Is undefined behaviour preserved?

ISO/IEC JTC1 SC22 WG21 - P1093R0O

Working Group: Evolution, Library Evolution, Undefined Behaviour
Date: 2018-05-07

Andrew Bennieston <a.j.bennieston@gmail.com>

Jonathan Coe <jonathanbcoe@gmail.com>

Daven Gahir <daven.gahir@gmail.com>

Thomas Russell <thomas.russell97@Qgmail.com>

UB or not UB? That is the question: whether ‘tis nobler in the
mind to suffer the slings and arrows of undefined behaviour, or to
take arms against a sea of troubles and by defining: end them.

— William Shakespeare, Hamlet (adapted).

TL:DR

Undefined behaviour can be exploited to optimise code and used by compiler and
library implementations to help find bugs. Can we rely on such optimisations
and bug-squashing abilities after a compiler upgrade?

Introduction

Should C++4 guarantee that undefined behaviour remains undefined behaviour
as the language and library evolve?

We have recently seen papers that propose rendering currently undefined be-
haviour as well-defined [1] [2]. In the ensuing discussions, concerns were raised
about the possibility of degraded run-time performance (e.g. due to missed op-
timisation opportunities) and lost ability to detect bugs (e.g. due to tools like
ubsan being increasingly constrained). Rather than have precedent determined
by a small number of concrete cases, we would like to discuss more generally
the issue of changes to the language and library that aim to eliminate undefined
behaviour.

In this paper, following the spirit of [3] and [4], we invite the combined evolu-
tion groups to discuss, if not determine, (non-binding) policy on preserving or
eliminating undefined behaviour.


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0903r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0684r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0921r0.pdf

Contracts, preconditions and postconditions

Contract-based-programming is a software design method where formal require-
ments and guarantees are given for functions. Contract design for C++ is
described in [5] and [6] and its impact considered in [7].

From the proposed wording in [6]:

“A precondition is a predicate that should hold upon entry into a function. It
expresses a function’s expectation on its arguments and/or the state of objects
that may be used by the function.”

“A postcondition is a predicate that should hold upon exit from a function.
It expresses the conditions that a function should ensure for the return value
and/or the state of objects that may be used by the function.”

A function with preconditions is said to have a narrow contract. Violating
the preconditions on such a function may result in an ill-formed program and
associated compile-time-diagnostics or in undefined behaviour.

When there are no preconditions on a function’s arguments, the function is said
to have a wide contract. There may be input values for wide-contract-functions
that result in exceptions being thrown but such behaviour is always well-defined.
std: :vector has operator[] and at to perform index-access with narrow and
wide contracts respectively.

Changes to contracts

In an updated version of the C++ Standard we may wish to consider making
changes to a function’s preconditions and postconditions.

Making preconditions stricter would be a silent breaking change: a previously
valid program would now invoke undefined behaviour. We would expect such a
proposed change to be rejected.

Relaxing postconditions would similarly be a silent breaking change: a previ-
ously valid program that relied on the postconditions of one function to satisfy
the preconditions of another would now invoke undefined behaviour. We would
similarly expect such a proposed change to be rejected.

Relaxing preconditions would not render any existing program invalid or un-
defined. We would expect such a change to be accepted so long as it was not
accompanied by relaxing of postconditions.

Making postconditions stricter would similarly not render any existing program
invalid or undefined. We would expect such a change to be accepted.

Relaxing preconditions and restricting postconditions may render some existing
programs less-than optimally efficient as they may contain run-time checks for
behaviour that is now guaranteed.


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0542r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0788r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0542r1.html

There may be other factors to consider though. People may be relying on
undefined behaviour for trapping errors or for optimisation.

Sanitizers and assertions

The undefined behaviour sanitizers from GCC [8] and Clang [9] can be used to
produce an instrumented build in which some instances of undefined behaviour
will be detected and the program terminated with a helpful message.

Standard library implementations can be augmented with debug checks
and assertions to ensure that preconditions are true. For instance, calling
std::vector: :operator[] (size_t i) with i greater than the size of the
vector will be caught in a debug build using Microsoft’s Standard Library
implementation.

Builds with sanitizers and active assertions are commonly used by engineers to
identify and eliminate bugs.

Case studies

The following case studies are recent examples of proposed changes to undefined
behaviour. Both cases would be considered acceptable by the contract-based
criteria we outlined above but have led to considerable discussion.

Relaxing a precondition for std::string_view

P0903 [1] proposes to widen the contract of the string_view(const charx)
constructor to make string_view((const char*)nullptr) well-defined. In
this paper, we take no position on whether this should be adopted, but present
some of the arguments raised for and against adoption from the perspective of
widening the interface.

Widening the contract of string_view’s pointer constructor is a non-breaking
change as it does not result in relaxation of postconditions: string_view can
already be constructed in a state where it has a NULL data member using the
pointer and size constructor (string_view(const char*, size_t)).

Widening the contract of string_view will impose an additional run-time check
as the now potentially NULL pointer will need to be checked. Making previously
undefined behaviour well-defined will make some bugs harder to find as it will
no longer be possible to assert that the pointer in non-null.

The last point is sufficiently subtle for an example to be illuminating. Consider
the following code:

std::string processName(std::string_view username);


https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0903r1.pdf

std: :string getUserName(const UserConfig& user_config) {
const char* username = nullptr;

switch (user_config.user_type) {

case UserType: :F0O:
// External library C function
getFooName (user_config.uuid, &username);
break;

case UserType::BAR:
// Programmer error: forgot to call getBarName
break;

}

return processName (username) ;

}

Let us assume that getFooName and getBarName always set their second param-
eter to point to a valid C string (possibly empty, i.e. "\0").

In this case, the programmer forgot to handle the BAR case properly, and the call
to processName may construct a string_view with a nullptr argument. In
the current specification, passing nullptr to the single-parameter constructor
for string_view violates a precondition and may result in undefined behaviour
when attempting to calculate the length of the string view (which will involve
dereferencing the pointer). This provides an opportunity for a library implemen-
tation to emit diagnostics that could guide the developer towards the source of
the problem.

By making this constructor valid, widening the contract to internally reinterpret
it as a call to string_view(nullptr, 0), we would eliminate the possibility
for the library to flag this for attention, and instead produce an empty string
view, a situation that is much harder to debug as the cause and effect may be
separated by some considerable distance or time.

Defining the behaviour for signed integer overflow

P0907RO [2] originally proposed to make signed integer overflow well-defined
such that it behaves as for unsigned integers on overflowing operations (i.e. over-
flow in the positive direction wraps around from the maximum integer value for
the type back to the minimum and vice versa for overflow in the opposite di-
rection). This was subsequently removed from the proposal following various
concerns raised from EWG, SG6 and SG12. Below we present a quick overview
of the reasons for removal of the sub-proposal defining signed integer overflow.

According to the earlier contract-based arguments, making integer overflow well-
defined is an non-breaking change as it relaxes preconditions and does not fur-
ther restrict postconditions - there is no previously valid program that would


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r0.html

be rendered invalid by making integer overflow well defined.

The primary complaint against defining overflow for signed integers was lost
optimisation opportunities and the subsequent expected performance degrada-
tion. Modern compilers take advantage of the currently undefined behaviour on
signed integer overflow for a variety of optimisations.

Possibly the most crucial of the currently permitted optimisations is loop anal-
ysis. A simple for loop such as the one below would be adversely affected:

signed int foo(signed int i) noexcept

{
signed int j, k = 0;
for (j = 1; j < i + 10; ++j) ++k;
return k;

}

We might expect that the function foo could be trivially reduced to a simple
return 10 statement during a flow-analysis optimisation pass. Indeed, with the
current language rules, this is what most modern compilers will emit. However,
under the changes proposed in P0907R0 [2] this would no longer be a valid
optimisation as there are some inputs which would overflow.

There are many other optimisation opportunities that are similarly reliant on
the undefined behaviour of signed integer overflow. Below is an (incomplete)
summary of other optimisations gathered from [10]:

e (x * ¢) == 0 can be optimised to x == 0, eliding the multiplication.
e (x * ¢c_1) / c_2can be optimised to x * (c_1 / c_2) if c_1 is divisible
by c_2.

e (-x) / (-y) can be optimised to x / y.

e (x + ¢) < x can be optimised to false if ¢ > 0 or true otherwise.

e (x + ¢) <= x can be optimised to false if ¢ >= 0 or true otherwise.
e (x + ¢) > x can be optimised to true if ¢ >= 0 and false otherwise.
e (x + ¢) >= x can be optimised to true if ¢ > 0 and false otherwise.
e -x == -y can be optimised to x == y.

e x + c > ycan be optimised tox + (c - 1) >= y.

e X + c <= y can be optimised to x + (¢ - 1) < y.

e (x + c_1) == c_2 can be optimised to x == (c_2 - c_1).
e (x + c_1) == (y + c_2) can be optimised to x == (y + (c_2 - c_1))
if c_1 <= c_2.

e Various value-range specific optimisations such as:

— Changing comparisons x < y to true or false.

— Changing min(x,y) or max(x,y) to x or y if the ranges do not over-
lap.

— Changing abs(x) to x or -x if the range does not cross 0.

— Changing x / c tox > log2(c) ifx > 0

— Changing x % ctox & (c-1) if x > 0 and the constant c is a power
of 2.


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r0.html
https://kristerw.blogspot.co.uk/2016/02/how-undefined-signed-overflow-enables.html

Polls

e Undefined behaviour should be preserved from one version of the C++
Standard to the next.

o Compiler / library diagnostics that allow undefined behaviour to be
trapped should be considered when determining if a new feature is
non-breaking.

o Compiler / library optimisations that exploit undefined behaviour should
be considered when determining if a new feature is non-breaking.

Acknowledgements

We would like to thank Walter Brown for extensive feedback on an early draft
of this paper, and the members of the BSI, discussion with whom led to this
paper being drafted.

References

o [1] PO903R1 — Define basic_string_view(nullptr), http://www.open-
std.org/jtcl/sc22/wg21/docs/papers/2018 /p0903rl.pdf

o [2] PO907RO — Signed Integers are Two’s Complement, http://www.open-
std.org/jtcl/sc22/wg21/docs/papers/2018/p0907r0.html

e [3] P0684R2 — C++ Stability, Velocity and Deployment Plans,
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2018/p0684r2.pdf

o [4] P0921RO, http://www.open-std.org/jtcl /sc22/wg21/docs/papers/2018/p0921r0.pdf

o [5] PO380R1 — A Contract Design, http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2016 /p0380r1.

o [6] P0542R1 — Support for contract based programming in C++,
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2017/p0542r1.html

« [7] PO788R0 — Standard Library Specification in a Concepts and Contracts
World, http://www.open-std.org/jtcl /sc22/wg21/docs/papers/2017/p0788r0.pdf

« [8] GCC Instrumentation Options, https://gcc.gnu.org/onlinedocs/gee/Instrumentation-
Options.html

o [9] Clang Undefined Behaviour Sanitizer, https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

e [10] How undefined signed overflow enables optimizations in GCC,
https://kristerw.blogspot.co.uk/2016 /02 /how-undefined-signed-overflow-
enables.html


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0903r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0684r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0921r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0380r1.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0542r1.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0788r0.pdf
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://kristerw.blogspot.co.uk/2016/02/how-undefined-signed-overflow-enables.html

	Is undefined behaviour preserved?
	ISO/IEC JTC1 SC22 WG21 - P1093R0
	TL;DR
	Introduction
	Contracts, preconditions and postconditions
	Changes to contracts

	Sanitizers and assertions
	Case studies
	Relaxing a precondition for std::string_view
	Defining the behaviour for signed integer overflow

	Polls
	Acknowledgements
	References


