesystem> __cpp_lib_format 201811L <format> __cpp_lib_gcd_lcm 201606L <numeric> […] […] […]
Add a new section in 19 [utilities].
19.20 Formatting utilities [format]
19.20.1 Header <format>
synopsis [format.syn]
namespace std {
// [format.error], class format_error
class format_error;
// [format.formatter], formatter
template<class charT> class basic_format_parse_context;
using format_parse_context = basic_format_parse_context<char>;
using wformat_parse_context = basic_format_parse_context<wchar_t>;
template<class O, class charT> requires OutputIterator<O, const charT&>
class basic_format_context;
using format_context = basic_format_context<unspecified, char>;
using wformat_context = basic_format_context<unspecified, wchar_t>;
template<class T, class charT = char> struct formatter;
// [format.arguments], arguments
template<class Context> class basic_format_arg;
template<class Visitor, class Context>
see below visit_format_arg(Visitor&& vis, basic_format_arg<Context> arg);
template<class Context, class... Args> struct format_arg_store; // exposition only
template<class Context> class basic_format_args;
using format_args = basic_format_args<format_context>;
using wformat_args = basic_format_args<wformat_context>;
template<class O, class charT>
using format_args_t = basic_format_args<basic_format_context<O, charT>>;
template<class Context = format_context, class... Args>
format_arg_store<Context, Args...>
make_format_args(const Args&... args);
template<class... Args>
format_arg_store<wformat_context, Args...>
make_wformat_args(const Args&... args);
// [format.functions], formatting functions
template<class... Args>
string format(string_view fmt, const Args&... args);
template<class... Args>
wstring format(wstring_view fmt, const Args&... args);
string vformat(string_view fmt, format_args args);
wstring vformat(wstring_view fmt, wformat_args args);
template<OutputIterator<const char&> O, class... Args>
O format_to(O out, string_view fmt, const Args&... args);
template<OutputIterator<const wchar_t&> O, class... Args>
O format_to(O out, wstring_view fmt, const Args&... args);
template<OutputIterator<const char&> O>
O vformat_to(O out, string_view fmt, format_args_t<O, char> args);
template<OutputIterator<const wchar_t&> O>
O vformat_to(O out, wstring_view fmt, format_args_t<O, wchar_t> args);
template<class O>
struct format_to_n_result {
O out;
iter_difference_t<O> size;
};
template<OutputIterator<const char&> O, class... Args>
format_to_n_result<O> format_to_n(O out, iter_difference_t<O> n,
string_view fmt, const Args&... args);
template<OutputIterator<const wchar_t&> O, class... Args>
format_to_n_result<O> format_to_n(O out, iter_difference_t<O> n,
wstring_view fmt, const Args&... args);
template<class... Args>
size_t formatted_size(string_view fmt, const Args&... args);
template<class... Args>
size_t formatted_size(wstring_view fmt, const Args&... args);
}
19.20.2 Formatting functions [format.functions]
-
template<class... Args> string format(string_view fmt, const Args&... args);
-
Returns:
vformat(fmt, make_format_args(args...))
.
-
template<class... Args> wstring format(wstring_view fmt, const Args&... args);
-
Returns:
vformat(fmt, make_wformat_args(args...))
.
-
string vformat(string_view fmt, format_args args); wstring vformat(wstring_view fmt, wformat_args args);
-
Returns: A string object holding the character representation of formatting arguments provided by
args
formatted according to specifications given infmt
.Throws:
format_error
iffmt
is not a valid format string.
-
template<OutputIterator<const char&> O, class... Args> O format_to(O out, string_view fmt, const Args&... args);
-
Returns:
vformat_to(out, fmt, {make_format_args<basic_format_context<O, char>>(args...)})
.
-
template<OutputIterator<const wchar_t&> O, class... Args> O format_to(O out, wstring_view fmt, const Args&... args);
-
Returns:
vformat_to(out, fmt, {make_format_args<basic_format_context<O, wchar_t>>(args...)})
.
-
template<OutputIterator<const char&> O> O vformat_to(O out, string_view fmt, format_args_t<O, char> args); template<OutputIterator<const wchar_t&> O> O vformat_to(O out, wstring_view fmt, format_args_t<O, wchar_t> args);
-
Effects: Places the character representation of formatting arguments provided by
args
formatted according to specifications given infmt
into the range[out, out + N)
, whereN
is the formatted output size.Returns:
out + N
.Throws:
format_error
iffmt
is not a valid format string.
-
template<OutputIterator<const char&> O, class... Args> format_to_n_result<O> format_to_n(O out, iter_difference_t<O> n, string_view fmt, const Args&... args); template<OutputIterator<const wchar_t&> O, class... Args> format_to_n_result<O> format_to_n(O out, iter_difference_t<O> n, wstring_view fmt, const Args&... args);
-
Let
N
be the formatted output size andM
bemin(max(n, 0), N)
.Effects: Places the character representation of formatting arguments provided by
args
formatted according to specifications given infmt
into the range[out, out + M)
.Returns:
{out + M, N}
.Throws:
format_error
iffmt
is not a valid format string.
-
template<class... Args> size_t formatted_size(string_view fmt, const Args&... args); template<class... Args> size_t formatted_size(wstring_view fmt, const Args&... args);
-
Returns: The number of characters in the character representation of formatting arguments
args
formatted according to specifications given infmt
.Throws:
format_error
iffmt
is not a valid format string.
The fmt
string consists of zero or more replacement
fields, escape sequences, and other characters. Each character
that is not part of a replacement field or an escape sequence is copied
unchanged to the output. An escape sequence is one of {{
or
}}
. It is replaced with {
or }
respectively in the output. The syntax of replacement fields is as follows:
replacement-field ::= '{' [arg-id] [':' format-spec] '}'
arg-id ::= '0' | nonzero-digit [integer]
integer ::= digit [integer]
nonzero-digit ::= '1'...'9'
digit ::= '0'...'9'
The arg-id
field specifies the index of the argument in
args
whose value is to be formatted and inserted into the output
instead of the replacement field. The optional format-spec
field
specifies a non-default format for the replacement value.
[ Example:
string s = format("{0}-{{", 8); // s == "8-{"
— end example ]
If the numeric arg-id
s in a format string are 0, 1, 2, ... in
sequence, they can all be omitted (not just some) and the numbers 0, 1, 2, ...
will be automatically used in that order. A format string is invalid if it
contains a mix of automatic and manual indexing.
[ Example:
string s0 = format("{} to {}", "a", "b"); // OK: automatic indexing
string s1 = format("{1} to {0}", "a", "b"); // OK: manual indexing
string s2 = format("{0} to {}", "a", "b"); // Error: mixing automatic and manual indexing
string s3 = format("{} to {1}", "a", "b"); // Error: mixing automatic and manual indexing
— end example ]
The format-spec
field contains format specifications that
define how the value should be presented, including such details as field width,
alignment, padding, and decimal precision. Each type can define its own
formatting mini-language or interpretation of the
format-spec
field. The syntax of format specifications is as
follows:
format-spec ::= std-format-spec | custom-format-spec
std-format-spec ::= [[fill] align] [sign] ['#'] ['0'] [width] ['.' precision] [type]
fill ::= <a character other than '{' or '}'>
align ::= '<' | '>' | '=' | '^'
sign ::= '+' | '-' | ' '
width ::= nonzero-digit [integer] | '{' arg-id '}'
precision ::= integer | '{' arg-id '}'
type ::= 'a' | 'A' | 'b' | 'B' | 'c' | 'd' | 'e' | 'E' | 'f' | 'F' |
'g' | 'G' | 'n' | 'o' | 'p' | 's' | 'x' | 'X'
where std-format-spec
defines a common formatting mini-language
supported by fundamental and string types, while custom-format-spec
is a placeholder for user-defined mini-languages. Some of the formatting options
are only supported by arithmetic types.
The fill
character can be any character other than '{'
or '}'
. The presence of a fill character is signaled by the
character following it, which must be one of the alignment options. If the
second character of format-spec
is not a valid alignment option,
then it is assumed that both the fill character and the alignment option are
absent.
Let charT
be decltype(fmt)::value_type
.
The meaning of the various alignment options is as follows:
Option | Meaning |
---|---|
'<' |
Forces the field to be left-aligned within the available space. This is
the default for non-arithmetic types, charT , and
bool , unless an integer presentation type is specified. |
'>' |
Forces the field to be right-aligned within the available space. This is
the default for arithmetic types other than charT and
bool or when an integer presentation type is specified. |
'=' |
Forces the padding to be placed after the sign (if any) but before the
digits. This is used for printing fields in the form
+000000120 . This alignment option is only valid for arithmetic
types other than charT and bool or when an
integer presentation type is specified. |
'^' |
Forces the field to be centered within the available space by inserting
N / 2 and N - N / 2 fill characters before and
after the value respectively, where N is the total number of
fill characters to insert. |
[ Example:
char c = 120;
string s0 = format("{:6}", 42); // s0 == " 42"
string s1 = format("{:6}", 'x'); // s1 == "x "
string s2 = format("{:*<6}", 'x'); // s2 == "x*****"
string s3 = format("{:*>6}", 'x'); // s3 == "*****x"
string s4 = format("{:*^6}", 'x'); // s4 == "**x***"
string s5 = format("{:=6}", 'x'); // Error: '=' with charT and no integer presentation type
string s6 = format("{:6d}", c); // s6 == " 120"
string s7 = format("{:=+06d}", c); // s7 == "+00120"
string s8 = format("{:6}", true); // s8 == "true "
— end example ]
Note that unless a minimum field width is defined, the field width will be determined by the width of the content, meaning that the alignment option has no effect.
The sign
option is only valid for arithmetic types other than
charT
and bool
or when an integer presentation type is
specified. It can be one of the following:
Option | Meaning |
---|---|
'+' |
Indicates that a sign should be used for both non-negative as well as negative numbers. |
'-' |
Indicates that a sign should be used only for negative numbers (this is the default behavior). |
space | Indicates that a leading space should be used for non-negative numbers, and a minus sign for negative numbers. |
The sign
option applies to floating-point infinity and NaN.
[ Example:
double inf = std::numeric_limits<double>::infinity();
double nan = std::numeric_limits<double>::quiet_NaN();
string s0 = format("{0:} {0:+} {0:-} {0: }", 1); // s0 == "1 +1 1 1"
string s1 = format("{0:} {0:+} {0:-} {0: }", -1); // s1 == "-1 -1 -1 -1"
string s2 = format("{0:} {0:+} {0:-} {0: }", inf); // s2 == "inf +inf inf inf"
string s3 = format("{0:} {0:+} {0:-} {0: }", nan); // s3 == "nan +nan nan nan"
— end example ]
The '#'
option causes the alternate form to be used for
the conversion. This option is only valid for arithmetic types other than
charT
and bool
or when an integer presentation type is
specified. For integers, when binary, octal, or hexadecimal output is used, this
option adds the respective
prefix "0b"
("0B"
), "0"
, or
"0x"
("0X"
) to the output value. Whether the prefix
is lower-case or upper-case is determined by the case of the type format
specifier. For floating-point numbers the alternate form causes the result of the
conversion to always contain a decimal-point character, even if no digits follow
it. Normally, a decimal-point character appears in the result of these
conversions only if a digit follows it.
In addition, for 'g'
and 'G'
conversions, trailing
zeros are not removed from the result.
width
is a decimal integer defining the minimum field width. If
not specified, then the field width will be determined by the content.
Preceding the width
field by a zero ('0'
) character
enables sign-aware zero-padding for arithmetic types. This is equivalent to a
fill
character of '0'
with an alignment
type of '='
.
The precision
field is a decimal integer defining the precision
or maximum field size. It can only be used with floating-point and string
types. For floating-point types this field specifies the formatting precision.
For string types it specifies how many characters will be used from the string.
Finally, the type
determines how the data should be presented.
The available string presentation types are:
Type | Meaning |
---|---|
's' |
Copies the string to the output. |
none | The same as 's' . |
The available charT
presentation types are:
Type | Meaning |
---|---|
'c' |
Copies the character to the output. |
none | The same as 'c' . |
Formatting of objects of arithmetic types and const void*
is done
as if by calling to_chars
and copying the output through the output
iterator of the context with additional padding and adjustments as per format
specifiers.
Let [first, last)
be a range large enough to hold the
to_chars
output and value
be the formatting argument
value.
The available integer presentation types and their mapping to
to_chars
are:
Type | Meaning |
---|---|
'b' |
to_chars(first, last, value, 2) ; using the '#'
option with this type adds the prefix "0b" to the output. |
'B' |
The same as 'b' , except that the '#' option adds
the prefix "0B" to the output. |
'd' |
to_chars(first, last, value) . |
'o' |
to_chars(first, last, value, 8) ; using the '#'
option with this type adds the prefix "0" to the output. |
'x' |
to_chars(first, last, value, 16) ; using the '#'
option with this type adds the prefix "0x" to the output. |
'X' |
The same as 'x' , except that it uses uppercase letters for
digits above 9 and the '#' option adds the prefix
"0X" to the output. |
'n' |
The same as 'd' , except that it uses the current global locale
to insert the appropriate number separator characters. |
none | The same as 'd' if formatting argument type is not
charT or bool . |
Integer presentation types can also be used with charT
and bool
values. Values of type bool
are formatted
using textual representation, either "true"
or
"false"
, if the presentation type is not specified.
[ Example:
string s0 = format("{}", 42); // s0 == "42"
string s1 = format("{0:b} {0:d} {0:o} {0:x}", 42); // s1 == "101010 42 52 2a"
string s2 = format("{0:#x} {0:#X}", 42); // s2 == "0x2a 0X2A"
string s3 = format("{:n}", 1234); // s3 == "1,234" (depends on the locale)
— end example ]
The available floating-point presentation types and their mapping to
to_chars
are:
Type | Meaning |
---|---|
'a' |
to_chars(first, last, value, chars_format::hex, precision)
if precision is specified,
to_chars(first, last, value, chars_format::hex) otherwise. |
'A' |
The same as 'a' , except that it uses uppercase letters for
digits above 9, "P" to indicate the exponent, "INF"
for infinity, and "NAN" for NaN. |
'e' |
to_chars(first, last, value, chars_format::scientific, precision) ;
precision defaults to 6 if not specified. |
'E' |
The same as 'e' , except that it uses "E" to
indicate exponent, "INF" for infinity, and "NAN" for
NaN. |
'f' |
to_chars(first, last, value, chars_format::fixed, precision) ;
precision defaults to 6 if not specified. |
'F' |
The same as 'f' , except that it uses "INF" for
infinity, and "NAN" for NaN. |
'g' |
to_chars(first, last, value, chars_format::general, precision) ;
precision defaults to 6 if not specified. |
'G' |
The same as 'g' , except that it uses "E" to
indicate exponent, "INF" for infinity, and "NAN" for
NaN. |
'n' |
The same as 'g' , except that it uses the current global
locale to insert the appropriate number separator characters. |
none | to_chars(first, last, value, chars_format::general, precision)
if precision is specified, to_chars(first, last, value)
otherwise. |
The available pointer presentation types and their mapping to
to_chars
are:
Type | Meaning |
---|---|
'p' |
to_chars(first, last, reinterpret_cast<uintptr_t>(value), 16)
with the prefix "0x" added to the output. |
none | The same as 'p' . |
A format string that doesn't conform to the current specification is invalid.
19.20.3 Formatter [format.formatter]
The functions defined in [format.functions] use
specializations of the class template formatter
to format
individual arguments.
Each specialization of formatter
is either enabled or disabled, as
described below. [ Note: Enabled specializations meet the
Formatter requirements, and disabled specializations do not.
— end note ] Each header that declares the template formatter
provides enabled specializations
template<> struct formatter<charT, charT>;
template<> struct formatter<char, wchar_t>;
template<> struct formatter<charT*, charT>;
template<> struct formatter<const charT*, charT>;
template<size_t N> struct formatter<const charT[N], charT>;
template<class traits, class Allocator> struct formatter<std::basic_string<charT, traits, Allocator>, charT>;
template<class traits> struct formatter<std::basic_string_view<charT, traits>, charT>;
- specializations of
formatter
fornullptr_t
,void*
,const void*
,bool
, and all cv-unqualified standard integer types, extended integer types, and floating-point types as the first template argument and charT as the second template argument,
char
or wchar_t
(both sets of specializations are provided).
[ Note: Specializations such as formatter<wchar_t, char>
and formatter<const char*, wchar_t>
that require implicit
multibyte / wide string or character conversion are intentionally disabled.
— end note ]
For any types T
and charT
for which neither the
library nor the user provides an explicit or partial specialization of the class
template formatter
, formatter<T, charT>
is
disabled.
If the library provides an explicit or partial specialization of
formatter<T, charT>
, that specialization is enabled except as
noted otherwise.
If F
is a disabled specialization of formatter
, these
values are false
: is_default_constructible_v<F>
,
is_copy_constructible_v<F>
,
is_move_constructible_v<F>
,
is_copy_assignable_v<F>
,
is_move_assignable_v<F>
.
An enabled specialization formatter<T, charT>
will satisfy
the Formatter requirements.
[ Example:
#include <format>
enum color { red, green, blue };
const char* color_names[] = { "red", "green", "blue" };
template<> struct std::formatter<color> : std::formatter<const char*> {
auto format(color c, format_context& ctx) {
return formatter<const char*>::format(color_names[c], ctx);
}
};
struct err {};
std::string s0 = std::format("{}", 42); // OK: library-provided formatter
std::string s1 = std::format("{}", L"foo"); // Ill-formed: disabled formatter
std::string s2 = std::format("{}", red); // OK: user-provided formatter
std::string s3 = std::format("{}", err{}); // Ill-formed: disabled formatter
— end example ]
19.20.3.1 Formatter requirements [formatter.requirements]
A type F
meets the Formatter requirements if:
- it satisfies the Cpp17DefaultConstructible (Table 24), Cpp17CopyConstructible (Table 26), Cpp17CopyAssignable (Table 28), and Cpp17Destructible (Table 29) requirements,
- it is swappable ([swappable.requirements]) for lvalues, and
- the expressions shown in Table 1 are valid and have the indicated semantics.
Given character type charT
, output iterator type
O
, and formatting argument type T
, in
Table 1 f
is a value of type F
, u
is an
lvalue of type T
, t
is a value of a type convertible
to (possibly const) T
, pc
is an lvalue of type
basic_format_parse_context<charT>
(denoted by PC
), and
fc
is an lvalue of type
basic_format_context<O, charT>
(denoted by
FC
). pc.begin()
points to the beginning of the
format-spec
([format.syntax]) portion
of the format string. If format-spec
is empty then either
pc.begin() == pc.end()
or *pc.begin() == '}'
.
Expression | Return type | Requirement |
---|---|---|
f.parse(pc) |
PC::iterator |
Shall parse format-spec for type T , store the parsed
specifiers in *this , and return an iterator past the end of the
parsed range.
|
f.format(t, fc) |
FC::iterator |
Shall format t according to the specifiers stored in
*this , write the output to fc.out() and return an
iterator past the end of the output range.
The output shall only depend on t , the current global locale,
and the format string range [pc.begin(), pc.end()) from the last
call to f.parse(pc) .
|
f.format(u, fc) |
FC::iterator |
Shall not modify u. |
19.20.3.2 Class template basic_format_parse_context
[format.parse_context]
namespace std {
template<class charT>
class basic_format_parse_context {
public:
using char_type = charT;
using const_iterator = typename basic_string_view<charT>::const_iterator;
using iterator = const_iterator;
private:
iterator begin_; // exposition only
iterator end_; // exposition only
enum indexing { unknown, manual, automatic }; // exposition only
indexing indexing_; // exposition only
size_t next_arg_id_; // exposition only
public:
explicit constexpr basic_format_parse_context(basic_string_view<charT> fmt) noexcept;
basic_format_parse_context(const basic_format_parse_context&) = delete;
basic_format_parse_context& operator=(const basic_format_parse_context&) = delete;
constexpr const_iterator begin() const noexcept;
constexpr const_iterator end() const noexcept;
constexpr void advance_to(const_iterator it);
constexpr size_t next_arg_id();
constexpr void check_arg_id(size_t id);
};
}
An instance of basic_format_parse_context
holds the format
string parsing state consisting of the format string range being parsed and the
argument counter for automatic indexing.
explicit constexpr basic_format_parse_context(basic_string_view<charT> fmt) noexcept;
-
Effects: Initializes
begin_
withfmt.begin()
,end_
withfmt.end()
,indexing_
withunknown
, andnext_arg_id_
with0
. constexpr const_iterator begin() const noexcept;
-
Returns:
begin_
. constexpr const_iterator end() const noexcept;
-
Returns:
end_
. constexpr void advance_to(const_iterator it);
-
Requires:
end()
shall be reachable fromit
.Effects: Equivalent to:
begin_ = it;
constexpr size_t next_arg_id();
-
Effects: If
indexing_ != manual
, equivalent to:if (indexing_ == unknown) indexing_ = automatic; return next_arg_id_++;
Throws:
format_error
ifindexing_ == manual
which indicates mixing of automatic and manual argument indexing. constexpr void check_arg_id(size_t id);
-
Effects: If
indexing_ != automatic
, equivalent to:if (indexing_ == unknown) indexing_ = manual;
Throws:
format_error
ifindexing_ == automatic
which indicates mixing of automatic and manual argument indexing.
19.20.3.3 Class template basic_format_context
[format.context]
namespace std {
template<class O, class charT> requires OutputIterator<O, const charT&>
class basic_format_context {
basic_format_parse_context<charT> parse_context_; // exposition only
basic_format_args<basic_format_context> args_; // exposition only
O out_; // exposition only
public:
using iterator = O;
using char_type = charT;
template<class T>
using formatter_type = formatter<T>;
basic_format_parse_context<charT>& parse_context() noexcept;
basic_format_arg<basic_format_context> arg(size_t id) const;
iterator out();
void advance_to(iterator it);
};
}
An instance of basic_format_context
holds formatting state
consisting of the format string parsing context, formatting arguments, and
output iterator.
basic_format_parse_context<charT>& parse_context() noexcept;
-
Returns:
parse_context_
. basic_format_arg<basic_format_context> arg(size_t id) const;
-
Returns:
args_.get(id)
. iterator out();
-
Returns:
out_
. void advance_to(iterator it);
-
Effects: Equivalent to:
out_ = it;
[ Example:
struct S {
int value;
};
template<> struct std::formatter<S> {
int width_arg_id = 0;
// Parses a width argument id in the format { <digit> }.
constexpr auto parse(format_parse_context& ctx) {
auto iter = ctx.begin();
auto get_char = [&]() { return iter != ctx.end() ? *iter : 0; };
if (get_char() != '{')
return iter;
++iter;
char c = get_char();
if (!std::isdigit(c) || (++iter, get_char()) != '}')
throw format_error("invalid format");
width_arg_id = c - '0';
ctx.check_arg_id(width_arg_id);
return ++iter;
}
// Formats S with width given by the argument width_arg_id.
auto format(S s, format_context& ctx) {
int width = visit_format_arg([](auto value) -> int {
if constexpr (!std::is_integral_v<decltype(value)>)
throw format_error("width is not integral");
else if (value < 0 || value > std::numeric_limits<int>::max())
throw format_error("invalid width");
else
return value;
}, ctx.arg(width_arg_id));
return format_to(ctx.out(), "{0:{1}}", s.value, width);
}
};
std::string s = std::format("{0:{1}}", S{42}, 10); // s == " 42"
— end example ]
19.20.4 Arguments [format.arguments]
19.20.4.1 Class template basic_format_arg
[format.arg]
namespace std {
template<class Context>
class basic_format_arg {
public:
class handle;
using char_type = typename Context::char_type; // exposition only
variant<monostate, bool, char_type,
int, unsigned int, long long int, unsigned long long int,
double, long double,
const char_type*, basic_string_view<char_type>,
const void*, handle> value; // exposition only
basic_format_arg() noexcept;
template<Integral I> explicit basic_format_arg(I n) noexcept; // exposition only
explicit basic_format_arg(float n) noexcept; // exposition only
explicit basic_format_arg(double n) noexcept; // exposition only
explicit basic_format_arg(long double n) noexcept; // exposition only
explicit basic_format_arg(const char_type* s) noexcept; // exposition only
template<class traits>
explicit basic_format_arg(
basic_string_view<char_type, traits> s) noexcept; // exposition only
template<class traits, class Allocator>
explicit basic_format_arg(
const basic_string<char_type, traits, Allocator>& s) noexcept; // exposition only
explicit basic_format_arg(nullptr_t) noexcept; // exposition only
template<class T>
explicit basic_format_arg(const T* p) noexcept; // exposition only
template<class T>
explicit basic_format_arg(const T& v) noexcept; // exposition only
explicit operator bool() const noexcept;
};
}
An instance of basic_format_arg
provides access to a formatting
argument for user-defined formatters.
basic_format_arg() noexcept;
Ensures:
!(*this)
.template<Integral I> explicit basic_format_arg(I n) noexcept;
-
Effects:
- if
I
isbool
orchar_type
, initializesvalue
withn
, - if
I
ischar
andchar_type
iswchar_t
, initializesvalue
withstatic_cast<wchar_t>(n)
, - if
I
is a standard signed integer type or an extended signed integer type andsizeof(I) <= sizeof(int)
, initializesvalue
withstatic_cast<int>(n)
, - if
I
is a standard unsigned integer type or an extended unsigned integer type andsizeof(I) <= sizeof(unsigned int)
, initializesvalue
withstatic_cast<unsigned int>(n)
, - if
I
is a standard signed integer type or an extended signed integer type andsizeof(I) <= sizeof(long long int)
, initializesvalue
withstatic_cast<long long int>(n)
, - if
I
is a standard unsigned integer type or an extended unsigned integer type andsizeof(I) <= sizeof(unsigned long long int)
, initializesvalue
withstatic_cast<unsigned long long int>(n)
, - otherwise the program is ill-formed.
- if
explicit basic_format_arg(float n) noexcept;
-
Effects: Initializes
value
withstatic_cast<double>(n)
. explicit basic_format_arg(double n) noexcept;
explicit basic_format_arg(long double n) noexcept;-
Effects: Initializes
value
withn
. explicit basic_format_arg(const char_type* s) noexcept;
-
Expects:
s
shall point to a NTCTS ([defns.ntcts]).Effects: Initializes
value
withs
. template<class traits> explicit basic_format_arg(basic_string_view<char_type, traits> s) noexcept;
-
Effects: Initializes
value
withs
. template<class traits, class Allocator> explicit basic_format_arg( const basic_string<char_type, traits, Allocator>& s) noexcept;
-
Effects: Initializes
value
withbasic_string_view<char_type>(s.data(), s.size())
. explicit basic_format_arg(nullptr_t) noexcept;
-
Effects: Initializes
value
withstatic_cast<const void*>(nullptr)
. template<class T> explicit basic_format_arg(const T* p) noexcept;
-
Effects: Initializes
value
withp
.Remarks: This constructor shall not participate in overload resolution unless
T
isvoid
. template<class T> explicit basic_format_arg(const T& v) noexcept;
-
Effects: Initializes
value
withhandle(v)
.Remarks: This constructor shall not participate in overload resolution unless
formatter<T, char_type>
is enabled. explicit operator bool() const noexcept;
-
Returns:
!holds_alternative<monostate>(value)
.
[ Note: Constructing basic_format_arg
from a pointer to a
member is ill-formed unless the user provides an enabled specialization of
formatter
for this pointer to member type. — end note ]
namespace std {
template<class Context>
class basic_format_arg<Context>::handle {
const void* ptr_; // exposition only
void (*format_)(Context&, const void*); // exposition only
public:
template<class T> explicit handle(const T& val) noexcept; // exposition only
void format(Context& ctx) const;
};
}
The class handle
allows formatting an object of a non-fundamental
type.
template<class T> explicit handle(const T& val) noexcept;
-
Effects: Initializes
ptr_
with&val
andformat_
with[](Context& ctx, const void* ptr) { typename Context::template formatter_type<T> f; ctx.parse_context().advance_to(f.parse(ctx.parse_context())); ctx.advance_to(f.format(*static_cast<const T*>(ptr), ctx)); }
void format(Context& ctx) const;
-
Effects: Equivalent to:
format_(ctx, ptr_);
19.20.4.2 Argument visitation [format.visit]
template<class Visitor, class Context> see below visit_format_arg(Visitor&& vis, basic_format_arg<Context> arg);
-
Returns:
visit(vis, arg.value)
.Remarks: The return type is the type of the expression in the Returns section.
19.20.4.3 Class template format_arg_store
[format.arg_store]
namespace std {
template<class Context, class... Args>
struct format_arg_store { // exposition only
array<basic_format_arg<Context>, sizeof...(Args)> args;
};
}
19.20.4.4 Class template basic_format_args
[format.basic_args]
namespace std {
template<class Context>
class basic_format_args {
size_t size_; // exposition only
const basic_format_arg<Context>* data_; // exposition only
public:
basic_format_args() noexcept;
template<class... Args>
basic_format_args(const format_arg_store<Context, Args...>& store) noexcept;
basic_format_arg<Context> get(size_t i) const noexcept;
};
}
An instance basic_format_args
provides access to formatting
arguments.
basic_format_args() noexcept;
-
Effects: Initializes
size_
with0
.
template<class... Args> basic_format_args(const format_arg_store<Context, Args...>& store) noexcept;
-
Effects: Initializes
size_
withsizeof...(Args)
anddata_
withstore.args.data()
.
basic_format_arg<Context> get(size_t i) const noexcept;
-
Returns:
i < size_ ? data_[i] : basic_format_arg<Context>()
.
basic_format_args
for small number of formatting arguments by
storing indices of type alternatives separately from values and packing the
former. — end note ]
19.20.4.5 Function template make_format_args
[format.make_args]
-
template<class Context = format_context, class... Args> format_arg_store<Context, Args...> make_format_args(const Args&... args);
-
Returns:
{basic_format_arg<Context>(args)...}
.
19.20.4.6 Function template make_wformat_args
[format.make_wargs]
-
template<class... Args> format_arg_store<wformat_context, Args...> make_wformat_args(const Args&... args);
-
Returns:
{basic_format_arg<wformat_context>(args)...}
.
19.20.5 Class format_error
[format.error]
namespace std {
class format_error : public runtime_error {
public:
explicit format_error(const string& what_arg);
explicit format_error(const char* what_arg);
};
}
The class format_error
defines the type of objects thrown as
exceptions to report errors from the formatting library.
format_error(const string& what_arg);
-
Ensures:
strcmp(what(), what_arg.c_str()) == 0
. format_error(const char* what_arg);
-
Ensures:
strcmp(what(), what_arg) == 0
.
Related work
The Boost Format library [8] is an established formatting
library that uses printf
-like format string syntax with extensions.
The main differences between this library and the current proposal are:
- Syntax: for the reasons described in section
Format String Syntax this proposal
uses a new syntax instead of extending the
printf
one. This allows much simpler and easier to parse grammar, not burdened by legacy specifiers used to convey type information. For example, Boost Format has two ways to refer to an argument by index and allows but ignores some format specifiers. - API: Boost Format uses
operator%
to pass formatting arguments while this proposal uses variadic function templates. - Performance: the implementation of this proposal is several times faster that the implementation of Boost Format on tinyformat benchmarks [9], generates smaller binary code and is faster to compile.
A printf
-like Interface for the Streams Library [10]
is similar to the Boost Format library but uses variadic templates instead of
operator%
. Unfortunately it hasn't been updated since 2013 and the
same arguments about format string syntax apply to it.
The FastFormat library [11] is another well-known formatting library. Similarly to this proposal, FastFormat uses brace-delimited format specifiers, but otherwise the format string syntax is different and the library has significant limitations [12]:
Three features that have no hope of being accommodated within the current design are:
- Leading zeros (or any other non-space padding)
- Octal/hexadecimal encoding
- Runtime width/alignment specification
Formatting facilities of the Folly library [13] are the closest to the current proposal. Folly also uses Python-like format string syntax nearly identical to the one described here. However, the API details are quite different. The current proposal tries to address performance and code bloat issues that are largely ignored by Folly Format. For instance formatting functions in Folly Format are parameterized on all argument types while in this proposal, only the inlined wrapper functions are, which results in much smaller binary code and better compile times.
Implementation
An implementation of this proposal is available in the std
branch
of the open-source fmt library [14].
Acknowledgements
Thanks to Antony Polukhin, Beman Dawes, Bengt Gustafsson, Eric Niebler, Jason McKesson, Jeffrey Yasskin, Joël Lamotte, Lars Gullik Bjønnes, Lee Howes, Louis Dionne, Matt Clarke, Michael Park, Sergey Ignatchenko, Thiago Macieira, Zach Laine, Zhihao Yuan and participants of the Library Evolution Working Group for their feedback, support, constructive criticism and contributions to the proposal. Special thanks to Howard Hinnant who encouraged me to write the proposal and gave useful early advice on how to go about it.
The format string syntax is based on the Python documentation [3].
References
[1]
The fprintf
function. ISO/IEC 9899:2011. 7.21.6.1.
[2]
fprintf, printf, snprintf, sprintf - print formatted output. The Open
Group Base Specifications Issue 6 IEEE Std 1003.1, 2004 Edition.
[3]
6.1.3. Format String Syntax. Python 3.5.2 documentation.
[4]
String.Format Method. .NET Framework Class Library.
[5]
Module std::fmt
. The Rust Standard Library.
[6]
Format Specification Syntax: printf and wprintf Functions. C++ Language and
Standard Libraries.
[7]
10.4.2 Rearranging printf Arguments. The GNU Awk User's Guide.
[8]
Boost Format library. Boost 1.63 documentation.
[9]
Speed Test. The fmt library repository.
[10]
A printf-like Interface for the Streams Library (revision 1).
[11]
The FastFormat library website.
[12]
An Introduction to Fast Format (Part 1): The State of the Art.
Overload Journal #89 - February 2009
[13]
The folly library repository.
[14]
The fmt library repository.
[15]
P0424: Reconsidering literal operator templates for strings.
[16]
D0355: Extending <chrono> to Calendars and Time Zones.
[17]
P0067: Elementary string conversions.
[18]
MPark.Format: Compile-time Checked, Type-Safe Formatting in C++14.
[19]
Google Benchmark: A microbenchmark support library.
[20]
N4412: Shortcomings of iostreams.
Appendix A: Benchmarks
To demonstrate that the formatting functions described in this paper can be implemented efficiently, we compare the reference implementation [14] offormat
and format_to
to sprintf
,
ostringstream
and to_string
on the following
benchmark. This benchmark generates a set of integers with random numbers of
digits, applies each method to convert each integer into a string (either
std::string
or a char buffer depending on the API) and uses the
Google Benchmark library [19] to measure timings:
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <limits>
#include <sstream>
#include <string>
#include <utility>
#include <vector>
#include <benchmark/benchmark.h>
#include <fmt/format.h>
// Returns a pair with the smallest and the largest value of integral type T
// with the given number of digits.
template<typename T>
std::pair<T, T> range(int num_digits) {
T first = std::pow(T(10), num_digits - 1);
int max_digits = std::numeric_limits<T>::digits10 + 1;
T last = num_digits < max_digits ? first * 10 - 1 :
std::numeric_limits<T>::max();
return {num_digits > 1 ? first : 0, last};
}
// Generates values of integral type T with random number of digits.
template<typename T>
std::vector<T> generate_random_data(int numbers_per_digit) {
int max_digits = std::numeric_limits<T>::digits10 + 1;
std::vector<T> data;
data.reserve(max_digits * numbers_per_digit);
for (int i = 1; i <= max_digits; ++i) {
auto r = range<T>(i);
auto value = r.first;
std::generate_n(std::back_inserter(data), numbers_per_digit, [=]() mutable {
T result = value;
value = value < r.second ? value + 1 : r.first;
return result;
});
}
std::random_shuffle(data.begin(), data.end());
return data;
}
auto data = generate_random_data<int>(1000);
void sprintf(benchmark::State &s) {
size_t result = 0;
while (s.KeepRunning()) {
for (auto i: data) {
char buffer[12];
result += std::sprintf(buffer, "%d", i);
}
}
benchmark::DoNotOptimize(result);
}
BENCHMARK(sprintf);
void ostringstream(benchmark::State &s) {
size_t result = 0;
while (s.KeepRunning()) {
for (auto i: data) {
std::ostringstream ss;
ss << i;
result += ss.str().size();
}
}
benchmark::DoNotOptimize(result);
}
BENCHMARK(ostringstream);
void to_string(benchmark::State &s) {
size_t result = 0;
while (s.KeepRunning()) {
for (auto i: data)
result += std::to_string(i).size();
}
benchmark::DoNotOptimize(result);
}
BENCHMARK(to_string);
void format(benchmark::State &s) {
size_t result = 0;
while (s.KeepRunning()) {
for (auto i: data)
result += fmt::format("{}", i).size();
}
benchmark::DoNotOptimize(result);
}
BENCHMARK(format);
void format_to(benchmark::State &s) {
size_t result = 0;
while (s.KeepRunning()) {
for (auto i: data) {
char buffer[12];
result += fmt::format_to(buffer, "{}", i) - buffer;
}
}
benchmark::DoNotOptimize(result);
}
BENCHMARK(format_to);
BENCHMARK_MAIN();
The benchmark was compiled with clang (Apple LLVM version 9.0.0
clang-900.0.39.2) with -O3 -DNDEBUG
and run on a macOS system.
Below are the results:
Run on (4 X 3100 MHz CPU s) 2018-01-27 07:12:00 Benchmark Time CPU Iterations ---------------------------------------------------- sprintf 882311 ns 881076 ns 781 ostringstream 2892035 ns 2888975 ns 242 to_string 1167422 ns 1166831 ns 610 format 675636 ns 674382 ns 1045 format_to 499376 ns 498996 ns 1263The
format
and format_to
functions show much better
performance than the other methods. The format
function that
constructs std::string
is even 30% faster than the system's version
of sprintf
that uses stack-allocated char
buffer.
format_to
with a stack-allocated buffer is ~60% faster than
sprintf
.
Appendix B: Binary code comparison
In this section we compare per-call binary code size between the reference implementation that uses techniques described in section Binary footprint and standard formatting facilities. All the code snippets are compiled with clang (Apple LLVM version 9.0.0 clang-900.0.39.2) with-O3 -DNDEBUG -c -std=c++14
and the resulted binaries are
disassembled with objdump -S
:
void consume(const char*);
void sprintf_test() {
char buffer[100];
sprintf(buffer, "The answer is %d.", 42);
consume(buffer);
}
__Z12sprintf_testv:
0: 55 pushq %rbp
1: 48 89 e5 movq %rsp, %rbp
4: 53 pushq %rbx
5: 48 83 ec 78 subq $120, %rsp
9: 48 8b 05 00 00 00 00 movq (%rip), %rax
10: 48 8b 00 movq (%rax), %rax
13: 48 89 45 f0 movq %rax, -16(%rbp)
17: 48 8d 35 37 00 00 00 leaq 55(%rip), %rsi
1e: 48 8d 5d 80 leaq -128(%rbp), %rbx
22: ba 2a 00 00 00 movl $42, %edx
27: 31 c0 xorl %eax, %eax
29: 48 89 df movq %rbx, %rdi
2c: e8 00 00 00 00 callq 0 <__Z12sprintf_testv+0x31>
31: 48 89 df movq %rbx, %rdi
34: e8 00 00 00 00 callq 0 <__Z12sprintf_testv+0x39>
39: 48 8b 05 00 00 00 00 movq (%rip), %rax
40: 48 8b 00 movq (%rax), %rax
43: 48 3b 45 f0 cmpq -16(%rbp), %rax
47: 75 07 jne 7 <__Z12sprintf_testv+0x50>
49: 48 83 c4 78 addq $120, %rsp
4d: 5b popq %rbx
4e: 5d popq %rbp
4f: c3 retq
50: e8 00 00 00 00 callq 0 <__Z12sprintf_testv+0x55>
void format_test() {
consume(format("The answer is {}.", 42).c_str());
}
__Z11format_testv:
0: 55 pushq %rbp
1: 48 89 e5 movq %rsp, %rbp
4: 53 pushq %rbx
5: 48 83 ec 28 subq $40, %rsp
9: 48 c7 45 d0 2a 00 00 00 movq $42, -48(%rbp)
11: 48 8d 35 f4 83 01 00 leaq 99316(%rip), %rsi
18: 48 8d 7d e0 leaq -32(%rbp), %rdi
1c: 4c 8d 45 d0 leaq -48(%rbp), %r8
20: ba 11 00 00 00 movl $17, %edx
25: b9 02 00 00 00 movl $2, %ecx
2a: e8 00 00 00 00 callq 0 <__Z11format_testv+0x2F>
2f: f6 45 e0 01 testb $1, -32(%rbp)
33: 48 8d 7d e1 leaq -31(%rbp), %rdi
37: 48 0f 45 7d f0 cmovneq -16(%rbp), %rdi
3c: e8 00 00 00 00 callq 0 <__Z11format_testv+0x41>
41: f6 45 e0 01 testb $1, -32(%rbp)
45: 74 09 je 9 <__Z11format_testv+0x50>
47: 48 8b 7d f0 movq -16(%rbp), %rdi
4b: e8 00 00 00 00 callq 0 <__Z11format_testv+0x50>
50: 48 83 c4 28 addq $40, %rsp
54: 5b popq %rbx
55: 5d popq %rbp
56: c3 retq
57: 48 89 c3 movq %rax, %rbx
5a: f6 45 e0 01 testb $1, -32(%rbp)
5e: 74 09 je 9 <__Z11format_testv+0x69>
60: 48 8b 7d f0 movq -16(%rbp), %rdi
64: e8 00 00 00 00 callq 0 <__Z11format_testv+0x69>
69: 48 89 df movq %rbx, %rdi
6c: e8 00 00 00 00 callq 0 <__Z11format_testv+0x71>
71: 66 66 66 66 66 66 2e 0f 1f 84 00 00 00 00 00 nopw %cs:(%rax,%rax)
void ostringstream_test() {
std::ostringstream ss;
ss << "The answer is " << 42 << ".";
consume(ss.str().c_str());
}
__Z18ostringstream_testv:
0: 55 pushq %rbp
1: 48 89 e5 movq %rsp, %rbp
4: 41 57 pushq %r15
6: 41 56 pushq %r14
8: 41 55 pushq %r13
a: 41 54 pushq %r12
c: 53 pushq %rbx
d: 48 81 ec 38 01 00 00 subq $312, %rsp
14: 4c 8d b5 18 ff ff ff leaq -232(%rbp), %r14
1b: 4c 8d a5 b0 fe ff ff leaq -336(%rbp), %r12
22: 48 8b 05 00 00 00 00 movq (%rip), %rax
29: 48 8d 48 18 leaq 24(%rax), %rcx
2d: 48 89 8d a8 fe ff ff movq %rcx, -344(%rbp)
34: 48 83 c0 40 addq $64, %rax
38: 48 89 85 18 ff ff ff movq %rax, -232(%rbp)
3f: 4c 89 f7 movq %r14, %rdi
42: 4c 89 e6 movq %r12, %rsi
45: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x4A>
4a: 48 c7 45 a0 00 00 00 00 movq $0, -96(%rbp)
52: c7 45 a8 ff ff ff ff movl $4294967295, -88(%rbp)
59: 48 8b 1d 00 00 00 00 movq (%rip), %rbx
60: 4c 8d 6b 18 leaq 24(%rbx), %r13
64: 4c 89 ad a8 fe ff ff movq %r13, -344(%rbp)
6b: 48 83 c3 40 addq $64, %rbx
6f: 48 89 9d 18 ff ff ff movq %rbx, -232(%rbp)
76: 4c 89 e7 movq %r12, %rdi
79: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x7E>
7e: 4c 8b 3d 00 00 00 00 movq (%rip), %r15
85: 49 83 c7 10 addq $16, %r15
89: 4c 89 bd b0 fe ff ff movq %r15, -336(%rbp)
90: 48 c7 85 08 ff ff ff 00 00 00 00 movq $0, -248(%rbp)
9b: 48 c7 85 00 ff ff ff 00 00 00 00 movq $0, -256(%rbp)
a6: 48 c7 85 f8 fe ff ff 00 00 00 00 movq $0, -264(%rbp)
b1: 48 c7 85 f0 fe ff ff 00 00 00 00 movq $0, -272(%rbp)
bc: c7 85 10 ff ff ff 10 00 00 00 movl $16, -240(%rbp)
c6: 0f 57 c0 xorps %xmm0, %xmm0
c9: 0f 29 45 b0 movaps %xmm0, -80(%rbp)
cd: 48 c7 45 c0 00 00 00 00 movq $0, -64(%rbp)
d5: 48 8d 75 b0 leaq -80(%rbp), %rsi
d9: 4c 89 e7 movq %r12, %rdi
dc: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0xE1>
e1: f6 45 b0 01 testb $1, -80(%rbp)
e5: 74 09 je 9 <__Z18ostringstream_testv+0xF0>
e7: 48 8b 7d c0 movq -64(%rbp), %rdi
eb: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0xF0>
f0: 48 8d 35 dd 10 00 00 leaq 4317(%rip), %rsi
f7: 48 8d bd a8 fe ff ff leaq -344(%rbp), %rdi
fe: ba 0e 00 00 00 movl $14, %edx
103: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x108>
108: be 2a 00 00 00 movl $42, %esi
10d: 48 89 c7 movq %rax, %rdi
110: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x115>
115: 48 8d 35 c7 10 00 00 leaq 4295(%rip), %rsi
11c: ba 01 00 00 00 movl $1, %edx
121: 48 89 c7 movq %rax, %rdi
124: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x129>
129: 48 8d 7d b0 leaq -80(%rbp), %rdi
12d: 4c 89 e6 movq %r12, %rsi
130: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x135>
135: f6 45 b0 01 testb $1, -80(%rbp)
139: 48 8d 7d b1 leaq -79(%rbp), %rdi
13d: 48 0f 45 7d c0 cmovneq -64(%rbp), %rdi
142: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x147>
147: f6 45 b0 01 testb $1, -80(%rbp)
14b: 74 09 je 9 <__Z18ostringstream_testv+0x156>
14d: 48 8b 7d c0 movq -64(%rbp), %rdi
151: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x156>
156: 4c 89 ad a8 fe ff ff movq %r13, -344(%rbp)
15d: 48 89 9d 18 ff ff ff movq %rbx, -232(%rbp)
164: 4c 89 bd b0 fe ff ff movq %r15, -336(%rbp)
16b: f6 85 f0 fe ff ff 01 testb $1, -272(%rbp)
172: 74 0c je 12 <__Z18ostringstream_testv+0x180>
174: 48 8b bd 00 ff ff ff movq -256(%rbp), %rdi
17b: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x180>
180: 4c 89 e7 movq %r12, %rdi
183: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x188>
188: 48 8b 35 00 00 00 00 movq (%rip), %rsi
18f: 48 83 c6 08 addq $8, %rsi
193: 48 8d bd a8 fe ff ff leaq -344(%rbp), %rdi
19a: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x19F>
19f: 4c 89 f7 movq %r14, %rdi
1a2: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x1A7>
1a7: 48 81 c4 38 01 00 00 addq $312, %rsp
1ae: 5b popq %rbx
1af: 41 5c popq %r12
1b1: 41 5d popq %r13
1b3: 41 5e popq %r14
1b5: 41 5f popq %r15
1b7: 5d popq %rbp
1b8: c3 retq
1b9: 48 89 45 d0 movq %rax, -48(%rbp)
1bd: f6 45 b0 01 testb $1, -80(%rbp)
1c1: 74 3b je 59 <__Z18ostringstream_testv+0x1FE>
1c3: 48 8b 7d c0 movq -64(%rbp), %rdi
1c7: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x1CC>
1cc: eb 30 jmp 48 <__Z18ostringstream_testv+0x1FE>
1ce: eb 2a jmp 42 <__Z18ostringstream_testv+0x1FA>
1d0: 48 89 45 d0 movq %rax, -48(%rbp)
1d4: f6 45 b0 01 testb $1, -80(%rbp)
1d8: 74 39 je 57 <__Z18ostringstream_testv+0x213>
1da: 48 8b 7d c0 movq -64(%rbp), %rdi
1de: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x1E3>
1e3: f6 85 f0 fe ff ff 01 testb $1, -272(%rbp)
1ea: 75 30 jne 48 <__Z18ostringstream_testv+0x21C>
1ec: eb 3a jmp 58 <__Z18ostringstream_testv+0x228>
1ee: 48 89 45 d0 movq %rax, -48(%rbp)
1f2: eb 3c jmp 60 <__Z18ostringstream_testv+0x230>
1f4: 48 89 45 d0 movq %rax, -48(%rbp)
1f8: eb 4d jmp 77 <__Z18ostringstream_testv+0x247>
1fa: 48 89 45 d0 movq %rax, -48(%rbp)
1fe: 4c 89 ad a8 fe ff ff movq %r13, -344(%rbp)
205: 48 89 9d 18 ff ff ff movq %rbx, -232(%rbp)
20c: 4c 89 bd b0 fe ff ff movq %r15, -336(%rbp)
213: f6 85 f0 fe ff ff 01 testb $1, -272(%rbp)
21a: 74 0c je 12 <__Z18ostringstream_testv+0x228>
21c: 48 8b bd 00 ff ff ff movq -256(%rbp), %rdi
223: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x228>
228: 4c 89 e7 movq %r12, %rdi
22b: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x230>
230: 48 8b 35 00 00 00 00 movq (%rip), %rsi
237: 48 83 c6 08 addq $8, %rsi
23b: 48 8d bd a8 fe ff ff leaq -344(%rbp), %rdi
242: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x247>
247: 4c 89 f7 movq %r14, %rdi
24a: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x24F>
24f: 48 8b 7d d0 movq -48(%rbp), %rdi
253: e8 00 00 00 00 callq 0 <__Z18ostringstream_testv+0x258>
258: 0f 1f 84 00 00 00 00 00 nopl (%rax,%rax)
The code generated for the format_test
function that uses the
reference implementation of the format
function described in
this proposal is several times smaller than the ostringstream
code
and only 40% larger than the one generated for sprintf
which is a
moderate price to pay for full type and memory safety.
The following factors contribute to the difference in binary code size between
format
and sprintf
:
- Passing format string as
string_view
instead ofconst char*
. - Using
string
instead of achar
buffer. - Preparing the array of formatting arguments.
sprintf
API:
int vraw_format(char* buffer, const char* format, format_args args);
template<typename... Args>
inline int raw_format(char* buffer, const char* format, const Args&... args) {
return vraw_format(buffer, format, make_format_args(args...));
}
void raw_format_test() {
char buffer[100];
raw_format(buffer, "The answer is {}.", 42);
}
__Z15raw_format_testv:
0: 55 pushq %rbp
1: 48 89 e5 movq %rsp, %rbp
4: 48 81 ec 80 00 00 00 subq $128, %rsp
b: 48 8b 05 00 00 00 00 movq (%rip), %rax
12: 48 8b 00 movq (%rax), %rax
15: 48 89 45 f8 movq %rax, -8(%rbp)
19: 48 c7 45 80 2a 00 00 00 movq $42, -128(%rbp)
21: 48 8d 35 24 12 00 00 leaq 4644(%rip), %rsi
28: 48 8d 7d 90 leaq -112(%rbp), %rdi
2c: 48 8d 4d 80 leaq -128(%rbp), %rcx
30: ba 02 00 00 00 movl $2, %edx
35: e8 00 00 00 00 callq 0 <__Z15raw_format_testv+0x3A>
3a: 48 8b 05 00 00 00 00 movq (%rip), %rax
41: 48 8b 00 movq (%rax), %rax
44: 48 3b 45 f8 cmpq -8(%rbp), %rax
48: 75 09 jne 9 <__Z15raw_format_testv+0x53>
4a: 48 81 c4 80 00 00 00 addq $128, %rsp
51: 5d popq %rbp
52: c3 retq
53: e8 00 00 00 00 callq 0 <__Z15raw_format_testv+0x58>
58: 0f 1f 84 00 00 00 00 00 nopl (%rax,%rax)
This shows that passing formatting arguments adds very little overhead and
is comparable with sprintf
.